better default handling for sdxl/turbo

This commit is contained in:
Johannes Stelzer 2024-01-09 15:51:02 +01:00
parent e889c2a0cc
commit e97f40c762
1 changed files with 38 additions and 37 deletions

View File

@ -33,18 +33,11 @@ class LatentBlending():
def __init__( def __init__(
self, self,
dh: None, dh: None,
guidance_scale: float = 4,
guidance_scale_mid_damper: float = 0.5, guidance_scale_mid_damper: float = 0.5,
mid_compression_scaler: float = 1.2): mid_compression_scaler: float = 1.2):
r""" r"""
Initializes the latent blending class. Initializes the latent blending class.
Args: Args:
guidance_scale: float
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
guidance_scale_mid_damper: float = 0.5 guidance_scale_mid_damper: float = 0.5
Reduces the guidance scale towards the middle of the transition. Reduces the guidance scale towards the middle of the transition.
A value of 0.5 would decrease the guidance_scale towards the middle linearly by 0.5. A value of 0.5 would decrease the guidance_scale towards the middle linearly by 0.5.
@ -82,16 +75,7 @@ class LatentBlending():
self.image2_lowres = None self.image2_lowres = None
self.negative_prompt = None self.negative_prompt = None
# Mixing parameters self.set_guidance_scale()
self.branch1_crossfeed_power = 0.0
self.branch1_crossfeed_range = 0.0
self.branch1_crossfeed_decay = 0.0
self.parental_crossfeed_power = 0.3
self.parental_crossfeed_range = 0.6
self.parental_crossfeed_power_decay = 0.9
self.set_guidance_scale(guidance_scale)
self.multi_transition_img_first = None self.multi_transition_img_first = None
self.multi_transition_img_last = None self.multi_transition_img_last = None
self.dt_unet_step = 0 self.dt_unet_step = 0
@ -100,10 +84,15 @@ class LatentBlending():
self.set_prompt1("") self.set_prompt1("")
self.set_prompt2("") self.set_prompt2("")
self.set_branch1_crossfeed()
self.set_parental_crossfeed()
self.set_num_inference_steps() self.set_num_inference_steps()
self.benchmark_speed() self.benchmark_speed()
self.set_branching() self.set_branching()
def benchmark_speed(self): def benchmark_speed(self):
""" """
Measures the time per diffusion step and for the vae decoding Measures the time per diffusion step and for the vae decoding
@ -131,12 +120,23 @@ class LatentBlending():
width x height width x height
Note: the size will get automatically adjusted to be divisable by 32. Note: the size will get automatically adjusted to be divisable by 32.
""" """
if size_output is None:
if self.dh.is_sdxl_turbo:
size_output = (512, 512)
else:
size_output = (1024, 1024)
self.dh.set_dimensions(size_output) self.dh.set_dimensions(size_output)
def set_guidance_scale(self, guidance_scale): def set_guidance_scale(self, guidance_scale=None):
r""" r"""
sets the guidance scale. sets the guidance scale.
""" """
if guidance_scale is None:
if self.dh.is_sdxl_turbo:
guidance_scale = 0.0
else:
guidance_scale = 4.0
self.guidance_scale_base = guidance_scale self.guidance_scale_base = guidance_scale
self.guidance_scale = guidance_scale self.guidance_scale = guidance_scale
self.dh.guidance_scale = guidance_scale self.dh.guidance_scale = guidance_scale
@ -158,7 +158,7 @@ class LatentBlending():
self.guidance_scale = guidance_scale_effective self.guidance_scale = guidance_scale_effective
self.dh.guidance_scale = guidance_scale_effective self.dh.guidance_scale = guidance_scale_effective
def set_branch1_crossfeed(self, crossfeed_power, crossfeed_range, crossfeed_decay): def set_branch1_crossfeed(self, crossfeed_power=0, crossfeed_range=0, crossfeed_decay=0):
r""" r"""
Sets the crossfeed parameters for the first branch to the last branch. Sets the crossfeed parameters for the first branch to the last branch.
Args: Args:
@ -173,7 +173,7 @@ class LatentBlending():
self.branch1_crossfeed_range = np.clip(crossfeed_range, 0, 1) self.branch1_crossfeed_range = np.clip(crossfeed_range, 0, 1)
self.branch1_crossfeed_decay = np.clip(crossfeed_decay, 0, 1) self.branch1_crossfeed_decay = np.clip(crossfeed_decay, 0, 1)
def set_parental_crossfeed(self, crossfeed_power, crossfeed_range, crossfeed_decay): def set_parental_crossfeed(self, crossfeed_power=None, crossfeed_range=None, crossfeed_decay=None):
r""" r"""
Sets the crossfeed parameters for all transition images (within the first and last branch). Sets the crossfeed parameters for all transition images (within the first and last branch).
Args: Args:
@ -184,9 +184,22 @@ class LatentBlending():
crossfeed_decay: float [0,1] crossfeed_decay: float [0,1]
Sets decay for branch1_crossfeed_power. Lower values make the decay stronger across the range. Sets decay for branch1_crossfeed_power. Lower values make the decay stronger across the range.
""" """
if self.dh.is_sdxl_turbo:
if crossfeed_power is None:
crossfeed_power = 1.0
if crossfeed_range is None:
crossfeed_range = 1.0
if crossfeed_decay is None:
crossfeed_decay = 1.0
else:
crossfeed_power = 0.3
crossfeed_range = 0.6
crossfeed_decay = 0.9
self.parental_crossfeed_power = np.clip(crossfeed_power, 0, 1) self.parental_crossfeed_power = np.clip(crossfeed_power, 0, 1)
self.parental_crossfeed_range = np.clip(crossfeed_range, 0, 1) self.parental_crossfeed_range = np.clip(crossfeed_range, 0, 1)
self.parental_crossfeed_power_decay = np.clip(crossfeed_decay, 0, 1) self.parental_crossfeed_decay = np.clip(crossfeed_decay, 0, 1)
def set_prompt1(self, prompt: str): def set_prompt1(self, prompt: str):
r""" r"""
@ -329,13 +342,6 @@ class LatentBlending():
self.tree_final_imgs = [self.dh.latent2image((self.tree_latents[0][-1])), self.dh.latent2image((self.tree_latents[-1][-1]))] self.tree_final_imgs = [self.dh.latent2image((self.tree_latents[0][-1])), self.dh.latent2image((self.tree_latents[-1][-1]))]
self.tree_idx_injection = [0, 0] self.tree_idx_injection = [0, 0]
# Set up branching scheme (dependent on provided compute time)
if self.dh.is_sdxl_turbo:
self.guidance_scale = 0.0
self.parental_crossfeed_power = 1.0
self.parental_crossfeed_power_decay = 1.0
self.parental_crossfeed_range = 1.0
# Run iteratively, starting with the longest trajectory. # Run iteratively, starting with the longest trajectory.
# Always inserting new branches where they are needed most according to image similarity # Always inserting new branches where they are needed most according to image similarity
@ -441,7 +447,7 @@ class LatentBlending():
mixing_coeffs = idx_injection * [self.parental_crossfeed_power] mixing_coeffs = idx_injection * [self.parental_crossfeed_power]
nmb_mixing = idx_mixing_stop - idx_injection nmb_mixing = idx_mixing_stop - idx_injection
if nmb_mixing > 0: if nmb_mixing > 0:
mixing_coeffs.extend(list(np.linspace(self.parental_crossfeed_power, self.parental_crossfeed_power * self.parental_crossfeed_power_decay, nmb_mixing))) mixing_coeffs.extend(list(np.linspace(self.parental_crossfeed_power, self.parental_crossfeed_power * self.parental_crossfeed_decay, nmb_mixing)))
mixing_coeffs.extend((self.num_inference_steps - len(mixing_coeffs)) * [0]) mixing_coeffs.extend((self.num_inference_steps - len(mixing_coeffs)) * [0])
latents_start = list_latents_parental_mix[idx_injection - 1] latents_start = list_latents_parental_mix[idx_injection - 1]
list_latents = self.run_diffusion( list_latents = self.run_diffusion(
@ -697,7 +703,7 @@ class LatentBlending():
'num_inference_steps', 'depth_strength', 'guidance_scale', 'num_inference_steps', 'depth_strength', 'guidance_scale',
'guidance_scale_mid_damper', 'mid_compression_scaler', 'negative_prompt', 'guidance_scale_mid_damper', 'mid_compression_scaler', 'negative_prompt',
'branch1_crossfeed_power', 'branch1_crossfeed_range', 'branch1_crossfeed_decay' 'branch1_crossfeed_power', 'branch1_crossfeed_range', 'branch1_crossfeed_decay'
'parental_crossfeed_power', 'parental_crossfeed_range', 'parental_crossfeed_power_decay'] 'parental_crossfeed_power', 'parental_crossfeed_range', 'parental_crossfeed_decay']
for v in grab_vars: for v in grab_vars:
if hasattr(self, v): if hasattr(self, v):
if v == 'seed1' or v == 'seed2': if v == 'seed1' or v == 'seed2':
@ -809,8 +815,8 @@ if __name__ == "__main__":
from diffusers_holder import DiffusersHolder from diffusers_holder import DiffusersHolder
from diffusers import DiffusionPipeline from diffusers import DiffusionPipeline
from diffusers import AutoencoderTiny from diffusers import AutoencoderTiny
pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0" # pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
# pretrained_model_name_or_path = "stabilityai/sdxl-turbo" pretrained_model_name_or_path = "stabilityai/sdxl-turbo"
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16, variant="fp16") pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16, variant="fp16")
@ -820,8 +826,6 @@ if __name__ == "__main__":
dh = DiffusersHolder(pipe) dh = DiffusersHolder(pipe)
# %% Next let's set up all parameters # %% Next let's set up all parameters
# size_output = (512, 512)
size_output = (1024, 1024)
prompt1 = "photo of underwater landscape, fish, und the sea, incredible detail, high resolution" prompt1 = "photo of underwater landscape, fish, und the sea, incredible detail, high resolution"
prompt2 = "rendering of an alien planet, strange plants, strange creatures, surreal" prompt2 = "rendering of an alien planet, strange plants, strange creatures, surreal"
negative_prompt = "blurry, ugly, pale" # Optional negative_prompt = "blurry, ugly, pale" # Optional
@ -831,11 +835,8 @@ if __name__ == "__main__":
# Spawn latent blending # Spawn latent blending
lb = LatentBlending(dh) lb = LatentBlending(dh)
# lb.dh.set_num_inference_steps(num_inference_steps)
lb.set_guidance_scale(0)
lb.set_prompt1(prompt1) lb.set_prompt1(prompt1)
lb.set_prompt2(prompt2) lb.set_prompt2(prompt2)
lb.set_dimensions(size_output)
lb.set_negative_prompt(negative_prompt) lb.set_negative_prompt(negative_prompt)
# Run latent blending # Run latent blending