example 1 small upd
This commit is contained in:
parent
f421e4d45a
commit
e4f2044973
|
@ -0,0 +1,102 @@
|
|||
# Copyright 2022 Lunar Ring. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os, sys
|
||||
dp_git = "/home/lugo/git/"
|
||||
sys.path.append(os.path.join(dp_git,'garden4'))
|
||||
sys.path.append('util')
|
||||
import torch
|
||||
torch.backends.cudnn.benchmark = False
|
||||
import numpy as np
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore')
|
||||
import time
|
||||
import subprocess
|
||||
import warnings
|
||||
import torch
|
||||
from tqdm.auto import tqdm
|
||||
from diffusers import StableDiffusionInpaintPipeline
|
||||
from diffusers import StableDiffusionPipeline
|
||||
from diffusers.schedulers import DDIMScheduler
|
||||
from PIL import Image
|
||||
import matplotlib.pyplot as plt
|
||||
import torch
|
||||
from movie_man import MovieSaver
|
||||
import datetime
|
||||
from typing import Callable, List, Optional, Union
|
||||
import inspect
|
||||
from latent_blending import LatentBlending, add_frames_linear_interp
|
||||
torch.set_grad_enabled(False)
|
||||
|
||||
#%% First let us spawn a diffusers pipe using DDIMScheduler
|
||||
device = "cuda:0"
|
||||
model_path = "../stable_diffusion_models/stable-diffusion-v1-5"
|
||||
|
||||
scheduler = DDIMScheduler(beta_start=0.00085,
|
||||
beta_end=0.012,
|
||||
beta_schedule="scaled_linear",
|
||||
clip_sample=False,
|
||||
set_alpha_to_one=False)
|
||||
|
||||
pipe = StableDiffusionPipeline.from_pretrained(
|
||||
model_path,
|
||||
revision="fp16",
|
||||
torch_dtype=torch.float16,
|
||||
scheduler=scheduler,
|
||||
use_auth_token=True
|
||||
)
|
||||
pipe = pipe.to(device)
|
||||
|
||||
#%% Next let's set up all parameters
|
||||
|
||||
# We want 20 diffusion steps, begin with 2 branches, have 3 branches at step 12 (=0.6*20)
|
||||
# 10 branches at step 16 (=0.8*20) and 24 branches at step 18 (=0.9*20)
|
||||
# Furthermore we want seed 993621550 for keyframeA and seed 54878562 for keyframeB ()
|
||||
|
||||
num_inference_steps = 30 # Number of diffusion interations
|
||||
list_nmb_branches = [2, 6, 30, 100] # Specify the branching structure
|
||||
list_injection_strength = [0.0, 0.3, 0.73, 0.93] # Specify the branching structure
|
||||
width = 512
|
||||
height = 512
|
||||
guidance_scale = 5
|
||||
#fixed_seeds = [993621550, 326814432]
|
||||
#fixed_seeds = [993621550, 888839807]
|
||||
fixed_seeds = [993621550, 753528763]
|
||||
|
||||
lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale)
|
||||
prompt1 = "photo of a beautiful forest covered in white flowers, ambient light, very detailed, magic"
|
||||
prompt2 = "photo of a mystical sculpture in the middle of the desert, warm sunlight, sand, eery feeling"
|
||||
lb.set_prompt1(prompt1)
|
||||
lb.set_prompt2(prompt2)
|
||||
|
||||
imgs_transition = lb.run_transition(list_nmb_branches, list_injection_strength, fixed_seeds=fixed_seeds)
|
||||
|
||||
#%
|
||||
|
||||
# let's get more frames
|
||||
duration_transition = 12
|
||||
fps = 60
|
||||
imgs_transition_ext = add_frames_linear_interp(imgs_transition, duration_transition, fps)
|
||||
|
||||
# movie saving
|
||||
fp_movie = f"/home/lugo/tmp/latentblending/bobo_incoming.mp4"
|
||||
if os.path.isfile(fp_movie):
|
||||
os.remove(fp_movie)
|
||||
ms = MovieSaver(fp_movie, fps=fps, profile='save')
|
||||
for img in tqdm(imgs_transition_ext):
|
||||
ms.write_frame(img)
|
||||
ms.finalize()
|
||||
|
||||
|
||||
# MOVIE TODO: ueberschreiben! bad prints.
|
|
@ -115,7 +115,7 @@ class LatentBlending():
|
|||
self.mask_image = None
|
||||
self.mode = 'inpaint'
|
||||
else:
|
||||
self.mode = 'default'
|
||||
self.mode = 'standard'
|
||||
|
||||
|
||||
def init_inpainting(
|
||||
|
@ -214,14 +214,16 @@ class LatentBlending():
|
|||
|
||||
if list_injection_idx is None:
|
||||
assert list_injection_strength is not None, "Supply either list_injection_idx or list_injection_strength"
|
||||
# Create the injection indexes
|
||||
list_injection_idx = [int(round(x*self.num_inference_steps)) for x in list_injection_strength]
|
||||
assert min(np.diff(list_injection_idx)) > 0, 'Injection idx needs to be increasing'
|
||||
if min(np.diff(list_injection_idx)) < 2:
|
||||
print("Warning: your injection spacing is very tight. consider increasing the distances")
|
||||
assert type(list_injection_strength[0]) is float, "Need to supply floats for list_injection_strength"
|
||||
assert type(list_injection_strength[1]) is float, "Need to supply floats for list_injection_strength"
|
||||
# we are checking element 1 in list_injection_strength because "0" is an int... [0, 0.5]
|
||||
|
||||
assert max(list_injection_idx) < self.num_inference_steps, "Decrease the injection index or strength"
|
||||
assert len(list_injection_idx) == len(list_nmb_branches), "Need to have same length"
|
||||
|
||||
assert max(list_injection_idx) < self.num_inference_steps,"Injection index cannot happen after last diffusion step! Decrease list_injection_idx or list_injection_strength[-1]"
|
||||
|
||||
if fixed_seeds is not None:
|
||||
|
@ -364,7 +366,7 @@ class LatentBlending():
|
|||
return_image: Optional[bool] = False
|
||||
):
|
||||
r"""
|
||||
Wrapper function for run_diffusion_default and run_diffusion_inpaint.
|
||||
Wrapper function for run_diffusion_standard and run_diffusion_inpaint.
|
||||
Depending on the mode, the correct one will be executed.
|
||||
|
||||
Args:
|
||||
|
@ -381,8 +383,8 @@ class LatentBlending():
|
|||
"""
|
||||
|
||||
|
||||
if self.mode == 'default':
|
||||
return self.run_diffusion_default(text_embeddings, latents_for_injection=latents_for_injection, idx_start=idx_start, idx_stop=idx_stop, return_image=return_image)
|
||||
if self.mode == 'standard':
|
||||
return self.run_diffusion_standard(text_embeddings, latents_for_injection=latents_for_injection, idx_start=idx_start, idx_stop=idx_stop, return_image=return_image)
|
||||
|
||||
elif self.mode == 'inpaint':
|
||||
assert self.image_source is not None, "image_source is None. Please run init_inpainting first."
|
||||
|
@ -391,7 +393,7 @@ class LatentBlending():
|
|||
|
||||
|
||||
@torch.no_grad()
|
||||
def run_diffusion_default(
|
||||
def run_diffusion_standard(
|
||||
self,
|
||||
text_embeddings: torch.FloatTensor,
|
||||
latents_for_injection: torch.FloatTensor = None,
|
||||
|
@ -936,7 +938,7 @@ if __name__ == "__main__":
|
|||
height = 512
|
||||
guidance_scale = 5
|
||||
seed = 421
|
||||
mode = 'default'
|
||||
mode = 'standard'
|
||||
fps_target = 24
|
||||
duration_target = 10
|
||||
gpu_id = 0
|
||||
|
@ -962,7 +964,7 @@ if __name__ == "__main__":
|
|||
pipe = pipe.to(device)
|
||||
|
||||
|
||||
#%% DEFAULT TRANS RE SANITY
|
||||
#%% standard TRANS RE SANITY
|
||||
|
||||
lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale, seed)
|
||||
self = lb
|
||||
|
@ -1472,7 +1474,7 @@ if __name__ == "__main__":
|
|||
height = 512
|
||||
guidance_scale = 5
|
||||
seed = 421
|
||||
mode = 'default'
|
||||
mode = 'standard'
|
||||
fps_target = 30
|
||||
duration_target = 15
|
||||
gpu_id = 0
|
||||
|
@ -1490,9 +1492,49 @@ if __name__ == "__main__":
|
|||
)
|
||||
pipe = pipe.to(device)
|
||||
|
||||
#%% seed cherrypicking
|
||||
|
||||
prompt1 = "photo of a surreal brutalistic vault that is glowing in the night, futuristic, greek ornaments, spider webs"
|
||||
lb.set_prompt1(prompt1)
|
||||
|
||||
for i in range(1):
|
||||
seed = 753528763 #np.random.randint(753528763)
|
||||
lb.set_seed(seed)
|
||||
txt = f"{i} {seed}"
|
||||
img = lb.run_diffusion(lb.text_embedding1, return_image=True)
|
||||
plt.imshow(img)
|
||||
plt.title(txt)
|
||||
plt.show()
|
||||
print(txt)
|
||||
|
||||
|
||||
|
||||
#%% make nice images of latents
|
||||
num_inference_steps = 10 # Number of diffusion interations
|
||||
list_nmb_branches = [2, 3, 7, 12] # Specify the branching structure
|
||||
list_injection_idx = [0, 2, 5, 8] # Specify the branching structure
|
||||
width = 512
|
||||
height = 512
|
||||
guidance_scale = 5
|
||||
fixed_seeds = [993621550, 326814432]
|
||||
|
||||
lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale)
|
||||
prompt1 = "photo of a beautiful forest covered in white flowers, ambient light, very detailed, magic"
|
||||
prompt2 = "photo of a mystical sculpture in the middle of the desert, warm sunlight, sand, eery feeling"
|
||||
lb.set_prompt1(prompt1)
|
||||
lb.set_prompt2(prompt2)
|
||||
|
||||
imgs_transition = lb.run_transition(list_nmb_branches, list_injection_idx=list_injection_idx, fixed_seeds=fixed_seeds)
|
||||
#%%
|
||||
dp_tmp= "/home/lugo/tmp/latentblending"
|
||||
for d in range(len(lb.tree_latents)):
|
||||
for b in range(list_nmb_branches[d]):
|
||||
for x in range(len(lb.tree_latents[d][b])):
|
||||
lati = lb.tree_latents[d][b][x]
|
||||
img = lb.latent2image(lati)
|
||||
fn = f"d{d}_b{b}_x{x}.jpg"
|
||||
ip.save(os.path.join(dp_tmp, fn), img)
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -1500,7 +1542,6 @@ if __name__ == "__main__":
|
|||
#%%
|
||||
"""
|
||||
TODO Coding:
|
||||
list_nmb_branches > num inference
|
||||
auto mode (quality settings)
|
||||
refactor movie man
|
||||
make movie combiner in movie man
|
||||
|
|
Loading…
Reference in New Issue