fixed generator for prepare_extra_step_kwargs
This commit is contained in:
parent
196f8bc09e
commit
df02d15562
|
@ -114,8 +114,6 @@ class DiffusersHolder():
|
|||
|
||||
def get_noise(self, seed=420):
|
||||
|
||||
generator = torch.Generator(device=self.device).manual_seed(int(seed))
|
||||
|
||||
latents = self.pipe.prepare_latents(
|
||||
1,
|
||||
self.pipe.unet.config.in_channels,
|
||||
|
@ -123,7 +121,7 @@ class DiffusersHolder():
|
|||
self.width_img,
|
||||
torch.float16,
|
||||
self.pipe._execution_device,
|
||||
generator,
|
||||
torch.Generator(device=self.device).manual_seed(int(seed)),
|
||||
None,
|
||||
)
|
||||
|
||||
|
@ -448,6 +446,7 @@ class DiffusersHolder():
|
|||
list_latents_mixing=None,
|
||||
mixing_coeffs=0.0,
|
||||
return_image: Optional[bool] = False,
|
||||
seed=420,
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
|
@ -479,6 +478,7 @@ class DiffusersHolder():
|
|||
callback_on_step_end = None
|
||||
callback_on_step_end_tensor_inputs = ["latents"]
|
||||
|
||||
|
||||
# 0. Default height and width to unet
|
||||
height = self.pipe.default_sample_size * self.pipe.vae_scale_factor
|
||||
width = self.pipe.default_sample_size * self.pipe.vae_scale_factor
|
||||
|
@ -488,8 +488,6 @@ class DiffusersHolder():
|
|||
target_size = (height, width)
|
||||
|
||||
# 1. (skipped) Check inputs. Raise error if not correct
|
||||
|
||||
|
||||
self.pipe._guidance_scale = guidance_scale
|
||||
self.pipe._guidance_rescale = guidance_rescale
|
||||
self.pipe._clip_skip = clip_skip
|
||||
|
@ -513,7 +511,8 @@ class DiffusersHolder():
|
|||
list_latents_out = []
|
||||
|
||||
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
||||
extra_step_kwargs = self.pipe.prepare_extra_step_kwargs(generator, eta)
|
||||
|
||||
extra_step_kwargs = self.pipe.prepare_extra_step_kwargs(torch.Generator(device=self.device).manual_seed(int(0)), eta)
|
||||
|
||||
# 7. Prepare added time ids & embeddings
|
||||
add_text_embeds = pooled_prompt_embeds
|
||||
|
@ -630,119 +629,6 @@ class DiffusersHolder():
|
|||
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def run_diffusion_sd_xl_old(
|
||||
self,
|
||||
text_embeddings: list,
|
||||
latents_start: torch.FloatTensor,
|
||||
idx_start: int = 0,
|
||||
list_latents_mixing=None,
|
||||
mixing_coeffs=0.0,
|
||||
return_image: Optional[bool] = False,
|
||||
**kwargs,
|
||||
):
|
||||
# 0. Default height and width to unet
|
||||
original_size = (self.width_img, self.height_img)
|
||||
crops_coords_top_left = (0, 0)
|
||||
target_size = original_size
|
||||
batch_size = 1
|
||||
eta = 0.0
|
||||
num_images_per_prompt = 1
|
||||
cross_attention_kwargs = None
|
||||
generator = torch.Generator(device=self.device) # dummy generator
|
||||
do_classifier_free_guidance = self.guidance_scale > 1.0
|
||||
|
||||
# 1. Check inputs. Raise error if not correct & 2. Define call parameters
|
||||
list_mixing_coeffs = self.prepare_mixing(mixing_coeffs, list_latents_mixing)
|
||||
|
||||
# 3. Encode input prompt (already encoded outside bc of mixing, just split here)
|
||||
prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = text_embeddings
|
||||
|
||||
# 4. Prepare timesteps
|
||||
self.pipe.scheduler.set_timesteps(self.num_inference_steps, device=self.device)
|
||||
timesteps = self.pipe.scheduler.timesteps
|
||||
|
||||
# 5. Prepare latent variables
|
||||
latents = latents_start.clone()
|
||||
list_latents_out = []
|
||||
|
||||
# 6. Prepare extra step kwargs. usedummy generator
|
||||
extra_step_kwargs = self.pipe.prepare_extra_step_kwargs(generator, eta) # dummy
|
||||
|
||||
# 7. Prepare added time ids & embeddings
|
||||
add_text_embeds = pooled_prompt_embeds
|
||||
if self.pipe.text_encoder_2 is None:
|
||||
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
||||
else:
|
||||
text_encoder_projection_dim = self.pipe.text_encoder_2.config.projection_dim
|
||||
|
||||
add_time_ids = self.pipe._get_add_time_ids(
|
||||
original_size,
|
||||
crops_coords_top_left,
|
||||
target_size,
|
||||
dtype=prompt_embeds.dtype,
|
||||
text_encoder_projection_dim=text_encoder_projection_dim,
|
||||
)
|
||||
|
||||
negative_add_time_ids = add_time_ids
|
||||
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
||||
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
||||
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
||||
|
||||
prompt_embeds = prompt_embeds.to(self.device)
|
||||
add_text_embeds = add_text_embeds.to(self.device)
|
||||
add_time_ids = add_time_ids.to(self.device).repeat(batch_size * num_images_per_prompt, 1)
|
||||
|
||||
# 8. Denoising loop
|
||||
for i, t in enumerate(timesteps):
|
||||
# Write latents out and skip
|
||||
if i < idx_start:
|
||||
list_latents_out.append(None)
|
||||
continue
|
||||
# Set the right starting latents
|
||||
elif i == idx_start:
|
||||
latents = latents_start.clone()
|
||||
|
||||
# Mix latents for crossfeeding
|
||||
if i > 0 and list_mixing_coeffs[i] > 0:
|
||||
latents_mixtarget = list_latents_mixing[i - 1].clone()
|
||||
latents = interpolate_spherical(latents, latents_mixtarget, list_mixing_coeffs[i])
|
||||
|
||||
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = torch.cat([latents] * 2)# if do_classifier_free_guidance else latents
|
||||
# Always scale latents
|
||||
latent_model_input = self.pipe.scheduler.scale_model_input(latent_model_input, t)
|
||||
|
||||
# predict the noise residual
|
||||
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
||||
noise_pred = self.pipe.unet(
|
||||
latent_model_input,
|
||||
t,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
cross_attention_kwargs=cross_attention_kwargs,
|
||||
added_cond_kwargs=added_cond_kwargs,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
# perform guidance
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.pipe.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
||||
|
||||
# Append latents
|
||||
list_latents_out.append(latents.clone())
|
||||
|
||||
if return_image:
|
||||
return self.latent2image(latents)
|
||||
else:
|
||||
return list_latents_out
|
||||
|
||||
|
||||
#%%
|
||||
if __name__ == "__main__":
|
||||
from PIL import Image
|
||||
|
@ -757,17 +643,7 @@ if __name__ == "__main__":
|
|||
pipe.vae = AutoencoderTiny.from_pretrained('madebyollin/taesdxl', torch_device='cuda', torch_dtype=torch.float16)
|
||||
pipe.vae = pipe.vae.cuda()
|
||||
#%%
|
||||
self = DiffusersHolder(pipe)
|
||||
self.set_num_inference_steps(4)
|
||||
prompt1 = "Photo of a colorful landscape with a blue sky with clouds"
|
||||
text_embeddings1 = self.get_text_embedding(prompt1)
|
||||
latents_start = self.get_noise(seed=420)
|
||||
latents = self.run_diffusion_sd_xl(text_embeddings1, latents_start, idx_start=0, return_image=False)[-1]
|
||||
image = self.latent2image(latents)
|
||||
|
||||
|
||||
|
||||
xxxx
|
||||
# # xxx
|
||||
# self.set_dimensions((512, 512))
|
||||
# self.set_num_inference_steps(4)
|
||||
|
@ -785,6 +661,7 @@ if __name__ == "__main__":
|
|||
self.set_num_inference_steps(num_inference_steps)
|
||||
latents_start = self.get_noise()
|
||||
guidance_scale = 0
|
||||
self.guidance_scale = 0
|
||||
|
||||
#% get embeddings1
|
||||
prompt1 = "Photo of a colorful landscape with a blue sky with clouds"
|
||||
|
@ -797,11 +674,17 @@ if __name__ == "__main__":
|
|||
prompt_embeds2, negative_prompt_embeds2, pooled_prompt_embeds2, negative_pooled_prompt_embeds2 = text_embeddings2
|
||||
|
||||
latents1 = self.run_diffusion_sd_xl(text_embeddings1, latents_start, idx_start=0, return_image=False)
|
||||
latents2 = self.run_diffusion_sd_xl(text_embeddings2, latents_start, idx_start=0, return_image=False)
|
||||
|
||||
img1 = self.run_diffusion_sd_xl(text_embeddings1, latents_start, idx_start=0, return_image=True)
|
||||
img1B = self.run_diffusion_sd_xl(text_embeddings1, latents_start, idx_start=0, return_image=True)
|
||||
|
||||
|
||||
# check if brings same image if restarted
|
||||
img1_return = self.run_diffusion_sd_xl(text_embeddings1, latents1[idx_mix-1], idx_start=idx_start, return_image=True)
|
||||
|
||||
# latents2 = self.run_diffusion_sd_xl(text_embeddings2, latents_start, idx_start=0, return_image=False)
|
||||
|
||||
|
||||
# # check if brings same image if restarted
|
||||
# img1_return = self.run_diffusion_sd_xl(text_embeddings1, latents1[idx_mix-1], idx_start=idx_start, return_image=True)
|
||||
|
||||
# mix latents
|
||||
#%%
|
||||
|
|
Loading…
Reference in New Issue