cleanup
This commit is contained in:
parent
2d4570a228
commit
ddd6fdee21
|
@ -13,20 +13,11 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import torch
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.set_grad_enabled(False)
|
||||
import numpy as np
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore')
|
||||
import warnings
|
||||
import torch
|
||||
from PIL import Image
|
||||
import torch
|
||||
|
||||
from typing import Optional
|
||||
from torch import autocast
|
||||
from contextlib import nullcontext
|
||||
from utils import interpolate_spherical
|
||||
from diffusers import DiffusionPipeline, StableDiffusionControlNetPipeline, ControlNetModel
|
||||
from diffusers.models.attention_processor import (
|
||||
|
@ -35,6 +26,9 @@ from diffusers.models.attention_processor import (
|
|||
LoRAXFormersAttnProcessor,
|
||||
XFormersAttnProcessor,
|
||||
)
|
||||
warnings.filterwarnings('ignore')
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.set_grad_enabled(False)
|
||||
|
||||
|
||||
class DiffusersHolder():
|
||||
|
@ -71,13 +65,11 @@ class DiffusersHolder():
|
|||
|
||||
def set_dimensions(self, size_output):
|
||||
s = self.pipe.vae_scale_factor
|
||||
|
||||
if size_output is None:
|
||||
width = self.pipe.unet.config.sample_size
|
||||
height = self.pipe.unet.config.sample_size
|
||||
else:
|
||||
width, height = size_output
|
||||
|
||||
self.width_img = int(round(width / s) * s)
|
||||
self.width_latent = int(self.width_img / s)
|
||||
self.height_img = int(round(height / s) * s)
|
||||
|
@ -95,7 +87,6 @@ class DiffusersHolder():
|
|||
if len(self.negative_prompt) > 1:
|
||||
self.negative_prompt = [self.negative_prompt[0]]
|
||||
|
||||
|
||||
def get_text_embedding(self, prompt, do_classifier_free_guidance=True):
|
||||
if self.use_sd_xl:
|
||||
pr_encoder = self.pipe.encode_prompt
|
||||
|
@ -114,7 +105,7 @@ class DiffusersHolder():
|
|||
)
|
||||
return prompt_embeds
|
||||
|
||||
def get_noise(self, seed=420, mode=None):
|
||||
def get_noise(self, seed=420):
|
||||
H = self.height_latent
|
||||
W = self.width_latent
|
||||
C = self.pipe.unet.config.in_channels
|
||||
|
@ -165,7 +156,6 @@ class DiffusersHolder():
|
|||
else:
|
||||
return image
|
||||
|
||||
|
||||
def prepare_mixing(self, mixing_coeffs, list_latents_mixing):
|
||||
if type(mixing_coeffs) == float:
|
||||
list_mixing_coeffs = (1 + self.num_inference_steps) * [mixing_coeffs]
|
||||
|
@ -267,8 +257,8 @@ class DiffusersHolder():
|
|||
return_image: Optional[bool] = False):
|
||||
|
||||
# 0. Default height and width to unet
|
||||
original_size = (self.width_img, self.height_img) # FIXME
|
||||
crops_coords_top_left = (0, 0) # FIXME
|
||||
original_size = (self.width_img, self.height_img)
|
||||
crops_coords_top_left = (0, 0)
|
||||
target_size = original_size
|
||||
batch_size = 1
|
||||
eta = 0.0
|
||||
|
@ -294,21 +284,6 @@ class DiffusersHolder():
|
|||
# 6. Prepare extra step kwargs. usedummy generator
|
||||
extra_step_kwargs = self.pipe.prepare_extra_step_kwargs(generator, eta) # dummy
|
||||
|
||||
# 7. Prepare added time ids & embeddings
|
||||
# add_text_embeds = pooled_prompt_embeds
|
||||
# add_time_ids = self.pipe._get_add_time_ids(
|
||||
# original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
||||
# )
|
||||
|
||||
# if do_classifier_free_guidance:
|
||||
# prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
||||
# add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
||||
# add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
||||
|
||||
# prompt_embeds = prompt_embeds.to(self.device)
|
||||
# add_text_embeds = add_text_embeds.to(self.device)
|
||||
# add_time_ids = add_time_ids.to(self.device).repeat(batch_size * num_images_per_prompt, 1)
|
||||
|
||||
# 7. Prepare added time ids & embeddings
|
||||
add_text_embeds = pooled_prompt_embeds
|
||||
if self.pipe.text_encoder_2 is None:
|
||||
|
@ -323,15 +298,7 @@ class DiffusersHolder():
|
|||
dtype=prompt_embeds.dtype,
|
||||
text_encoder_projection_dim=text_encoder_projection_dim,
|
||||
)
|
||||
# if negative_original_size is not None and negative_target_size is not None:
|
||||
# negative_add_time_ids = self.pipe._get_add_time_ids(
|
||||
# negative_original_size,
|
||||
# negative_crops_coords_top_left,
|
||||
# negative_target_size,
|
||||
# dtype=prompt_embeds.dtype,
|
||||
# text_encoder_projection_dim=text_encoder_projection_dim,
|
||||
# )
|
||||
# else:
|
||||
|
||||
negative_add_time_ids = add_time_ids
|
||||
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
||||
|
@ -342,8 +309,6 @@ class DiffusersHolder():
|
|||
add_text_embeds = add_text_embeds.to(self.device)
|
||||
add_time_ids = add_time_ids.to(self.device).repeat(batch_size * num_images_per_prompt, 1)
|
||||
|
||||
|
||||
|
||||
# 8. Denoising loop
|
||||
for i, t in enumerate(timesteps):
|
||||
# Set the right starting latents
|
||||
|
@ -358,7 +323,6 @@ class DiffusersHolder():
|
|||
latents_mixtarget = list_latents_mixing[i - 1].clone()
|
||||
latents = interpolate_spherical(latents, latents_mixtarget, list_mixing_coeffs[i])
|
||||
|
||||
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
# Always scale latents
|
||||
|
@ -380,8 +344,6 @@ class DiffusersHolder():
|
|||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
# FIXME guidance_rescale disabled
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.pipe.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
||||
|
||||
|
@ -534,12 +496,9 @@ class DiffusersHolder():
|
|||
return list_latents_out
|
||||
|
||||
|
||||
|
||||
#%%
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
|
||||
from PIL import Image
|
||||
#%%
|
||||
pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16)
|
||||
|
|
|
@ -0,0 +1,57 @@
|
|||
# Copyright 2022 Lunar Ring. All rights reserved.
|
||||
# Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
import warnings
|
||||
from latent_blending import LatentBlending
|
||||
from diffusers_holder import DiffusersHolder
|
||||
from diffusers import DiffusionPipeline
|
||||
warnings.filterwarnings('ignore')
|
||||
torch.set_grad_enabled(False)
|
||||
torch.backends.cudnn.benchmark = False
|
||||
|
||||
# %% First let us spawn a stable diffusion holder. Uncomment your version of choice.
|
||||
pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16)
|
||||
pipe.to('cuda')
|
||||
dh = DiffusersHolder(pipe)
|
||||
# %% Next let's set up all parameters
|
||||
depth_strength = 0.55 # Specifies how deep (in terms of diffusion iterations the first branching happens)
|
||||
t_compute_max_allowed = 60 # Determines the quality of the transition in terms of compute time you grant it
|
||||
num_inference_steps = 30
|
||||
size_output = (1024, 1024)
|
||||
|
||||
prompt1 = "underwater landscape, fish, und the sea, incredible detail, high resolution"
|
||||
prompt2 = "rendering of an alien planet, strange plants, strange creatures, surreal"
|
||||
negative_prompt = "blurry, ugly, pale" # Optional
|
||||
|
||||
fp_movie = 'movie_example1.mp4'
|
||||
duration_transition = 12 # In seconds
|
||||
|
||||
# Spawn latent blending
|
||||
lb = LatentBlending(dh)
|
||||
lb.set_prompt1(prompt1)
|
||||
lb.set_prompt2(prompt2)
|
||||
lb.set_dimensions(size_output)
|
||||
lb.set_negative_prompt(negative_prompt)
|
||||
|
||||
# Run latent blending
|
||||
lb.run_transition(
|
||||
depth_strength=depth_strength,
|
||||
num_inference_steps=num_inference_steps,
|
||||
t_compute_max_allowed=t_compute_max_allowed)
|
||||
|
||||
# Save movie
|
||||
lb.write_movie_transition(fp_movie, duration_transition)
|
|
@ -14,16 +14,14 @@
|
|||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.set_grad_enabled(False)
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore')
|
||||
import warnings
|
||||
from latent_blending import LatentBlending
|
||||
from diffusers_holder import DiffusersHolder
|
||||
from diffusers import DiffusionPipeline
|
||||
from movie_util import concatenate_movies
|
||||
from huggingface_hub import hf_hub_download
|
||||
torch.set_grad_enabled(False)
|
||||
torch.backends.cudnn.benchmark = False
|
||||
warnings.filterwarnings('ignore')
|
||||
|
||||
# %% First let us spawn a stable diffusion holder. Uncomment your version of choice.
|
||||
pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||
|
@ -35,21 +33,23 @@ dh = DiffusersHolder(pipe)
|
|||
fps = 30
|
||||
duration_single_trans = 20
|
||||
depth_strength = 0.25 # Specifies how deep (in terms of diffusion iterations the first branching happens)
|
||||
size_output = (1280, 768)
|
||||
num_inference_steps = 30
|
||||
|
||||
# Specify a list of prompts below
|
||||
list_prompts = []
|
||||
list_prompts.append("A panoramic photo of a sentient mirror maze amidst a neon-lit forest, where bioluminescent mushrooms glow eerily, reflecting off the mirrors, and cybernetic crows, with silver wings and ruby eyes, perch ominously, David Lynch, Gaspar Noé, Photograph.")
|
||||
list_prompts.append("An unsettling tableau of spectral butterflies with clockwork wings, swirling around an antique typewriter perched precariously atop a floating, gnarled tree trunk, a stormy twilight sky, David Lynch's dreamscape, meticulously crafted.")
|
||||
# list_prompts.append("A haunting tableau of an antique dollhouse swallowed by a giant venus flytrap under the neon glow of an alien moon, its uncanny light reflecting from shattered porcelain faces and marbles, in a quiet, abandoned amusement park.")
|
||||
list_prompts.append("A beautiful astronomic photo of a nebula, with intricate microscopic structures, mitochondria")
|
||||
list_prompts.append("Microscope fluorescence photo, cell filaments, intricate galaxy, astronomic nebula")
|
||||
list_prompts.append("telescope photo starry sky, nebula, cell core, dna, stunning")
|
||||
|
||||
|
||||
# You can optionally specify the seeds
|
||||
list_seeds = [95437579, 33259350, 956051013, 408831845, 250009012, 675588737]
|
||||
list_seeds = [95437579, 33259350, 956051013]
|
||||
t_compute_max_allowed = 20 # per segment
|
||||
fp_movie = 'movie_example2.mp4'
|
||||
lb = LatentBlending(dh)
|
||||
lb.dh.set_dimensions(1024, 704)
|
||||
lb.dh.set_num_inference_steps(40)
|
||||
lb.set_dimensions(size_output)
|
||||
lb.dh.set_num_inference_steps(num_inference_steps)
|
||||
|
||||
|
||||
list_movie_parts = []
|
||||
|
@ -68,7 +68,7 @@ for i in range(len(list_prompts) - 1):
|
|||
fixed_seeds = list_seeds[i:i + 2]
|
||||
# Run latent blending
|
||||
lb.run_transition(
|
||||
recycle_img1 = recycle_img1,
|
||||
recycle_img1=recycle_img1,
|
||||
depth_strength=depth_strength,
|
||||
t_compute_max_allowed=t_compute_max_allowed,
|
||||
fixed_seeds=fixed_seeds)
|
||||
|
|
|
@ -15,19 +15,18 @@
|
|||
|
||||
import os
|
||||
import torch
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.set_grad_enabled(False)
|
||||
import numpy as np
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore')
|
||||
import time
|
||||
import warnings
|
||||
from tqdm.auto import tqdm
|
||||
from PIL import Image
|
||||
from movie_util import MovieSaver
|
||||
from typing import List, Optional
|
||||
import lpips
|
||||
from utils import interpolate_spherical, interpolate_linear, add_frames_linear_interp, yml_load, yml_save
|
||||
warnings.filterwarnings('ignore')
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.set_grad_enabled(False)
|
||||
|
||||
|
||||
class LatentBlending():
|
||||
|
@ -70,7 +69,6 @@ class LatentBlending():
|
|||
# Initialize vars
|
||||
self.prompt1 = ""
|
||||
self.prompt2 = ""
|
||||
self.negative_prompt = ""
|
||||
|
||||
self.tree_latents = [None, None]
|
||||
self.tree_fracts = None
|
||||
|
@ -91,17 +89,15 @@ class LatentBlending():
|
|||
self.list_nmb_branches = None
|
||||
|
||||
# Mixing parameters
|
||||
self.branch1_crossfeed_power = 0.05
|
||||
self.branch1_crossfeed_range = 0.4
|
||||
self.branch1_crossfeed_decay = 0.9
|
||||
self.branch1_crossfeed_power = 0.3
|
||||
self.branch1_crossfeed_range = 0.3
|
||||
self.branch1_crossfeed_decay = 0.99
|
||||
|
||||
self.parental_crossfeed_power = 0.1
|
||||
self.parental_crossfeed_range = 0.8
|
||||
self.parental_crossfeed_power_decay = 0.8
|
||||
self.parental_crossfeed_power = 0.3
|
||||
self.parental_crossfeed_range = 0.6
|
||||
self.parental_crossfeed_power_decay = 0.9
|
||||
|
||||
self.set_guidance_scale(guidance_scale)
|
||||
self.mode = 'standard'
|
||||
# self.init_mode()
|
||||
self.multi_transition_img_first = None
|
||||
self.multi_transition_img_last = None
|
||||
self.dt_per_diff = 0
|
||||
|
@ -441,7 +437,7 @@ class LatentBlending():
|
|||
list_compute_steps = self.num_inference_steps - list_idx_injection
|
||||
list_compute_steps *= list_nmb_stems
|
||||
t_compute = np.sum(list_compute_steps) * self.dt_per_diff + 0.15 * np.sum(list_nmb_stems)
|
||||
t_compute += 2*self.num_inference_steps*self.dt_per_diff # outer branches
|
||||
t_compute += 2 * self.num_inference_steps * self.dt_per_diff # outer branches
|
||||
increase_done = False
|
||||
for s_idx in range(len(list_nmb_stems) - 1):
|
||||
if list_nmb_stems[s_idx + 1] / list_nmb_stems[s_idx] >= 2:
|
||||
|
@ -522,7 +518,7 @@ class LatentBlending():
|
|||
Args:
|
||||
seed: int
|
||||
"""
|
||||
return self.dh.get_noise(seed, self.mode)
|
||||
return self.dh.get_noise(seed)
|
||||
|
||||
@torch.no_grad()
|
||||
def run_diffusion(
|
||||
|
@ -576,18 +572,6 @@ class LatentBlending():
|
|||
mixing_coeffs=mixing_coeffs,
|
||||
return_image=return_image)
|
||||
|
||||
# elif self.mode == 'upscale':
|
||||
# cond = list_conditionings[0]
|
||||
# uc_full = list_conditionings[1]
|
||||
# return self.dh.run_diffusion_upscaling(
|
||||
# cond,
|
||||
# uc_full,
|
||||
# latents_start=latents_start,
|
||||
# idx_start=idx_start,
|
||||
# list_latents_mixing=list_latents_mixing,
|
||||
# mixing_coeffs=mixing_coeffs,
|
||||
# return_image=return_image)
|
||||
|
||||
def run_upscaling(
|
||||
self,
|
||||
dp_img: str,
|
||||
|
@ -683,25 +667,6 @@ class LatentBlending():
|
|||
list_conditionings = [text_embeddings_mix]
|
||||
return list_conditionings
|
||||
|
||||
# @torch.no_grad()
|
||||
# def get_mixed_conditioning(self, fract_mixing):
|
||||
# if self.mode == 'standard':
|
||||
# text_embeddings_mix = interpolate_linear(self.text_embedding1, self.text_embedding2, fract_mixing)
|
||||
# list_conditionings = [text_embeddings_mix]
|
||||
# elif self.mode == 'inpaint':
|
||||
# text_embeddings_mix = interpolate_linear(self.text_embedding1, self.text_embedding2, fract_mixing)
|
||||
# list_conditionings = [text_embeddings_mix]
|
||||
# elif self.mode == 'upscale':
|
||||
# text_embeddings_mix = interpolate_linear(self.text_embedding1, self.text_embedding2, fract_mixing)
|
||||
# cond, uc_full = self.dh.get_cond_upscaling(self.image1_lowres, text_embeddings_mix, self.noise_level_upscaling)
|
||||
# condB, uc_fullB = self.dh.get_cond_upscaling(self.image2_lowres, text_embeddings_mix, self.noise_level_upscaling)
|
||||
# cond['c_concat'][0] = interpolate_spherical(cond['c_concat'][0], condB['c_concat'][0], fract_mixing)
|
||||
# uc_full['c_concat'][0] = interpolate_spherical(uc_full['c_concat'][0], uc_fullB['c_concat'][0], fract_mixing)
|
||||
# list_conditionings = [cond, uc_full]
|
||||
# else:
|
||||
# raise ValueError(f"mix_conditioning: unknown mode {self.mode}")
|
||||
# return list_conditionings
|
||||
|
||||
@torch.no_grad()
|
||||
def get_text_embeddings(
|
||||
self,
|
||||
|
|
Loading…
Reference in New Issue