This commit is contained in:
lugo 2022-11-28 05:07:01 +01:00
parent 635cf0445f
commit ce60791df0
2 changed files with 14 additions and 138 deletions

View File

@ -21,8 +21,6 @@ warnings.filterwarnings('ignore')
import warnings
import torch
from tqdm.auto import tqdm
from diffusers import StableDiffusionPipeline
from diffusers.schedulers import DDIMScheduler
from PIL import Image
import matplotlib.pyplot as plt
import torch
@ -67,7 +65,7 @@ fps = 60
imgs_transition_ext = add_frames_linear_interp(imgs_transition, duration_transition, fps)
# movie saving
fp_movie = "/home/lugo/tmp/latentblending/bobo_incoming.mp4"
fp_movie = "movie_example1.mp4"
if os.path.isfile(fp_movie):
os.remove(fp_movie)
ms = MovieSaver(fp_movie, fps=fps)

View File

@ -26,9 +26,6 @@ import subprocess
import warnings
import torch
from tqdm.auto import tqdm
from diffusers import StableDiffusionInpaintPipeline
from diffusers import StableDiffusionPipeline
from diffusers.schedulers import DDIMScheduler
from PIL import Image
import matplotlib.pyplot as plt
import torch
@ -41,6 +38,10 @@ torch.set_grad_enabled(False)
from omegaconf import OmegaConf
from torch import autocast
from contextlib import nullcontext
sys.path.append('../stablediffusion/ldm')
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from stable_diffusion_holder import StableDiffusionHolder
#%%
class LatentBlending():
def __init__(
@ -163,8 +164,8 @@ class LatentBlending():
"""
# Sanity checks first
assert self.text_embedding1 is not None, 'Set the first text embedding with .set_prompt1(...) first'
assert self.text_embedding2 is not None, 'Set the second text embedding with .set_prompt2(...) first'
assert self.text_embedding1 is not None, 'Set the first text embedding with .set_prompt1(...) before'
assert self.text_embedding2 is not None, 'Set the second text embedding with .set_prompt2(...) before'
assert not((list_injection_strength is not None) and (list_injection_idx is not None)), "suppyl either list_injection_strength or list_injection_idx"
if list_injection_strength is None:
@ -366,11 +367,11 @@ class LatentBlending():
"""
# Ensure correct
assert len(list_prompts) == len(list_seeds), "Supply the same number of prompts and seeds"
if list_seeds is None:
list_seeds = list(np.random.randint(0, 10e10, len(list_prompts)))
assert len(list_prompts) == len(list_seeds), "Supply the same number of prompts and seeds"
for i in range(len(list_prompts)-1):
print(f"Starting movie segment {i+1}/{len(list_prompts)-1}")
@ -487,7 +488,8 @@ class LatentBlending():
def swap_forward(self):
r"""
Moves over keyframe two -> keyframe one. Useful for making a sequence of transitions.
Moves over keyframe two -> keyframe one. Useful for making a sequence of transitions
as in run_multi_transition()
"""
# Move over all latents
for t_block in range(len(self.tree_latents)):
@ -500,6 +502,7 @@ class LatentBlending():
# Final cleanup for extra sanity
self.tree_final_imgs = []
# Auxiliary functions
def get_closest_idx(
fract_mixing: float,
@ -722,7 +725,6 @@ def get_branching(
nmb_mindist: int = 3
minimum distance in terms of diffusion iteratinos between subsequent injections
"""
#%%
if quality == 'lowest':
@ -767,144 +769,20 @@ def get_branching(
print(f"list_injection_idx: {list_injection_idx_clean}")
print(f"list_nmb_branches: {list_nmb_branches_clean}")
# return num_inference_steps, list_injection_idx_clean, list_nmb_branches_clean
return num_inference_steps, list_injection_idx_clean, list_nmb_branches_clean
#%% le main
if __name__ == "__main__":
sys.path.append('../stablediffusion/ldm')
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.dpm_solver import DPMSolverSampler
num_inference_steps = 20 # Number of diffusion interations
sdh = StableDiffusionHolder(num_inference_steps)
# fp_ckpt = "../stable_diffusion_models/ckpt/768-v-ema.ckpt"
# fp_config = '../stablediffusion/configs/stable-diffusion/v2-inference-v.yaml'
fp_ckpt= "../stable_diffusion_models/ckpt/512-base-ema.ckpt"
fp_config = '../stablediffusion/configs//stable-diffusion/v2-inference.yaml'
sdh.init_model(fp_ckpt, fp_config)
#%%
list_nmb_branches = [2, 3, 10, 24] # Branching structure: how many branches
list_injection_strength = [0.0, 0.6, 0.8, 0.9] # Branching structure: how deep is the blending
width = 512
height = 512
guidance_scale = 5
fixed_seeds = [993621550, 280335986]
device = "cuda:0"
lb = LatentBlending(sdh, device, height, width, num_inference_steps, guidance_scale)
prompt1 = "photo of a forest covered in white flowers, ambient light, very detailed, magic"
prompt2 = "photo of an eerie statue surrounded by ferns and vines, analog photograph kodak portra, mystical ambience, incredible detail"
lb.set_prompt1(prompt1)
lb.set_prompt2(prompt2)
lx = lb.run_transition(list_nmb_branches, list_injection_strength)
#%%
xxx
device = "cuda:0"
model_path = "../stable_diffusion_models/stable-diffusion-v1-5"
scheduler = DDIMScheduler(beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False)
pipe = StableDiffusionPipeline.from_Union[StableDiffusionInpaintPipeline, StableDiffusionPipeline],pretrained(
model_path,
revision="fp16",
torch_dtype=torch.float16,
scheduler=scheduler,
use_auth_token=True
)
pipe = pipe.to(device)
num_inference_steps = 20 # Number of diffusion interations
list_nmb_branches = [2, 3, 10, 24] # Branching structure: how many branches
list_injection_strength = [0.0, 0.6, 0.8, 0.9] # Branching structure: how deep is the blending
width = 512
height = 512
guidance_scale = 5
fixed_seeds = [993621550, 280335986]
lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale)
lb.negative_prompt = 'text, letters'
prompt1 = "photo of a beautiful newspaper covered in white flowers, ambient light, very detailed, magic"
prompt2 = "photo of an eerie statue surrounded by ferns and vines, analog photograph kodak portra, mystical ambience, incredible detail"
lb.set_prompt1(prompt1)
lb.set_prompt2(prompt2)
imgs_transition = lb.run_transition(list_nmb_branches, list_injection_strength, fixed_seeds=fixed_seeds)
xxx
#%%
num_inference_steps = 30 # Number of diffusion interations
list_nmb_branches = [2, 10, 50, 100, 200] #
list_injection_strength = list(np.linspace(0.5, 0.95, 4)) # Branching structure: how deep is the blending
list_injection_strength.insert(0, 0.0)
width = 512
height = 512
guidance_scale = 5
fps = 30
duration_single_trans = 20
width = 512
height = 512
lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale)
list_prompts = []
list_prompts.append("surrealistic statue made of glitter and dirt, standing in a lake, atmospheric light, strange glow")
list_prompts.append("statue of a mix between a tree and human, made of marble, incredibly detailed")
list_prompts.append("weird statue of a frog monkey, many colors, standing next to the ruins of an ancient city")
list_prompts.append("statue made of hot metal, bizzarre, dark clouds in the sky")
list_prompts.append("statue of a spider that looked like a human")
list_prompts.append("statue of a bird that looked like a scorpion")
list_prompts.append("statue of an ancient cybernetic messenger annoucing good news, golden, futuristic")
list_seeds = [234187386, 422209351, 241845736, 28652396, 783279867, 831049796, 234903931]
fp_movie = "/home/lugo/tmp/latentblending/bubua.mp4"
ms = MovieSaver(fp_movie, fps=fps)
lb.run_multi_transition(
list_prompts,
list_seeds,
list_nmb_branches,
list_injection_strength=list_injection_strength,
ms=ms,
fps=fps,
duration_single_trans=duration_single_trans
)
#%% get good branching struct
#%%
pass
#%%
"""
TODO Coding:
RUNNING WITHOUT PROMPT!
auto mode (quality settings)
save value ranges, can it be trashed?
set all variables in init! self.img2...
TODO Other:
github