cleanup
This commit is contained in:
parent
635cf0445f
commit
ce60791df0
|
@ -21,8 +21,6 @@ warnings.filterwarnings('ignore')
|
||||||
import warnings
|
import warnings
|
||||||
import torch
|
import torch
|
||||||
from tqdm.auto import tqdm
|
from tqdm.auto import tqdm
|
||||||
from diffusers import StableDiffusionPipeline
|
|
||||||
from diffusers.schedulers import DDIMScheduler
|
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import torch
|
import torch
|
||||||
|
@ -67,7 +65,7 @@ fps = 60
|
||||||
imgs_transition_ext = add_frames_linear_interp(imgs_transition, duration_transition, fps)
|
imgs_transition_ext = add_frames_linear_interp(imgs_transition, duration_transition, fps)
|
||||||
|
|
||||||
# movie saving
|
# movie saving
|
||||||
fp_movie = "/home/lugo/tmp/latentblending/bobo_incoming.mp4"
|
fp_movie = "movie_example1.mp4"
|
||||||
if os.path.isfile(fp_movie):
|
if os.path.isfile(fp_movie):
|
||||||
os.remove(fp_movie)
|
os.remove(fp_movie)
|
||||||
ms = MovieSaver(fp_movie, fps=fps)
|
ms = MovieSaver(fp_movie, fps=fps)
|
||||||
|
|
|
@ -26,9 +26,6 @@ import subprocess
|
||||||
import warnings
|
import warnings
|
||||||
import torch
|
import torch
|
||||||
from tqdm.auto import tqdm
|
from tqdm.auto import tqdm
|
||||||
from diffusers import StableDiffusionInpaintPipeline
|
|
||||||
from diffusers import StableDiffusionPipeline
|
|
||||||
from diffusers.schedulers import DDIMScheduler
|
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import torch
|
import torch
|
||||||
|
@ -41,6 +38,10 @@ torch.set_grad_enabled(False)
|
||||||
from omegaconf import OmegaConf
|
from omegaconf import OmegaConf
|
||||||
from torch import autocast
|
from torch import autocast
|
||||||
from contextlib import nullcontext
|
from contextlib import nullcontext
|
||||||
|
sys.path.append('../stablediffusion/ldm')
|
||||||
|
from ldm.util import instantiate_from_config
|
||||||
|
from ldm.models.diffusion.ddim import DDIMSampler
|
||||||
|
from stable_diffusion_holder import StableDiffusionHolder
|
||||||
#%%
|
#%%
|
||||||
class LatentBlending():
|
class LatentBlending():
|
||||||
def __init__(
|
def __init__(
|
||||||
|
@ -163,8 +164,8 @@ class LatentBlending():
|
||||||
|
|
||||||
"""
|
"""
|
||||||
# Sanity checks first
|
# Sanity checks first
|
||||||
assert self.text_embedding1 is not None, 'Set the first text embedding with .set_prompt1(...) first'
|
assert self.text_embedding1 is not None, 'Set the first text embedding with .set_prompt1(...) before'
|
||||||
assert self.text_embedding2 is not None, 'Set the second text embedding with .set_prompt2(...) first'
|
assert self.text_embedding2 is not None, 'Set the second text embedding with .set_prompt2(...) before'
|
||||||
assert not((list_injection_strength is not None) and (list_injection_idx is not None)), "suppyl either list_injection_strength or list_injection_idx"
|
assert not((list_injection_strength is not None) and (list_injection_idx is not None)), "suppyl either list_injection_strength or list_injection_idx"
|
||||||
|
|
||||||
if list_injection_strength is None:
|
if list_injection_strength is None:
|
||||||
|
@ -366,11 +367,11 @@ class LatentBlending():
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# Ensure correct
|
assert len(list_prompts) == len(list_seeds), "Supply the same number of prompts and seeds"
|
||||||
|
|
||||||
if list_seeds is None:
|
if list_seeds is None:
|
||||||
list_seeds = list(np.random.randint(0, 10e10, len(list_prompts)))
|
list_seeds = list(np.random.randint(0, 10e10, len(list_prompts)))
|
||||||
|
|
||||||
assert len(list_prompts) == len(list_seeds), "Supply the same number of prompts and seeds"
|
|
||||||
|
|
||||||
for i in range(len(list_prompts)-1):
|
for i in range(len(list_prompts)-1):
|
||||||
print(f"Starting movie segment {i+1}/{len(list_prompts)-1}")
|
print(f"Starting movie segment {i+1}/{len(list_prompts)-1}")
|
||||||
|
@ -487,7 +488,8 @@ class LatentBlending():
|
||||||
|
|
||||||
def swap_forward(self):
|
def swap_forward(self):
|
||||||
r"""
|
r"""
|
||||||
Moves over keyframe two -> keyframe one. Useful for making a sequence of transitions.
|
Moves over keyframe two -> keyframe one. Useful for making a sequence of transitions
|
||||||
|
as in run_multi_transition()
|
||||||
"""
|
"""
|
||||||
# Move over all latents
|
# Move over all latents
|
||||||
for t_block in range(len(self.tree_latents)):
|
for t_block in range(len(self.tree_latents)):
|
||||||
|
@ -500,6 +502,7 @@ class LatentBlending():
|
||||||
# Final cleanup for extra sanity
|
# Final cleanup for extra sanity
|
||||||
self.tree_final_imgs = []
|
self.tree_final_imgs = []
|
||||||
|
|
||||||
|
|
||||||
# Auxiliary functions
|
# Auxiliary functions
|
||||||
def get_closest_idx(
|
def get_closest_idx(
|
||||||
fract_mixing: float,
|
fract_mixing: float,
|
||||||
|
@ -722,7 +725,6 @@ def get_branching(
|
||||||
nmb_mindist: int = 3
|
nmb_mindist: int = 3
|
||||||
minimum distance in terms of diffusion iteratinos between subsequent injections
|
minimum distance in terms of diffusion iteratinos between subsequent injections
|
||||||
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
#%%
|
#%%
|
||||||
if quality == 'lowest':
|
if quality == 'lowest':
|
||||||
|
@ -767,144 +769,20 @@ def get_branching(
|
||||||
print(f"list_injection_idx: {list_injection_idx_clean}")
|
print(f"list_injection_idx: {list_injection_idx_clean}")
|
||||||
print(f"list_nmb_branches: {list_nmb_branches_clean}")
|
print(f"list_nmb_branches: {list_nmb_branches_clean}")
|
||||||
|
|
||||||
# return num_inference_steps, list_injection_idx_clean, list_nmb_branches_clean
|
return num_inference_steps, list_injection_idx_clean, list_nmb_branches_clean
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#%% le main
|
#%% le main
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
sys.path.append('../stablediffusion/ldm')
|
pass
|
||||||
from ldm.util import instantiate_from_config
|
|
||||||
from ldm.models.diffusion.ddim import DDIMSampler
|
|
||||||
from ldm.models.diffusion.dpm_solver import DPMSolverSampler
|
|
||||||
|
|
||||||
num_inference_steps = 20 # Number of diffusion interations
|
|
||||||
sdh = StableDiffusionHolder(num_inference_steps)
|
|
||||||
# fp_ckpt = "../stable_diffusion_models/ckpt/768-v-ema.ckpt"
|
|
||||||
# fp_config = '../stablediffusion/configs/stable-diffusion/v2-inference-v.yaml'
|
|
||||||
|
|
||||||
fp_ckpt= "../stable_diffusion_models/ckpt/512-base-ema.ckpt"
|
|
||||||
fp_config = '../stablediffusion/configs//stable-diffusion/v2-inference.yaml'
|
|
||||||
|
|
||||||
sdh.init_model(fp_ckpt, fp_config)
|
|
||||||
|
|
||||||
#%%
|
|
||||||
list_nmb_branches = [2, 3, 10, 24] # Branching structure: how many branches
|
|
||||||
list_injection_strength = [0.0, 0.6, 0.8, 0.9] # Branching structure: how deep is the blending
|
|
||||||
width = 512
|
|
||||||
height = 512
|
|
||||||
guidance_scale = 5
|
|
||||||
fixed_seeds = [993621550, 280335986]
|
|
||||||
device = "cuda:0"
|
|
||||||
lb = LatentBlending(sdh, device, height, width, num_inference_steps, guidance_scale)
|
|
||||||
prompt1 = "photo of a forest covered in white flowers, ambient light, very detailed, magic"
|
|
||||||
prompt2 = "photo of an eerie statue surrounded by ferns and vines, analog photograph kodak portra, mystical ambience, incredible detail"
|
|
||||||
lb.set_prompt1(prompt1)
|
|
||||||
lb.set_prompt2(prompt2)
|
|
||||||
|
|
||||||
lx = lb.run_transition(list_nmb_branches, list_injection_strength)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#%%
|
|
||||||
xxx
|
|
||||||
device = "cuda:0"
|
|
||||||
model_path = "../stable_diffusion_models/stable-diffusion-v1-5"
|
|
||||||
|
|
||||||
scheduler = DDIMScheduler(beta_start=0.00085,
|
|
||||||
beta_end=0.012,
|
|
||||||
beta_schedule="scaled_linear",
|
|
||||||
clip_sample=False,
|
|
||||||
set_alpha_to_one=False)
|
|
||||||
|
|
||||||
pipe = StableDiffusionPipeline.from_Union[StableDiffusionInpaintPipeline, StableDiffusionPipeline],pretrained(
|
|
||||||
model_path,
|
|
||||||
revision="fp16",
|
|
||||||
torch_dtype=torch.float16,
|
|
||||||
scheduler=scheduler,
|
|
||||||
use_auth_token=True
|
|
||||||
)
|
|
||||||
pipe = pipe.to(device)
|
|
||||||
|
|
||||||
num_inference_steps = 20 # Number of diffusion interations
|
|
||||||
list_nmb_branches = [2, 3, 10, 24] # Branching structure: how many branches
|
|
||||||
list_injection_strength = [0.0, 0.6, 0.8, 0.9] # Branching structure: how deep is the blending
|
|
||||||
width = 512
|
|
||||||
height = 512
|
|
||||||
guidance_scale = 5
|
|
||||||
fixed_seeds = [993621550, 280335986]
|
|
||||||
|
|
||||||
lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale)
|
|
||||||
lb.negative_prompt = 'text, letters'
|
|
||||||
prompt1 = "photo of a beautiful newspaper covered in white flowers, ambient light, very detailed, magic"
|
|
||||||
prompt2 = "photo of an eerie statue surrounded by ferns and vines, analog photograph kodak portra, mystical ambience, incredible detail"
|
|
||||||
lb.set_prompt1(prompt1)
|
|
||||||
lb.set_prompt2(prompt2)
|
|
||||||
|
|
||||||
imgs_transition = lb.run_transition(list_nmb_branches, list_injection_strength, fixed_seeds=fixed_seeds)
|
|
||||||
|
|
||||||
xxx
|
|
||||||
|
|
||||||
#%%
|
|
||||||
|
|
||||||
num_inference_steps = 30 # Number of diffusion interations
|
|
||||||
list_nmb_branches = [2, 10, 50, 100, 200] #
|
|
||||||
list_injection_strength = list(np.linspace(0.5, 0.95, 4)) # Branching structure: how deep is the blending
|
|
||||||
list_injection_strength.insert(0, 0.0)
|
|
||||||
|
|
||||||
width = 512
|
|
||||||
height = 512
|
|
||||||
guidance_scale = 5
|
|
||||||
fps = 30
|
|
||||||
duration_single_trans = 20
|
|
||||||
width = 512
|
|
||||||
height = 512
|
|
||||||
|
|
||||||
lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale)
|
|
||||||
|
|
||||||
list_prompts = []
|
|
||||||
list_prompts.append("surrealistic statue made of glitter and dirt, standing in a lake, atmospheric light, strange glow")
|
|
||||||
list_prompts.append("statue of a mix between a tree and human, made of marble, incredibly detailed")
|
|
||||||
list_prompts.append("weird statue of a frog monkey, many colors, standing next to the ruins of an ancient city")
|
|
||||||
list_prompts.append("statue made of hot metal, bizzarre, dark clouds in the sky")
|
|
||||||
list_prompts.append("statue of a spider that looked like a human")
|
|
||||||
list_prompts.append("statue of a bird that looked like a scorpion")
|
|
||||||
list_prompts.append("statue of an ancient cybernetic messenger annoucing good news, golden, futuristic")
|
|
||||||
|
|
||||||
|
|
||||||
list_seeds = [234187386, 422209351, 241845736, 28652396, 783279867, 831049796, 234903931]
|
|
||||||
|
|
||||||
fp_movie = "/home/lugo/tmp/latentblending/bubua.mp4"
|
|
||||||
ms = MovieSaver(fp_movie, fps=fps)
|
|
||||||
|
|
||||||
lb.run_multi_transition(
|
|
||||||
list_prompts,
|
|
||||||
list_seeds,
|
|
||||||
list_nmb_branches,
|
|
||||||
list_injection_strength=list_injection_strength,
|
|
||||||
ms=ms,
|
|
||||||
fps=fps,
|
|
||||||
duration_single_trans=duration_single_trans
|
|
||||||
)
|
|
||||||
|
|
||||||
#%% get good branching struct
|
|
||||||
|
|
||||||
|
|
||||||
#%%
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#%%
|
#%%
|
||||||
"""
|
"""
|
||||||
TODO Coding:
|
TODO Coding:
|
||||||
RUNNING WITHOUT PROMPT!
|
RUNNING WITHOUT PROMPT!
|
||||||
|
|
||||||
auto mode (quality settings)
|
|
||||||
save value ranges, can it be trashed?
|
save value ranges, can it be trashed?
|
||||||
set all variables in init! self.img2...
|
|
||||||
|
|
||||||
TODO Other:
|
TODO Other:
|
||||||
github
|
github
|
||||||
|
|
Loading…
Reference in New Issue