controlnet first steps

This commit is contained in:
Johannes Stelzer 2023-07-20 15:45:06 +02:00
parent 76f89cb836
commit bc5713241f
1 changed files with 200 additions and 51 deletions

View File

@ -28,7 +28,7 @@ from typing import Optional
from torch import autocast from torch import autocast
from contextlib import nullcontext from contextlib import nullcontext
from utils import interpolate_spherical from utils import interpolate_spherical
from diffusers import DiffusionPipeline from diffusers import DiffusionPipeline, StableDiffusionControlNetPipeline, ControlNetModel
from diffusers.models.attention_processor import ( from diffusers.models.attention_processor import (
AttnProcessor2_0, AttnProcessor2_0,
LoRAAttnProcessor2_0, LoRAAttnProcessor2_0,
@ -47,27 +47,25 @@ class DiffusersHolder():
# Check if valid pipe # Check if valid pipe
self.pipe = pipe self.pipe = pipe
self.device = str(pipe._execution_device) self.device = str(pipe._execution_device)
self.init_type_pipe() self.init_types()
self.init_dtype()
self.width_latent = self.pipe.unet.config.sample_size self.width_latent = self.pipe.unet.config.sample_size
self.height_latent = self.pipe.unet.config.sample_size self.height_latent = self.pipe.unet.config.sample_size
def init_types(self):
def init_type_pipe(self): assert hasattr(self.pipe, "__class__"), "No valid diffusers pipeline found."
self.type_pipe = "StableDiffusionXLPipeline" assert hasattr(self.pipe.__class__, "__name__"), "No valid diffusers pipeline found."
if self.type_pipe == "StableDiffusionXLPipeline": if self.pipe.__class__.__name__ == 'StableDiffusionXLPipeline':
self.pipe.scheduler.set_timesteps(self.num_inference_steps, device=self.device) self.pipe.scheduler.set_timesteps(self.num_inference_steps, device=self.device)
self.use_sd_xl = True self.use_sd_xl = True
prompt_embeds, _, _, _ = self.pipe.encode_prompt("test")
else: else:
self.use_sd_xl = False self.use_sd_xl = False
prompt_embeds = self.pipe._encode_prompt("test", self.device, 1, True)
def init_dtype(self):
if self.type_pipe == "StableDiffusionXLPipeline":
prompt_embeds, _, _, _ = self.pipe.encode_prompt("test")
self.dtype = prompt_embeds.dtype self.dtype = prompt_embeds.dtype
def set_num_inference_steps(self, num_inference_steps): def set_num_inference_steps(self, num_inference_steps):
self.num_inference_steps = num_inference_steps self.num_inference_steps = num_inference_steps
if self.use_sd_xl: if self.use_sd_xl:
@ -102,6 +100,7 @@ class DiffusersHolder():
if len(self.negative_prompt) > 1: if len(self.negative_prompt) > 1:
self.negative_prompt = [self.negative_prompt[0]] self.negative_prompt = [self.negative_prompt[0]]
def get_text_embedding(self, prompt, do_classifier_free_guidance=True): def get_text_embedding(self, prompt, do_classifier_free_guidance=True):
if self.use_sd_xl: if self.use_sd_xl:
pr_encoder = self.pipe.encode_prompt pr_encoder = self.pipe.encode_prompt
@ -120,7 +119,6 @@ class DiffusersHolder():
) )
return prompt_embeds return prompt_embeds
def get_noise(self, seed=420, mode=None): def get_noise(self, seed=420, mode=None):
H = self.height_latent H = self.height_latent
W = self.width_latent W = self.width_latent
@ -166,12 +164,28 @@ class DiffusersHolder():
image = self.pipe.vae.decode(latents / self.pipe.vae.config.scaling_factor, return_dict=False)[0] image = self.pipe.vae.decode(latents / self.pipe.vae.config.scaling_factor, return_dict=False)[0]
image = self.pipe.image_processor.postprocess(image, output_type="pil", do_denormalize=[True] * image.shape[0]) image = self.pipe.image_processor.postprocess(image, output_type="pil", do_denormalize=[True] * image.shape[0])
return np.asarray(image[0]) return np.asarray(image[0])
@torch.no_grad() @torch.no_grad()
def run_diffusion_standard( def run_diffusion(
self,
text_embeddings: torch.FloatTensor,
latents_start: torch.FloatTensor,
idx_start: int = 0,
list_latents_mixing=None,
mixing_coeffs=0.0,
return_image: Optional[bool] = False):
if self.pipe.__class__.__name__ == 'StableDiffusionXLPipeline':
return self.run_diffusion_sd_xl(text_embeddings, latents_start, idx_start, list_latents_mixing, mixing_coeffs, return_image)
elif self.pipe.__class__.__name__ == 'StableDiffusionPipeline':
return self.run_diffusion_sd12x(text_embeddings, latents_start, idx_start, list_latents_mixing, mixing_coeffs, return_image)
elif self.pipe.__class__.__name__ == 'StableDiffusionControlNetPipeline':
pass
@torch.no_grad()
def run_diffusion_sd12x(
self, self,
text_embeddings: torch.FloatTensor, text_embeddings: torch.FloatTensor,
latents_start: torch.FloatTensor, latents_start: torch.FloatTensor,
@ -204,7 +218,6 @@ class DiffusersHolder():
latents = latents_start.clone() latents = latents_start.clone()
list_latents_out = [] list_latents_out = []
num_warmup_steps = len(timesteps) - self.num_inference_steps * self.pipe.scheduler.order
for i, t in enumerate(timesteps): for i, t in enumerate(timesteps):
# Set the right starting latents # Set the right starting latents
if i < idx_start: if i < idx_start:
@ -251,25 +264,6 @@ class DiffusersHolder():
mixing_coeffs=0.0, mixing_coeffs=0.0,
return_image: Optional[bool] = False): return_image: Optional[bool] = False):
# prompt = "photo of a house"
# self.num_inference_steps = 50
# mixing_coeffs= 0.0
# idx_start= 0
# latents_start = self.get_noise()
# text_embeddings = self.pipe.encode_prompt(
# prompt,
# self.device,
# num_images_per_prompt=1,
# do_classifier_free_guidance=True,
# negative_prompt="",
# prompt_embeds=None,
# negative_prompt_embeds=None,
# pooled_prompt_embeds=None,
# negative_pooled_prompt_embeds=None,
# lora_scale=None,
# )
# 0. Default height and width to unet # 0. Default height and width to unet
original_size = (1024, 1024) # FIXME original_size = (1024, 1024) # FIXME
crops_coords_top_left = (0, 0) # FIXME crops_coords_top_left = (0, 0) # FIXME
@ -282,7 +276,6 @@ class DiffusersHolder():
do_classifier_free_guidance = self.guidance_scale > 1.0 do_classifier_free_guidance = self.guidance_scale > 1.0
# 1. Check inputs. Raise error if not correct & 2. Define call parameters # 1. Check inputs. Raise error if not correct & 2. Define call parameters
# FIXME see if check_inputs use
if type(mixing_coeffs) == float: if type(mixing_coeffs) == float:
list_mixing_coeffs = (1+self.num_inference_steps) * [mixing_coeffs] list_mixing_coeffs = (1+self.num_inference_steps) * [mixing_coeffs]
elif type(mixing_coeffs) == list: elif type(mixing_coeffs) == list:
@ -332,8 +325,6 @@ class DiffusersHolder():
elif i == idx_start: elif i == idx_start:
latents = latents_start.clone() latents = latents_start.clone()
# Mix latents for crossfeeding # Mix latents for crossfeeding
if i > 0 and list_mixing_coeffs[i] > 0: if i > 0 and list_mixing_coeffs[i] > 0:
latents_mixtarget = list_latents_mixing[i - 1].clone() latents_mixtarget = list_latents_mixing[i - 1].clone()
@ -374,26 +365,183 @@ class DiffusersHolder():
else: else:
return list_latents_out return list_latents_out
@torch.no_grad()
def run_diffusion_controlnet(
self,
conditioning: list,
latents_start: torch.FloatTensor,
idx_start: int = 0,
list_latents_mixing=None,
mixing_coeffs=0.0,
return_image: Optional[bool] = False):
prompt_embeds = conditioning[0]
controlnet = self.pipe.controlnet
control_guidance_start = [0.0]
control_guidance_end = [1.0]
guess_mode = False
num_images_per_prompt = 1
batch_size = 1
eta = 0.0
controlnet_conditioning_scale = 1.0
image = Image.open("/home/lugo/glif/lora_models/pretrained_model_name_or_path/value_runwayml_stable-diffusion-v1-5_fabian/fabian_in_the_desert/img_001.jpg")
# align format for control guidance
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
# 2. Define call parameters
device = self.pipe._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = self.guidance_scale > 1.0
# 4. Prepare image
image = self.pipe.prepare_image(
image=image,
width=None,
height=None,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=self.device,
dtype=controlnet.dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
guess_mode=guess_mode,
)
height, width = image.shape[-2:]
# 5. Prepare timesteps
self.pipe.scheduler.set_timesteps(self.num_inference_steps, device=self.device)
timesteps = self.pipe.scheduler.timesteps
# 6. Prepare latent variables
generator = torch.Generator(device=self.device).manual_seed(int(420))
latents = latents_start.clone()
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.pipe.prepare_extra_step_kwargs(generator, eta)
# 7.1 Create tensor stating which controlnets to keep
controlnet_keep = []
for i in range(len(timesteps)):
keeps = [
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
for s, e in zip(control_guidance_start, control_guidance_end)
]
controlnet_keep.append(keeps[0] if len(keeps) == 1 else keeps)
# 8. Denoising loop
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.pipe.scheduler.scale_model_input(latent_model_input, t)
control_model_input = latent_model_input
controlnet_prompt_embeds = prompt_embeds
if isinstance(controlnet_keep[i], list):
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
else:
cond_scale = controlnet_conditioning_scale * controlnet_keep[i]
down_block_res_samples, mid_block_res_sample = self.pipe.controlnet(
control_model_input,
t,
encoder_hidden_states=controlnet_prompt_embeds,
controlnet_cond=image,
conditioning_scale=cond_scale,
guess_mode=guess_mode,
return_dict=False,
)
if guess_mode and do_classifier_free_guidance:
# Infered ControlNet only for the conditional batch.
# To apply the output of ControlNet to both the unconditional and conditional batches,
# add 0 to the unconditional batch to keep it unchanged.
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
# predict the noise residual
noise_pred = self.pipe.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=None,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.pipe.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
image = self.pipe.vae.decode(latents / self.pipe.vae.config.scaling_factor, return_dict=False)[0]
image, has_nsfw_concept = self.pipe.run_safety_checker(image, device, prompt_embeds.dtype)
image = self.pipe.image_processor.postprocess(image, output_type="pil")
return image
#%%
"""
steps:
x get controlnet vanilla running.
- externalize conditions
- have conditions as input (use one list)
- include latent blending
- test latent blending
- have lora and latent blending
"""
#%% #%%
if __name__ == "__main__": if __name__ == "__main__":
pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-0.9"
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16)
pipe.to('cuda') controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble", torch_dtype=torch.float16)
# xxx pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
).to("cuda")
self = DiffusersHolder(pipe) self = DiffusersHolder(pipe)
# xxx
self.set_num_inference_steps(50) # get text encoding
self.set_dimensions(1536, 1024)
prompt = "photo of a beautiful cherry forest covered in white flowers, ambient light, very detailed, magic" # get image encoding
text_embeddings = self.get_text_embedding(prompt)
generator = torch.Generator(device=self.device).manual_seed(int(420))
latents_start = self.get_noise()
list_latents_1 = self.run_diffusion_sd_xl(text_embeddings, latents_start)
img_orig = self.latent2image(list_latents_1[-1]) #%%
# # pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-0.9"
# pretrained_model_name_or_path = "stabilityai/stable-diffusion-2-1"
# pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16)
# pipe.to('cuda')
# # xxx
# self = DiffusersHolder(pipe)
# # xxx
# self.set_num_inference_steps(50)
# # self.set_dimensions(1536, 1024)
# prompt = "photo of a beautiful cherry forest covered in white flowers, ambient light, very detailed, magic"
# text_embeddings = self.get_text_embedding(prompt)
# generator = torch.Generator(device=self.device).manual_seed(int(420))
# latents_start = self.get_noise()
# list_latents_1 = self.run_diffusion(text_embeddings, latents_start)
# img_orig = self.latent2image(list_latents_1[-1])
@ -401,6 +549,7 @@ if __name__ == "__main__":
""" """
OPEN OPEN
- rename text encodings to conditionings
- other examples - other examples
- kill upscaling? or keep? - kill upscaling? or keep?
- cleanup - cleanup