reorganization

This commit is contained in:
DGX 2024-01-09 17:13:16 +00:00
parent 145569519d
commit 90d871f163
11 changed files with 34 additions and 80 deletions

View File

@ -0,0 +1,4 @@
from .blending_engine import BlendingEngine
from .diffusers_holder import DiffusersHolder
from .movie_utils import MovieSaver
from .utils import interpolate_spherical, add_frames_linear_interp, interpolate_linear, get_spacing, get_time, yml_load, yml_save

View File

@ -5,16 +5,16 @@ import warnings
import time import time
from tqdm.auto import tqdm from tqdm.auto import tqdm
from PIL import Image from PIL import Image
from movie_util import MovieSaver from latentblending.movie_util import MovieSaver
from typing import List, Optional from typing import List, Optional
import lpips import lpips
from utils import interpolate_spherical, interpolate_linear, add_frames_linear_interp, yml_load, yml_save from latentblending.utils import interpolate_spherical, interpolate_linear, add_frames_linear_interp, yml_load, yml_save
warnings.filterwarnings('ignore') warnings.filterwarnings('ignore')
torch.backends.cudnn.benchmark = False torch.backends.cudnn.benchmark = False
torch.set_grad_enabled(False) torch.set_grad_enabled(False)
class LatentBlending(): class BlendingEngine():
def __init__( def __init__(
self, self,
dh: None, dh: None,

View File

@ -3,7 +3,7 @@ import numpy as np
import warnings import warnings
from typing import Any, Callable, Dict, List, Optional, Tuple, Union from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from utils import interpolate_spherical from latentblending.utils import interpolate_spherical
from diffusers import DiffusionPipeline, StableDiffusionControlNetPipeline, ControlNetModel from diffusers import DiffusionPipeline, StableDiffusionControlNetPipeline, ControlNetModel
from diffusers.models.attention_processor import ( from diffusers.models.attention_processor import (
AttnProcessor2_0, AttnProcessor2_0,

View File

@ -1,6 +1,6 @@
import torch import torch
import warnings import warnings
from latent_blending import LatentBlending from blending_engine import BlendingEngine
from diffusers_holder import DiffusersHolder from diffusers_holder import DiffusersHolder
from diffusers import AutoPipelineForText2Image from diffusers import AutoPipelineForText2Image

View File

@ -1,21 +1,6 @@
# Copyright 2022 Lunar Ring. All rights reserved.
# Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch import torch
import warnings import warnings
from latent_blending import LatentBlending from blending_engine import BlendingEngine
from diffusers_holder import DiffusersHolder from diffusers_holder import DiffusersHolder
from diffusers import AutoPipelineForText2Image from diffusers import AutoPipelineForText2Image
from movie_util import concatenate_movies from movie_util import concatenate_movies
@ -42,7 +27,7 @@ list_prompts.append("photo of a house, high detail")
# You can optionally specify the seeds # You can optionally specify the seeds
list_seeds = [95437579, 33259350, 956051013] list_seeds = [95437579, 33259350, 956051013]
fp_movie = 'movie_example2.mp4' fp_movie = 'movie_example2.mp4'
lb = LatentBlending(dh) lb = BlendingEngine(dh)
list_movie_parts = [] list_movie_parts = []
for i in range(len(list_prompts) - 1): for i in range(len(list_prompts) - 1):

View File

@ -1,6 +1,6 @@
lpips==0.1.4 lpips==0.1.4
opencv-python==4.7.0.68 opencv-python
ffmpeg-python ffmpeg-python
diffusers["torch"]==0.23.0 diffusers==0.25.0
transformers==4.35.2 transformers
pytest pytest

19
setup.py Normal file
View File

@ -0,0 +1,19 @@
from setuptools import setup, find_packages
# Read requirements.txt and store its contents in a list
with open('requirements.txt') as f:
required = f.read().splitlines()
setup(
name='latentblending',
version='0.2',
url='https://github.com/lunarring/latentblending',
description='Butter-smooth video transitions',
long_description=open('README.md').read(),
install_requires=required,
dependency_links=[
'git+https://github.com/lunarring/lunar_tools#egg=lunar_tools'
],
include_package_data=False,
)

View File

@ -1,54 +0,0 @@
import unittest
from latent_blending import LatentBlending
from diffusers_holder import DiffusersHolder
from diffusers import DiffusionPipeline
import torch
default_pipe = "stabilityai/stable-diffusion-xl-base-1.0"
class TestDiffusersHolder(unittest.TestCase):
def test_load_diffusers_holder(self):
pipe = DiffusionPipeline.from_pretrained(default_pipe, torch_dtype=torch.float16).to('cuda')
dh = DiffusersHolder(pipe)
self.assertIsNotNone(dh, "Failed to load DiffusersHolder")
class TestSingleImageGeneration(unittest.TestCase):
def test_single_image_generation(self):
pipe = DiffusionPipeline.from_pretrained(default_pipe, torch_dtype=torch.float16).to('cuda')
dh = DiffusersHolder(pipe)
dh.set_dimensions((1024, 704))
dh.set_num_inference_steps(40)
prompt = "Your prompt here"
text_embeddings = dh.get_text_embedding(prompt)
generator = torch.Generator(device=dh.device).manual_seed(int(420))
latents_start = dh.get_noise()
list_latents_1 = dh.run_diffusion(text_embeddings, latents_start)
img_orig = dh.latent2image(list_latents_1[-1])
self.assertIsNotNone(img_orig, "Failed to generate an image")
class TestImageTransition(unittest.TestCase):
def test_image_transition(self):
pipe = DiffusionPipeline.from_pretrained(default_pipe, torch_dtype=torch.float16).to('cuda')
dh = DiffusersHolder(pipe)
lb = LatentBlending(dh)
lb.set_prompt1('photo of my first prompt1')
lb.set_prompt2('photo of my second prompt')
depth_strength = 0.6
t_compute_max_allowed = 10
num_inference_steps = 30
imgs_transition = lb.run_transition(
depth_strength=depth_strength,
num_inference_steps=num_inference_steps,
t_compute_max_allowed=t_compute_max_allowed)
self.assertTrue(len(imgs_transition) > 0, "No transition images generated")
if __name__ == '__main__':
unittest.main()