intermediate progress
This commit is contained in:
parent
5a66a38bab
commit
8cdfa02083
|
@ -0,0 +1,103 @@
|
||||||
|
# Copyright 2022 Lunar Ring. All rights reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import os, sys
|
||||||
|
import torch
|
||||||
|
torch.backends.cudnn.benchmark = False
|
||||||
|
import numpy as np
|
||||||
|
import warnings
|
||||||
|
warnings.filterwarnings('ignore')
|
||||||
|
import warnings
|
||||||
|
import torch
|
||||||
|
from tqdm.auto import tqdm
|
||||||
|
from diffusers import StableDiffusionPipeline
|
||||||
|
from diffusers.schedulers import DDIMScheduler
|
||||||
|
from PIL import Image
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import torch
|
||||||
|
from movie_util import MovieSaver
|
||||||
|
from typing import Callable, List, Optional, Union
|
||||||
|
from latent_blending import LatentBlending, add_frames_linear_interp
|
||||||
|
torch.set_grad_enabled(False)
|
||||||
|
|
||||||
|
#%% First let us spawn a diffusers pipe using DDIMScheduler
|
||||||
|
device = "cuda:0"
|
||||||
|
model_path = "../stable_diffusion_models/stable-diffusion-v1-5"
|
||||||
|
|
||||||
|
scheduler = DDIMScheduler(beta_start=0.00085,
|
||||||
|
beta_end=0.012,
|
||||||
|
beta_schedule="scaled_linear",
|
||||||
|
clip_sample=False,
|
||||||
|
set_alpha_to_one=False)
|
||||||
|
|
||||||
|
pipe = StableDiffusionPipeline.from_pretrained(
|
||||||
|
model_path,
|
||||||
|
revision="fp16",
|
||||||
|
torch_dtype=torch.float16,
|
||||||
|
scheduler=scheduler,
|
||||||
|
use_auth_token=True
|
||||||
|
)
|
||||||
|
pipe = pipe.to(device)
|
||||||
|
|
||||||
|
#%% Next let's set up all parameters
|
||||||
|
num_inference_steps = 30 # Number of diffusion interations
|
||||||
|
list_nmb_branches = [2, 3, 10, 24]#, 50] # Branching structure: how many branches
|
||||||
|
list_injection_strength = [0.0, 0.6, 0.8, 0.9]#, 0.95] # Branching structure: how deep is the blending
|
||||||
|
|
||||||
|
width = 512
|
||||||
|
height = 512
|
||||||
|
guidance_scale = 5
|
||||||
|
fps = 30
|
||||||
|
duration_target = 10
|
||||||
|
width = 512
|
||||||
|
height = 512
|
||||||
|
|
||||||
|
lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale)
|
||||||
|
|
||||||
|
|
||||||
|
list_prompts = []
|
||||||
|
list_prompts.append("surrealistic statue made of glitter and dirt, standing in a lake, atmospheric light, strange glow")
|
||||||
|
list_prompts.append("weird statue of a frog monkey, many colors, standing next to the ruins of an ancient city")
|
||||||
|
list_prompts.append("statue of a mix between a tree and human, made of marble, incredibly detailed")
|
||||||
|
list_prompts.append("statue made of hot metal, bizzarre, dark clouds in the sky")
|
||||||
|
list_prompts.append("statue of a spider that looked like a human")
|
||||||
|
list_prompts.append("statue of a bird that looked like a scorpion")
|
||||||
|
list_prompts.append("statue of an ancient cybernetic messenger annoucing good news, golden, futuristic")
|
||||||
|
|
||||||
|
k = 6
|
||||||
|
|
||||||
|
prompt = list_prompts[k]
|
||||||
|
for i in range(4):
|
||||||
|
lb.set_prompt1(prompt)
|
||||||
|
|
||||||
|
seed = np.random.randint(999999999)
|
||||||
|
lb.set_seed(seed)
|
||||||
|
plt.imshow(lb.run_diffusion(lb.text_embedding1, return_image=True))
|
||||||
|
plt.title(f"{i} seed {seed}")
|
||||||
|
plt.show()
|
||||||
|
print(f"prompt {k} seed {seed} trial {i}")
|
||||||
|
|
||||||
|
#%%
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
prompt 3 seed 28652396 trial 2
|
||||||
|
prompt 4 seed 783279867 trial 3
|
||||||
|
prompt 5 seed 831049796 trial 3
|
||||||
|
|
||||||
|
prompt 6 seed 798876383 trial 2
|
||||||
|
prompt 6 seed 750494819 trial 2
|
||||||
|
prompt 6 seed 416472011 trial 1
|
||||||
|
|
||||||
|
"""
|
|
@ -26,7 +26,7 @@ from diffusers.schedulers import DDIMScheduler
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import torch
|
import torch
|
||||||
from movie_man import MovieSaver
|
from movie_util import MovieSaver
|
||||||
from typing import Callable, List, Optional, Union
|
from typing import Callable, List, Optional, Union
|
||||||
from latent_blending import LatentBlending, add_frames_linear_interp
|
from latent_blending import LatentBlending, add_frames_linear_interp
|
||||||
torch.set_grad_enabled(False)
|
torch.set_grad_enabled(False)
|
||||||
|
@ -81,7 +81,7 @@ imgs_transition_ext = add_frames_linear_interp(imgs_transition, duration_transit
|
||||||
fp_movie = f"/home/lugo/tmp/latentblending/bobo_incoming.mp4"
|
fp_movie = f"/home/lugo/tmp/latentblending/bobo_incoming.mp4"
|
||||||
if os.path.isfile(fp_movie):
|
if os.path.isfile(fp_movie):
|
||||||
os.remove(fp_movie)
|
os.remove(fp_movie)
|
||||||
ms = MovieSaver(fp_movie, fps=fps, profile='save')
|
ms = MovieSaver(fp_movie, fps=fps)
|
||||||
for img in tqdm(imgs_transition_ext):
|
for img in tqdm(imgs_transition_ext):
|
||||||
ms.write_frame(img)
|
ms.write_frame(img)
|
||||||
ms.finalize()
|
ms.finalize()
|
||||||
|
|
|
@ -0,0 +1,122 @@
|
||||||
|
# Copyright 2022 Lunar Ring. All rights reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import os, sys
|
||||||
|
import torch
|
||||||
|
torch.backends.cudnn.benchmark = False
|
||||||
|
import numpy as np
|
||||||
|
import warnings
|
||||||
|
warnings.filterwarnings('ignore')
|
||||||
|
import warnings
|
||||||
|
import torch
|
||||||
|
from tqdm.auto import tqdm
|
||||||
|
from diffusers import StableDiffusionPipeline
|
||||||
|
from diffusers.schedulers import DDIMScheduler
|
||||||
|
from PIL import Image
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import torch
|
||||||
|
from movie_util import MovieSaver
|
||||||
|
from typing import Callable, List, Optional, Union
|
||||||
|
from latent_blending import LatentBlending, add_frames_linear_interp
|
||||||
|
torch.set_grad_enabled(False)
|
||||||
|
|
||||||
|
#%% First let us spawn a diffusers pipe using DDIMScheduler
|
||||||
|
device = "cuda:0"
|
||||||
|
model_path = "../stable_diffusion_models/stable-diffusion-v1-5"
|
||||||
|
|
||||||
|
scheduler = DDIMScheduler(beta_start=0.00085,
|
||||||
|
beta_end=0.012,
|
||||||
|
beta_schedule="scaled_linear",
|
||||||
|
clip_sample=False,
|
||||||
|
set_alpha_to_one=False)
|
||||||
|
|
||||||
|
pipe = StableDiffusionPipeline.from_pretrained(
|
||||||
|
model_path,
|
||||||
|
revision="fp16",
|
||||||
|
torch_dtype=torch.float16,
|
||||||
|
scheduler=scheduler,
|
||||||
|
use_auth_token=True
|
||||||
|
)
|
||||||
|
pipe = pipe.to(device)
|
||||||
|
|
||||||
|
#%% MULTITRANS
|
||||||
|
# XXX FIXME AssertionError: Need to supply floats for list_injection_strength
|
||||||
|
# GO AS DEEP AS POSSIBLE WITHOUT CAUSING MOTION
|
||||||
|
|
||||||
|
num_inference_steps = 100 # Number of diffusion interations
|
||||||
|
#list_nmb_branches = [2, 12, 24, 55, 77] # Branching structure: how many branches
|
||||||
|
#list_injection_strength = [0.0, 0.35, 0.5, 0.65, 0.95] # Branching structure: how deep is the blending
|
||||||
|
list_nmb_branches = list(np.linspace(2, 600, 15).astype(int)) #
|
||||||
|
list_injection_strength = list(np.linspace(0.45, 0.97, 14).astype(np.float32)) # Branching structure: how deep is the blending
|
||||||
|
list_injection_strength = [float(x) for x in list_injection_strength]
|
||||||
|
list_injection_strength.insert(0,0.0)
|
||||||
|
|
||||||
|
width = 512
|
||||||
|
height = 512
|
||||||
|
guidance_scale = 5
|
||||||
|
fps = 30
|
||||||
|
duration_target = 20
|
||||||
|
width = 512
|
||||||
|
height = 512
|
||||||
|
|
||||||
|
lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale)
|
||||||
|
|
||||||
|
#list_nmb_branches = [2, 3, 10, 24] # Branching structure: how many branches
|
||||||
|
#list_injection_strength = [0.0, 0.6, 0.8, 0.9] #
|
||||||
|
|
||||||
|
list_prompts = []
|
||||||
|
list_prompts.append("surrealistic statue made of glitter and dirt, standing in a lake, atmospheric light, strange glow")
|
||||||
|
list_prompts.append("statue of a mix between a tree and human, made of marble, incredibly detailed")
|
||||||
|
list_prompts.append("weird statue of a frog monkey, many colors, standing next to the ruins of an ancient city")
|
||||||
|
list_prompts.append("statue made of hot metal, bizzarre, dark clouds in the sky")
|
||||||
|
list_prompts.append("statue of a spider that looked like a human")
|
||||||
|
list_prompts.append("statue of a bird that looked like a scorpion")
|
||||||
|
list_prompts.append("statue of an ancient cybernetic messenger annoucing good news, golden, futuristic")
|
||||||
|
|
||||||
|
|
||||||
|
list_seeds = [234187386, 422209351, 241845736, 28652396, 783279867, 831049796, 234903931]
|
||||||
|
|
||||||
|
|
||||||
|
fp_movie = "/home/lugo/tmp/latentblending/bubu.mp4"
|
||||||
|
ms = MovieSaver(fp_movie, fps=fps)
|
||||||
|
|
||||||
|
for i in range(len(list_prompts)-1):
|
||||||
|
print(f"Starting movie segment {i+1}/{len(list_prompts)-1}")
|
||||||
|
|
||||||
|
if i==0:
|
||||||
|
lb.set_prompt1(list_prompts[i])
|
||||||
|
lb.set_prompt2(list_prompts[i+1])
|
||||||
|
recycle_img1 = False
|
||||||
|
else:
|
||||||
|
lb.swap_forward()
|
||||||
|
lb.set_prompt2(list_prompts[i+1])
|
||||||
|
recycle_img1 = True
|
||||||
|
|
||||||
|
local_seeds = [list_seeds[i], list_seeds[i+1]]
|
||||||
|
list_imgs = lb.run_transition(list_nmb_branches, list_injection_strength, recycle_img1=recycle_img1, fixed_seeds=local_seeds)
|
||||||
|
list_imgs_interp = add_frames_linear_interp(list_imgs, fps, duration_target)
|
||||||
|
|
||||||
|
# Save movie frame
|
||||||
|
for img in list_imgs_interp:
|
||||||
|
ms.write_frame(img)
|
||||||
|
|
||||||
|
ms.finalize()
|
||||||
|
|
||||||
|
#%%
|
||||||
|
#for img in lb.tree_final_imgs:
|
||||||
|
# if img is not None:
|
||||||
|
# ms.write_frame(img)
|
||||||
|
#
|
||||||
|
#ms.finalize()
|
||||||
|
|
|
@ -314,7 +314,7 @@ class LatentBlending():
|
||||||
fract_mixing = self.tree_fracts[t_block][idx_leaf_deep]
|
fract_mixing = self.tree_fracts[t_block][idx_leaf_deep]
|
||||||
list_fract_mixing_prev = self.tree_fracts[t_block_prev]
|
list_fract_mixing_prev = self.tree_fracts[t_block_prev]
|
||||||
b_parent1, b_parent2 = get_closest_idx(fract_mixing, list_fract_mixing_prev)
|
b_parent1, b_parent2 = get_closest_idx(fract_mixing, list_fract_mixing_prev)
|
||||||
assert self.tree_status[t_block_prev][b_parent1] != 'untouched', 'This should never happen!'
|
assert self.tree_status[t_block_prev][b_parent1] != 'untouched', 'Branch destruction??? This should never happen!'
|
||||||
if self.tree_status[t_block_prev][b_parent2] == 'untouched':
|
if self.tree_status[t_block_prev][b_parent2] == 'untouched':
|
||||||
self.tree_status[t_block_prev][b_parent2] = 'prefetched'
|
self.tree_status[t_block_prev][b_parent2] = 'prefetched'
|
||||||
list_local_stem.append([t_block_prev, b_parent2])
|
list_local_stem.append([t_block_prev, b_parent2])
|
||||||
|
@ -934,114 +934,17 @@ def get_time(resolution=None):
|
||||||
#%% le main
|
#%% le main
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
||||||
#%% TMP SURGERY
|
|
||||||
num_inference_steps = 20 # Number of diffusion interations
|
|
||||||
list_nmb_branches = [2, 3, 10, 24] # Branching structure: how many branches
|
|
||||||
list_injection_strength = [0.0, 0.6, 0.8, 0.9] # Branching structure: how deep is the blending
|
|
||||||
width = 512
|
|
||||||
height = 512
|
|
||||||
guidance_scale = 5
|
|
||||||
fixed_seeds = [993621550, 280335986]
|
|
||||||
|
|
||||||
lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale)
|
|
||||||
prompt1 = "photo of a beautiful forest covered in white flowers, ambient light, very detailed, magic"
|
|
||||||
prompt2 = "photo of an eerie statue surrounded by ferns and vines, analog photograph kodak portra, mystical ambience, incredible detail"
|
|
||||||
lb.set_prompt1(prompt1)
|
|
||||||
lb.set_prompt2(prompt2)
|
|
||||||
|
|
||||||
imgs_transition = lb.run_transition(list_nmb_branches, list_injection_strength, fixed_seeds=fixed_seeds)
|
|
||||||
|
|
||||||
|
|
||||||
#%% LOOP
|
|
||||||
list_prompts = []
|
|
||||||
list_prompts.append("paiting of a medieval city")
|
|
||||||
list_prompts.append("paiting of a forest")
|
|
||||||
list_prompts.append("photo of a desert landscape")
|
|
||||||
list_prompts.append("photo of a jungle")
|
|
||||||
# we provide a mask for that image1
|
|
||||||
mask_image = 255*np.ones([512,512], dtype=np.uint8)
|
|
||||||
mask_image[200:300, 200:300] = 0
|
|
||||||
|
|
||||||
list_nmb_branches = [2, 4, 12]
|
|
||||||
list_injection_idx = [0, 4, 12]
|
|
||||||
|
|
||||||
# we provide a new prompt for image2
|
|
||||||
prompt2 = list_prompts[1]# "beautiful painting ocean sunset colorful"
|
|
||||||
# self.swap_forward()
|
|
||||||
self.randomize_seed()
|
|
||||||
self.set_prompt2(prompt2)
|
|
||||||
self.init_inpainting(image_source=img1, mask_image=mask_image)
|
|
||||||
list_imgs = self.run_transition(list_nmb_branches, list_injection_idx=list_injection_idx, recycle_img1=True, fixed_seeds='randomize')
|
|
||||||
|
|
||||||
# now we switch them around so image2 becomes image1
|
|
||||||
img1 = list_imgs[-1]
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#%% GOOD MOVIE ENGINE
|
|
||||||
num_inference_steps = 30
|
|
||||||
width = 512
|
|
||||||
height = 512
|
|
||||||
guidance_scale = 5
|
|
||||||
list_nmb_branches = [2, 4, 10, 50]
|
|
||||||
list_injection_idx = [0, 17, 24, 27]
|
|
||||||
fps_target = 30
|
|
||||||
duration_target = 10
|
|
||||||
width = 512
|
|
||||||
height = 512
|
|
||||||
|
|
||||||
|
|
||||||
list_prompts = []
|
|
||||||
list_prompts.append('painting of the first beer that was drunk in mesopotamia')
|
|
||||||
list_prompts.append('painting of a greek wine symposium')
|
|
||||||
|
|
||||||
lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale, seed)
|
|
||||||
dp_movie = "/home/lugo/tmp/movie"
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#%% EXAMPLE3 MOVIE ENGINE
|
|
||||||
list_injection_steps = [2, 3, 4, 5]
|
|
||||||
list_injection_strength = [0.55, 0.69, 0.8, 0.92]
|
|
||||||
num_inference_steps = 30
|
|
||||||
width = 768
|
|
||||||
height = 512
|
|
||||||
guidance_scale = 5
|
|
||||||
seed = 421
|
|
||||||
mode = 'standard'
|
|
||||||
fps_target = 30
|
|
||||||
duration_target = 15
|
|
||||||
gpu_id = 0
|
|
||||||
|
|
||||||
device = "cuda:"+str(gpu_id)
|
|
||||||
model_path = "../stable_diffusion_models/stable-diffusion-v1-5"
|
|
||||||
pipe = StableDiffusionPipeline.from_pretrained(
|
|
||||||
model_path,
|
|
||||||
revision="fp16",
|
|
||||||
torch_dtype=torch.float16,
|
|
||||||
scheduler=DDIMScheduler(),
|
|
||||||
use_auth_token=True
|
|
||||||
)
|
|
||||||
pipe = pipe.to(device)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#%%
|
#%%
|
||||||
"""
|
"""
|
||||||
TODO Coding:
|
TODO Coding:
|
||||||
|
RUNNING WITHOUT PROMPT!
|
||||||
|
|
||||||
auto mode (quality settings)
|
auto mode (quality settings)
|
||||||
refactor movie man
|
|
||||||
make movie combiner in movie man
|
|
||||||
check how default args handled in proper python code...
|
|
||||||
save value ranges, can it be trashed?
|
save value ranges, can it be trashed?
|
||||||
documentation in code
|
|
||||||
example1: single transition
|
|
||||||
example2: single transition inpaint
|
|
||||||
example3: make movie
|
|
||||||
set all variables in init! self.img2...
|
set all variables in init! self.img2...
|
||||||
|
|
||||||
TODO Other:
|
TODO Other:
|
||||||
|
|
|
@ -202,6 +202,11 @@ class MovieReader():
|
||||||
|
|
||||||
#%%
|
#%%
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
ms = MovieSaver("/tmp/bubu.mp4", fps=fps)
|
||||||
|
for img in list_imgs_interp:
|
||||||
|
ms.write_frame(img)
|
||||||
|
ms.finalize()
|
||||||
|
if False:
|
||||||
fps=2
|
fps=2
|
||||||
list_fp_movies = []
|
list_fp_movies = []
|
||||||
for k in range(4):
|
for k in range(4):
|
||||||
|
|
Loading…
Reference in New Issue