intermediate progress

This commit is contained in:
Johannes Stelzer 2022-11-22 00:07:55 +01:00
parent 5a66a38bab
commit 8cdfa02083
5 changed files with 235 additions and 102 deletions

103
cherry_picknick.py Normal file
View File

@ -0,0 +1,103 @@
# Copyright 2022 Lunar Ring. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os, sys
import torch
torch.backends.cudnn.benchmark = False
import numpy as np
import warnings
warnings.filterwarnings('ignore')
import warnings
import torch
from tqdm.auto import tqdm
from diffusers import StableDiffusionPipeline
from diffusers.schedulers import DDIMScheduler
from PIL import Image
import matplotlib.pyplot as plt
import torch
from movie_util import MovieSaver
from typing import Callable, List, Optional, Union
from latent_blending import LatentBlending, add_frames_linear_interp
torch.set_grad_enabled(False)
#%% First let us spawn a diffusers pipe using DDIMScheduler
device = "cuda:0"
model_path = "../stable_diffusion_models/stable-diffusion-v1-5"
scheduler = DDIMScheduler(beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False)
pipe = StableDiffusionPipeline.from_pretrained(
model_path,
revision="fp16",
torch_dtype=torch.float16,
scheduler=scheduler,
use_auth_token=True
)
pipe = pipe.to(device)
#%% Next let's set up all parameters
num_inference_steps = 30 # Number of diffusion interations
list_nmb_branches = [2, 3, 10, 24]#, 50] # Branching structure: how many branches
list_injection_strength = [0.0, 0.6, 0.8, 0.9]#, 0.95] # Branching structure: how deep is the blending
width = 512
height = 512
guidance_scale = 5
fps = 30
duration_target = 10
width = 512
height = 512
lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale)
list_prompts = []
list_prompts.append("surrealistic statue made of glitter and dirt, standing in a lake, atmospheric light, strange glow")
list_prompts.append("weird statue of a frog monkey, many colors, standing next to the ruins of an ancient city")
list_prompts.append("statue of a mix between a tree and human, made of marble, incredibly detailed")
list_prompts.append("statue made of hot metal, bizzarre, dark clouds in the sky")
list_prompts.append("statue of a spider that looked like a human")
list_prompts.append("statue of a bird that looked like a scorpion")
list_prompts.append("statue of an ancient cybernetic messenger annoucing good news, golden, futuristic")
k = 6
prompt = list_prompts[k]
for i in range(4):
lb.set_prompt1(prompt)
seed = np.random.randint(999999999)
lb.set_seed(seed)
plt.imshow(lb.run_diffusion(lb.text_embedding1, return_image=True))
plt.title(f"{i} seed {seed}")
plt.show()
print(f"prompt {k} seed {seed} trial {i}")
#%%
"""
prompt 3 seed 28652396 trial 2
prompt 4 seed 783279867 trial 3
prompt 5 seed 831049796 trial 3
prompt 6 seed 798876383 trial 2
prompt 6 seed 750494819 trial 2
prompt 6 seed 416472011 trial 1
"""

View File

@ -26,7 +26,7 @@ from diffusers.schedulers import DDIMScheduler
from PIL import Image from PIL import Image
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import torch import torch
from movie_man import MovieSaver from movie_util import MovieSaver
from typing import Callable, List, Optional, Union from typing import Callable, List, Optional, Union
from latent_blending import LatentBlending, add_frames_linear_interp from latent_blending import LatentBlending, add_frames_linear_interp
torch.set_grad_enabled(False) torch.set_grad_enabled(False)
@ -81,7 +81,7 @@ imgs_transition_ext = add_frames_linear_interp(imgs_transition, duration_transit
fp_movie = f"/home/lugo/tmp/latentblending/bobo_incoming.mp4" fp_movie = f"/home/lugo/tmp/latentblending/bobo_incoming.mp4"
if os.path.isfile(fp_movie): if os.path.isfile(fp_movie):
os.remove(fp_movie) os.remove(fp_movie)
ms = MovieSaver(fp_movie, fps=fps, profile='save') ms = MovieSaver(fp_movie, fps=fps)
for img in tqdm(imgs_transition_ext): for img in tqdm(imgs_transition_ext):
ms.write_frame(img) ms.write_frame(img)
ms.finalize() ms.finalize()

122
example3_multitrans.py Normal file
View File

@ -0,0 +1,122 @@
# Copyright 2022 Lunar Ring. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os, sys
import torch
torch.backends.cudnn.benchmark = False
import numpy as np
import warnings
warnings.filterwarnings('ignore')
import warnings
import torch
from tqdm.auto import tqdm
from diffusers import StableDiffusionPipeline
from diffusers.schedulers import DDIMScheduler
from PIL import Image
import matplotlib.pyplot as plt
import torch
from movie_util import MovieSaver
from typing import Callable, List, Optional, Union
from latent_blending import LatentBlending, add_frames_linear_interp
torch.set_grad_enabled(False)
#%% First let us spawn a diffusers pipe using DDIMScheduler
device = "cuda:0"
model_path = "../stable_diffusion_models/stable-diffusion-v1-5"
scheduler = DDIMScheduler(beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False)
pipe = StableDiffusionPipeline.from_pretrained(
model_path,
revision="fp16",
torch_dtype=torch.float16,
scheduler=scheduler,
use_auth_token=True
)
pipe = pipe.to(device)
#%% MULTITRANS
# XXX FIXME AssertionError: Need to supply floats for list_injection_strength
# GO AS DEEP AS POSSIBLE WITHOUT CAUSING MOTION
num_inference_steps = 100 # Number of diffusion interations
#list_nmb_branches = [2, 12, 24, 55, 77] # Branching structure: how many branches
#list_injection_strength = [0.0, 0.35, 0.5, 0.65, 0.95] # Branching structure: how deep is the blending
list_nmb_branches = list(np.linspace(2, 600, 15).astype(int)) #
list_injection_strength = list(np.linspace(0.45, 0.97, 14).astype(np.float32)) # Branching structure: how deep is the blending
list_injection_strength = [float(x) for x in list_injection_strength]
list_injection_strength.insert(0,0.0)
width = 512
height = 512
guidance_scale = 5
fps = 30
duration_target = 20
width = 512
height = 512
lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale)
#list_nmb_branches = [2, 3, 10, 24] # Branching structure: how many branches
#list_injection_strength = [0.0, 0.6, 0.8, 0.9] #
list_prompts = []
list_prompts.append("surrealistic statue made of glitter and dirt, standing in a lake, atmospheric light, strange glow")
list_prompts.append("statue of a mix between a tree and human, made of marble, incredibly detailed")
list_prompts.append("weird statue of a frog monkey, many colors, standing next to the ruins of an ancient city")
list_prompts.append("statue made of hot metal, bizzarre, dark clouds in the sky")
list_prompts.append("statue of a spider that looked like a human")
list_prompts.append("statue of a bird that looked like a scorpion")
list_prompts.append("statue of an ancient cybernetic messenger annoucing good news, golden, futuristic")
list_seeds = [234187386, 422209351, 241845736, 28652396, 783279867, 831049796, 234903931]
fp_movie = "/home/lugo/tmp/latentblending/bubu.mp4"
ms = MovieSaver(fp_movie, fps=fps)
for i in range(len(list_prompts)-1):
print(f"Starting movie segment {i+1}/{len(list_prompts)-1}")
if i==0:
lb.set_prompt1(list_prompts[i])
lb.set_prompt2(list_prompts[i+1])
recycle_img1 = False
else:
lb.swap_forward()
lb.set_prompt2(list_prompts[i+1])
recycle_img1 = True
local_seeds = [list_seeds[i], list_seeds[i+1]]
list_imgs = lb.run_transition(list_nmb_branches, list_injection_strength, recycle_img1=recycle_img1, fixed_seeds=local_seeds)
list_imgs_interp = add_frames_linear_interp(list_imgs, fps, duration_target)
# Save movie frame
for img in list_imgs_interp:
ms.write_frame(img)
ms.finalize()
#%%
#for img in lb.tree_final_imgs:
# if img is not None:
# ms.write_frame(img)
#
#ms.finalize()

View File

@ -314,7 +314,7 @@ class LatentBlending():
fract_mixing = self.tree_fracts[t_block][idx_leaf_deep] fract_mixing = self.tree_fracts[t_block][idx_leaf_deep]
list_fract_mixing_prev = self.tree_fracts[t_block_prev] list_fract_mixing_prev = self.tree_fracts[t_block_prev]
b_parent1, b_parent2 = get_closest_idx(fract_mixing, list_fract_mixing_prev) b_parent1, b_parent2 = get_closest_idx(fract_mixing, list_fract_mixing_prev)
assert self.tree_status[t_block_prev][b_parent1] != 'untouched', 'This should never happen!' assert self.tree_status[t_block_prev][b_parent1] != 'untouched', 'Branch destruction??? This should never happen!'
if self.tree_status[t_block_prev][b_parent2] == 'untouched': if self.tree_status[t_block_prev][b_parent2] == 'untouched':
self.tree_status[t_block_prev][b_parent2] = 'prefetched' self.tree_status[t_block_prev][b_parent2] = 'prefetched'
list_local_stem.append([t_block_prev, b_parent2]) list_local_stem.append([t_block_prev, b_parent2])
@ -934,114 +934,17 @@ def get_time(resolution=None):
#%% le main #%% le main
if __name__ == "__main__": if __name__ == "__main__":
#%% TMP SURGERY
num_inference_steps = 20 # Number of diffusion interations
list_nmb_branches = [2, 3, 10, 24] # Branching structure: how many branches
list_injection_strength = [0.0, 0.6, 0.8, 0.9] # Branching structure: how deep is the blending
width = 512
height = 512
guidance_scale = 5
fixed_seeds = [993621550, 280335986]
lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale)
prompt1 = "photo of a beautiful forest covered in white flowers, ambient light, very detailed, magic"
prompt2 = "photo of an eerie statue surrounded by ferns and vines, analog photograph kodak portra, mystical ambience, incredible detail"
lb.set_prompt1(prompt1)
lb.set_prompt2(prompt2)
imgs_transition = lb.run_transition(list_nmb_branches, list_injection_strength, fixed_seeds=fixed_seeds)
#%% LOOP
list_prompts = []
list_prompts.append("paiting of a medieval city")
list_prompts.append("paiting of a forest")
list_prompts.append("photo of a desert landscape")
list_prompts.append("photo of a jungle")
# we provide a mask for that image1
mask_image = 255*np.ones([512,512], dtype=np.uint8)
mask_image[200:300, 200:300] = 0
list_nmb_branches = [2, 4, 12]
list_injection_idx = [0, 4, 12]
# we provide a new prompt for image2
prompt2 = list_prompts[1]# "beautiful painting ocean sunset colorful"
# self.swap_forward()
self.randomize_seed()
self.set_prompt2(prompt2)
self.init_inpainting(image_source=img1, mask_image=mask_image)
list_imgs = self.run_transition(list_nmb_branches, list_injection_idx=list_injection_idx, recycle_img1=True, fixed_seeds='randomize')
# now we switch them around so image2 becomes image1
img1 = list_imgs[-1]
#%% GOOD MOVIE ENGINE
num_inference_steps = 30
width = 512
height = 512
guidance_scale = 5
list_nmb_branches = [2, 4, 10, 50]
list_injection_idx = [0, 17, 24, 27]
fps_target = 30
duration_target = 10
width = 512
height = 512
list_prompts = []
list_prompts.append('painting of the first beer that was drunk in mesopotamia')
list_prompts.append('painting of a greek wine symposium')
lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale, seed)
dp_movie = "/home/lugo/tmp/movie"
#%% EXAMPLE3 MOVIE ENGINE
list_injection_steps = [2, 3, 4, 5]
list_injection_strength = [0.55, 0.69, 0.8, 0.92]
num_inference_steps = 30
width = 768
height = 512
guidance_scale = 5
seed = 421
mode = 'standard'
fps_target = 30
duration_target = 15
gpu_id = 0
device = "cuda:"+str(gpu_id)
model_path = "../stable_diffusion_models/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(
model_path,
revision="fp16",
torch_dtype=torch.float16,
scheduler=DDIMScheduler(),
use_auth_token=True
)
pipe = pipe.to(device)
#%% #%%
""" """
TODO Coding: TODO Coding:
RUNNING WITHOUT PROMPT!
auto mode (quality settings) auto mode (quality settings)
refactor movie man
make movie combiner in movie man
check how default args handled in proper python code...
save value ranges, can it be trashed? save value ranges, can it be trashed?
documentation in code
example1: single transition
example2: single transition inpaint
example3: make movie
set all variables in init! self.img2... set all variables in init! self.img2...
TODO Other: TODO Other:

View File

@ -202,6 +202,11 @@ class MovieReader():
#%% #%%
if __name__ == "__main__": if __name__ == "__main__":
ms = MovieSaver("/tmp/bubu.mp4", fps=fps)
for img in list_imgs_interp:
ms.write_frame(img)
ms.finalize()
if False:
fps=2 fps=2
list_fp_movies = [] list_fp_movies = []
for k in range(4): for k in range(4):