hard fixed params for sdxl turbo
This commit is contained in:
parent
df02d15562
commit
87aba9a8dc
|
@ -89,9 +89,9 @@ class LatentBlending():
|
|||
self.list_nmb_branches = None
|
||||
|
||||
# Mixing parameters
|
||||
self.branch1_crossfeed_power = 0.3
|
||||
self.branch1_crossfeed_range = 0.3
|
||||
self.branch1_crossfeed_decay = 0.99
|
||||
self.branch1_crossfeed_power = 0.0
|
||||
self.branch1_crossfeed_range = 0.0
|
||||
self.branch1_crossfeed_decay = 0.0
|
||||
|
||||
self.parental_crossfeed_power = 0.3
|
||||
self.parental_crossfeed_range = 0.6
|
||||
|
@ -101,7 +101,6 @@ class LatentBlending():
|
|||
self.multi_transition_img_first = None
|
||||
self.multi_transition_img_last = None
|
||||
self.dt_per_diff = 0
|
||||
self.spatial_mask = None
|
||||
self.lpips = lpips.LPIPS(net='alex').cuda(self.device)
|
||||
|
||||
self.set_prompt1("")
|
||||
|
@ -215,6 +214,8 @@ class LatentBlending():
|
|||
recycle_img1: Optional[bool] = False,
|
||||
recycle_img2: Optional[bool] = False,
|
||||
num_inference_steps: Optional[int] = 30,
|
||||
list_idx_injection: Optional[int] = None,
|
||||
list_nmb_stems: Optional[int] = None,
|
||||
depth_strength: Optional[float] = 0.3,
|
||||
t_compute_max_allowed: Optional[float] = None,
|
||||
nmb_max_branches: Optional[int] = None,
|
||||
|
@ -249,6 +250,7 @@ class LatentBlending():
|
|||
assert self.text_embedding1 is not None, 'Set the first text embedding with .set_prompt1(...) before'
|
||||
assert self.text_embedding2 is not None, 'Set the second text embedding with .set_prompt2(...) before'
|
||||
|
||||
|
||||
# Random seeds
|
||||
if fixed_seeds is not None:
|
||||
if fixed_seeds == 'randomize':
|
||||
|
@ -260,6 +262,8 @@ class LatentBlending():
|
|||
self.seed2 = fixed_seeds[1]
|
||||
|
||||
# Ensure correct num_inference_steps in holder
|
||||
if 'turbo' in self.dh.pipe._name_or_path:
|
||||
num_inference_steps = 4 #ideal results
|
||||
self.num_inference_steps = num_inference_steps
|
||||
self.dh.set_num_inference_steps(num_inference_steps)
|
||||
|
||||
|
@ -281,11 +285,18 @@ class LatentBlending():
|
|||
self.tree_final_imgs = [self.dh.latent2image((self.tree_latents[0][-1])), self.dh.latent2image((self.tree_latents[-1][-1]))]
|
||||
self.tree_idx_injection = [0, 0]
|
||||
|
||||
# Hard-fix. Apply spatial mask only for list_latents2 but not for transition. WIP...
|
||||
self.spatial_mask = None
|
||||
|
||||
# Set up branching scheme (dependent on provided compute time)
|
||||
list_idx_injection, list_nmb_stems = self.get_time_based_branching(depth_strength, t_compute_max_allowed, nmb_max_branches)
|
||||
if 'turbo' in self.dh.pipe._name_or_path:
|
||||
self.guidance_scale = 0.0
|
||||
|
||||
self.parental_crossfeed_power = 1.0
|
||||
self.parental_crossfeed_power_decay = 1.0
|
||||
self.parental_crossfeed_range = 1.0
|
||||
list_idx_injection = [2]
|
||||
list_nmb_stems = [10]
|
||||
else:
|
||||
|
||||
list_idx_injection, list_nmb_stems = self.get_time_based_branching(depth_strength, t_compute_max_allowed, nmb_max_branches)
|
||||
|
||||
# Run iteratively, starting with the longest trajectory.
|
||||
# Always inserting new branches where they are needed most according to image similarity
|
||||
|
@ -298,7 +309,7 @@ class LatentBlending():
|
|||
self.set_guidance_mid_dampening(fract_mixing)
|
||||
list_latents = self.compute_latents_mix(fract_mixing, b_parent1, b_parent2, idx_injection)
|
||||
self.insert_into_tree(fract_mixing, idx_injection, list_latents)
|
||||
# print(f"fract_mixing: {fract_mixing} idx_injection {idx_injection}")
|
||||
# print(f"fract_mixing: {fract_mixing} idx_injection {idx_injection} bp1 {b_parent1} bp2 {b_parent2}")
|
||||
|
||||
return self.tree_final_imgs
|
||||
|
||||
|
@ -417,8 +428,10 @@ class LatentBlending():
|
|||
results. Use this if you want to have controllable results independent
|
||||
of your computer.
|
||||
"""
|
||||
idx_injection_base = int(round(self.num_inference_steps * depth_strength))
|
||||
list_idx_injection = np.arange(idx_injection_base, self.num_inference_steps - 1, 3)
|
||||
idx_injection_base = int(np.floor(self.num_inference_steps * depth_strength))
|
||||
|
||||
steps = int(np.ceil(self.num_inference_steps/10))
|
||||
list_idx_injection = np.arange(idx_injection_base, self.num_inference_steps, steps)
|
||||
list_nmb_stems = np.ones(len(list_idx_injection), dtype=np.int32)
|
||||
t_compute = 0
|
||||
|
||||
|
@ -440,7 +453,7 @@ class LatentBlending():
|
|||
t_compute += 2 * self.num_inference_steps * self.dt_per_diff # outer branches
|
||||
increase_done = False
|
||||
for s_idx in range(len(list_nmb_stems) - 1):
|
||||
if list_nmb_stems[s_idx + 1] / list_nmb_stems[s_idx] >= 2:
|
||||
if list_nmb_stems[s_idx + 1] / list_nmb_stems[s_idx] >= 1:
|
||||
list_nmb_stems[s_idx] += 1
|
||||
increase_done = True
|
||||
break
|
||||
|
@ -471,15 +484,14 @@ class LatentBlending():
|
|||
the index in terms of diffusion steps, where the next insertion will start.
|
||||
"""
|
||||
# get_lpips_similarity
|
||||
similarities = []
|
||||
for i in range(len(self.tree_final_imgs) - 1):
|
||||
similarities.append(self.get_lpips_similarity(self.tree_final_imgs[i], self.tree_final_imgs[i + 1]))
|
||||
similarities = self.get_tree_similarities()
|
||||
b_closest1 = np.argmax(similarities)
|
||||
b_closest2 = b_closest1 + 1
|
||||
fract_closest1 = self.tree_fracts[b_closest1]
|
||||
fract_closest2 = self.tree_fracts[b_closest2]
|
||||
fract_mixing = (fract_closest1 + fract_closest2) / 2
|
||||
|
||||
# Ensure that the parents are indeed older!
|
||||
# Ensure that the parents are indeed older
|
||||
b_parent1 = b_closest1
|
||||
while True:
|
||||
if self.tree_idx_injection[b_parent1] < idx_injection:
|
||||
|
@ -492,7 +504,6 @@ class LatentBlending():
|
|||
break
|
||||
else:
|
||||
b_parent2 += 1
|
||||
fract_mixing = (fract_closest1 + fract_closest2) / 2
|
||||
return fract_mixing, b_parent1, b_parent2
|
||||
|
||||
def insert_into_tree(self, fract_mixing, idx_injection, list_latents):
|
||||
|
@ -507,10 +518,11 @@ class LatentBlending():
|
|||
list of the latents to be inserted
|
||||
"""
|
||||
b_parent1, b_parent2 = self.get_closest_idx(fract_mixing)
|
||||
self.tree_latents.insert(b_parent1 + 1, list_latents)
|
||||
self.tree_final_imgs.insert(b_parent1 + 1, self.dh.latent2image(list_latents[-1]))
|
||||
self.tree_fracts.insert(b_parent1 + 1, fract_mixing)
|
||||
self.tree_idx_injection.insert(b_parent1 + 1, idx_injection)
|
||||
idx_tree = b_parent1 + 1
|
||||
self.tree_latents.insert(idx_tree, list_latents)
|
||||
self.tree_final_imgs.insert(idx_tree, self.dh.latent2image(list_latents[-1]))
|
||||
self.tree_fracts.insert(idx_tree, fract_mixing)
|
||||
self.tree_idx_injection.insert(idx_tree, idx_injection)
|
||||
|
||||
def get_noise(self, seed):
|
||||
r"""
|
||||
|
@ -807,6 +819,12 @@ class LatentBlending():
|
|||
lploss = float(lploss[0][0][0][0])
|
||||
return lploss
|
||||
|
||||
def get_tree_similarities(self):
|
||||
similarities = []
|
||||
for i in range(len(self.tree_final_imgs) - 1):
|
||||
similarities.append(self.get_lpips_similarity(self.tree_final_imgs[i], self.tree_final_imgs[i + 1]))
|
||||
return similarities
|
||||
|
||||
# Auxiliary functions
|
||||
def get_closest_idx(
|
||||
self,
|
||||
|
@ -832,7 +850,7 @@ class LatentBlending():
|
|||
|
||||
return b_parent1, b_parent2
|
||||
|
||||
|
||||
#%%
|
||||
if __name__ == "__main__":
|
||||
|
||||
# %% First let us spawn a stable diffusion holder. Uncomment your version of choice.
|
||||
|
@ -841,22 +859,16 @@ if __name__ == "__main__":
|
|||
from diffusers import AutoencoderTiny
|
||||
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
|
||||
pipe.to("cuda")
|
||||
# pipe.vae = AutoencoderTiny.from_pretrained('madebyollin/taesdxl', torch_device='cuda', torch_dtype=torch.float16)
|
||||
# pipe.vae = pipe.vae.cuda()
|
||||
pipe.vae = AutoencoderTiny.from_pretrained('madebyollin/taesdxl', torch_device='cuda', torch_dtype=torch.float16)
|
||||
pipe.vae = pipe.vae.cuda()
|
||||
|
||||
dh = DiffusersHolder(pipe)
|
||||
# %% Next let's set up all parameters
|
||||
depth_strength = 0.5 # Specifies how deep (in terms of diffusion iterations the first branching happens)
|
||||
t_compute_max_allowed = 5 # Determines the quality of the transition in terms of compute time you grant it
|
||||
num_inference_steps = 4
|
||||
size_output = (512, 512)
|
||||
|
||||
|
||||
prompt1 = "underwater landscape, fish, und the sea, incredible detail, high resolution"
|
||||
prompt2 = "rendering of an alien planet, strange plants, strange creatures, surreal"
|
||||
negative_prompt = "blurry, ugly, pale" # Optional
|
||||
|
||||
fp_movie = 'movie_example1.mp4'
|
||||
duration_transition = 12 # In seconds
|
||||
|
||||
# Spawn latent blending
|
||||
|
@ -865,31 +877,24 @@ if __name__ == "__main__":
|
|||
lb.set_prompt2(prompt2)
|
||||
lb.set_dimensions(size_output)
|
||||
lb.set_negative_prompt(negative_prompt)
|
||||
lb.set_guidance_scale(0)
|
||||
|
||||
lb.branch1_crossfeed_power = 0.0
|
||||
lb.branch1_crossfeed_range = 0.6
|
||||
lb.branch1_crossfeed_decay = 0.99
|
||||
|
||||
lb.parental_crossfeed_power = 1.0
|
||||
lb.parental_crossfeed_power_decay = 1.0
|
||||
lb.parental_crossfeed_range = 1.0
|
||||
|
||||
# Run latent blending
|
||||
lb.run_transition(
|
||||
depth_strength=depth_strength,
|
||||
num_inference_steps=num_inference_steps,
|
||||
t_compute_max_allowed=t_compute_max_allowed)
|
||||
|
||||
lb.run_transition(fixed_seeds=[420, 421])
|
||||
|
||||
# Save movie
|
||||
fp_movie = f'test.mp4'
|
||||
lb.write_movie_transition(fp_movie, duration_transition)
|
||||
|
||||
|
||||
|
||||
#%%
|
||||
|
||||
"""
|
||||
checkout sizes
|
||||
checkout good tree for num inference steps
|
||||
checkout that good nmb inference step given
|
||||
|
||||
timing1: dt_per_diff rename and fix (first time run is super slow)
|
||||
timing2: measure time for decoding
|
||||
|
||||
"""
|
Loading…
Reference in New Issue