This commit is contained in:
lunar 2022-12-03 11:18:23 +00:00
parent f914ad45e7
commit 76475d890b
3 changed files with 29 additions and 19 deletions

View File

@ -40,7 +40,7 @@ sdh = StableDiffusionHolder(fp_ckpt, fp_config, device)
#%% Next let's set up all parameters
quality = 'medium'
deepth_strength = 0.65
deepth_strength = 0.65 # Specifies how deep (in terms of diffusion iterations the first branching happens)
fixed_seeds = [69731932, 504430820]
prompt1 = "photo of a beautiful cherry forest covered in white flowers, ambient light, very detailed, magic"

View File

@ -35,23 +35,27 @@ torch.set_grad_enabled(False)
#%% First let us spawn a stable diffusion holder
device = "cuda"
deepth_strength = 0.65
fp_ckpt= "../stable_diffusion_models/ckpt/512-inpainting-ema.ckpt"
fp_config = '../stablediffusion/configs//stable-diffusion/v2-inpainting-inference.yaml'
sdh = StableDiffusionHolder(fp_ckpt, fp_config, device)
#%% Let's make a source image and mask.
quality = 'low'
#%% Let's first make a source image and mask.
quality = 'medium'
deepth_strength = 0.65 #Specifies how deep (in terms of diffusion iterations the first branching happens)
duration_transition = 7 # In seconds
fps = 30
seed0 = 190791709
# Spawn latent blending
lb = LatentBlending(sdh)
lb.autosetup_branching(quality=quality, deepth_strength=deepth_strength)
prompt1 = "photo of a futuristic alien temple in a desert, mystic, glowing, organic, intricate, sci-fi movie, mesmerizing, scary"
lb.set_prompt1(prompt1)
lb.init_inpainting(init_empty=True)
lb.set_seed(seed0)
# Run diffusion
list_latents = lb.run_diffusion(lb.text_embedding1)
image_source = lb.sdh.latent2image(list_latents[-1])
@ -60,25 +64,27 @@ mask_image[340:420, 170:280] = 0
mask_image = Image.fromarray(mask_image)
#%% Next let's set up all parameters
#%% Now let us compute a transition video with inpainting
# First inject back the latents that we already computed for our source image.
lb.inject_latents(list_latents, inject_img1=True)
# Then setup the seeds. Keep the one from the first image
fixed_seeds = [seed0, 6579436]
prompt1 = "photo of a futuristic alien temple in a desert, mystic, glowing, organic, intricate, sci-fi movie, mesmerizing, scary"
# Fix the prompts for the target
prompt2 = "aerial photo of a futuristic alien temple in a blue coastal area, the sun is shining with a bright light"
lb.set_prompt1(prompt1)
lb.set_prompt2(prompt2)
lb.init_inpainting(image_source, mask_image)
# Run latent blending
imgs_transition = lb.run_transition(recycle_img1=True, fixed_seeds=fixed_seeds)
#% let's get more cheap frames via linear interpolation
duration_transition = 3
fps = 60
# Let's get more cheap frames via linear interpolation (duration_transition*fps frames)
imgs_transition_ext = add_frames_linear_interp(imgs_transition, duration_transition, fps)
# movie saving
fp_movie = "/home/lugo/git/latentblending/test.mp4"
# Save as MP4
fp_movie = "movie_example2.mp4"
if os.path.isfile(fp_movie):
os.remove(fp_movie)
ms = MovieSaver(fp_movie, fps=fps, shape_hw=[lb.height, lb.width])

View File

@ -31,20 +31,19 @@ from stable_diffusion_holder import StableDiffusionHolder
torch.set_grad_enabled(False)
#%% First let us spawn a stable diffusion holder
device = "cuda:0"
device = "cuda"
fp_ckpt = "../stable_diffusion_models/ckpt/768-v-ema.ckpt"
fp_config = '../stablediffusion/configs/stable-diffusion/v2-inference-v.yaml'
sdh = StableDiffusionHolder(fp_ckpt, fp_config, device)
#%% MULTITRANS
#%% Let's setup the multi transition
fps = 30
duration_single_trans = 15
quality = 'high'
deepth_strength = 0.55
lb = LatentBlending(sdh)
lb.autosetup_branching(quality=quality, deepth_strength=deepth_strength)
quality = 'medium'
deepth_strength = 0.55 #Specifies how deep (in terms of diffusion iterations the first branching happens)
# Specify a list of prompts below
list_prompts = []
list_prompts.append("surrealistic statue made of glitter and dirt, standing in a lake, atmospheric light, strange glow")
list_prompts.append("statue of a mix between a tree and human, made of marble, incredibly detailed")
@ -53,9 +52,14 @@ list_prompts.append("statue of a spider that looked like a human")
list_prompts.append("statue of a bird that looked like a scorpion")
list_prompts.append("statue of an ancient cybernetic messenger annoucing good news, golden, futuristic")
# You can optionally specify the seeds
list_seeds = [954375479, 332539350, 956051013, 408831845, 250009012, 675588737]
lb = LatentBlending(sdh)
lb.autosetup_branching(quality=quality, deepth_strength=deepth_strength)
fp_movie = "movie_example3.mp4"
ms = MovieSaver(fp_movie, fps=fps)
lb.run_multi_transition(