controlnet upd
This commit is contained in:
parent
bc5713241f
commit
704433e267
|
@ -163,9 +163,20 @@ class DiffusersHolder():
|
||||||
|
|
||||||
image = self.pipe.vae.decode(latents / self.pipe.vae.config.scaling_factor, return_dict=False)[0]
|
image = self.pipe.vae.decode(latents / self.pipe.vae.config.scaling_factor, return_dict=False)[0]
|
||||||
image = self.pipe.image_processor.postprocess(image, output_type="pil", do_denormalize=[True] * image.shape[0])
|
image = self.pipe.image_processor.postprocess(image, output_type="pil", do_denormalize=[True] * image.shape[0])
|
||||||
|
|
||||||
return np.asarray(image[0])
|
return np.asarray(image[0])
|
||||||
|
|
||||||
|
def prepare_mixing(self, mixing_coeffs, list_latents_mixing):
|
||||||
|
if type(mixing_coeffs) == float:
|
||||||
|
list_mixing_coeffs = (1 + self.num_inference_steps) * [mixing_coeffs]
|
||||||
|
elif type(mixing_coeffs) == list:
|
||||||
|
assert len(mixing_coeffs) == self.num_inference_steps, f"len(mixing_coeffs) {len(mixing_coeffs)} != self.num_inference_steps {self.num_inference_steps}"
|
||||||
|
list_mixing_coeffs = mixing_coeffs
|
||||||
|
else:
|
||||||
|
raise ValueError("mixing_coeffs should be float or list with len=num_inference_steps")
|
||||||
|
if np.sum(list_mixing_coeffs) > 0:
|
||||||
|
assert len(list_latents_mixing) == self.num_inference_steps, f"len(list_latents_mixing) {len(list_latents_mixing)} != self.num_inference_steps {self.num_inference_steps}"
|
||||||
|
return list_mixing_coeffs
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def run_diffusion(
|
def run_diffusion(
|
||||||
self,
|
self,
|
||||||
|
@ -175,14 +186,13 @@ class DiffusersHolder():
|
||||||
list_latents_mixing=None,
|
list_latents_mixing=None,
|
||||||
mixing_coeffs=0.0,
|
mixing_coeffs=0.0,
|
||||||
return_image: Optional[bool] = False):
|
return_image: Optional[bool] = False):
|
||||||
|
|
||||||
if self.pipe.__class__.__name__ == 'StableDiffusionXLPipeline':
|
if self.pipe.__class__.__name__ == 'StableDiffusionXLPipeline':
|
||||||
return self.run_diffusion_sd_xl(text_embeddings, latents_start, idx_start, list_latents_mixing, mixing_coeffs, return_image)
|
return self.run_diffusion_sd_xl(text_embeddings, latents_start, idx_start, list_latents_mixing, mixing_coeffs, return_image)
|
||||||
elif self.pipe.__class__.__name__ == 'StableDiffusionPipeline':
|
elif self.pipe.__class__.__name__ == 'StableDiffusionPipeline':
|
||||||
return self.run_diffusion_sd12x(text_embeddings, latents_start, idx_start, list_latents_mixing, mixing_coeffs, return_image)
|
return self.run_diffusion_sd12x(text_embeddings, latents_start, idx_start, list_latents_mixing, mixing_coeffs, return_image)
|
||||||
elif self.pipe.__class__.__name__ == 'StableDiffusionControlNetPipeline':
|
elif self.pipe.__class__.__name__ == 'StableDiffusionControlNetPipeline':
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def run_diffusion_sd12x(
|
def run_diffusion_sd12x(
|
||||||
|
@ -193,28 +203,19 @@ class DiffusersHolder():
|
||||||
list_latents_mixing=None,
|
list_latents_mixing=None,
|
||||||
mixing_coeffs=0.0,
|
mixing_coeffs=0.0,
|
||||||
return_image: Optional[bool] = False):
|
return_image: Optional[bool] = False):
|
||||||
|
|
||||||
if type(mixing_coeffs) == float:
|
|
||||||
list_mixing_coeffs = (1+self.num_inference_steps) * [mixing_coeffs]
|
|
||||||
elif type(mixing_coeffs) == list:
|
|
||||||
assert len(mixing_coeffs) == self.num_inference_steps, f"len(mixing_coeffs) {len(mixing_coeffs)} != self.num_inference_steps {self.num_inference_steps}"
|
|
||||||
list_mixing_coeffs = mixing_coeffs
|
|
||||||
else:
|
|
||||||
raise ValueError("mixing_coeffs should be float or list with len=num_inference_steps")
|
|
||||||
|
|
||||||
if np.sum(list_mixing_coeffs) > 0:
|
list_mixing_coeffs = self.prepare_mixing()
|
||||||
assert len(list_latents_mixing) == self.num_inference_steps, f"len(list_latents_mixing) {len(list_latents_mixing)} != self.num_inference_steps {self.num_inference_steps}"
|
|
||||||
|
|
||||||
do_classifier_free_guidance = self.guidance_scale > 1.0
|
do_classifier_free_guidance = self.guidance_scale > 1.0
|
||||||
|
|
||||||
# diffusers bit wiggly
|
# accomodate different sd model types
|
||||||
self.pipe.scheduler.set_timesteps(self.num_inference_steps-1, device=self.device)
|
self.pipe.scheduler.set_timesteps(self.num_inference_steps - 1, device=self.device)
|
||||||
timesteps = self.pipe.scheduler.timesteps
|
timesteps = self.pipe.scheduler.timesteps
|
||||||
|
|
||||||
if len(timesteps) != self.num_inference_steps:
|
if len(timesteps) != self.num_inference_steps:
|
||||||
self.pipe.scheduler.set_timesteps(self.num_inference_steps, device=self.device)
|
self.pipe.scheduler.set_timesteps(self.num_inference_steps, device=self.device)
|
||||||
timesteps = self.pipe.scheduler.timesteps
|
timesteps = self.pipe.scheduler.timesteps
|
||||||
|
|
||||||
latents = latents_start.clone()
|
latents = latents_start.clone()
|
||||||
list_latents_out = []
|
list_latents_out = []
|
||||||
|
|
||||||
|
@ -229,11 +230,11 @@ class DiffusersHolder():
|
||||||
if i > 0 and list_mixing_coeffs[i] > 0:
|
if i > 0 and list_mixing_coeffs[i] > 0:
|
||||||
latents_mixtarget = list_latents_mixing[i - 1].clone()
|
latents_mixtarget = list_latents_mixing[i - 1].clone()
|
||||||
latents = interpolate_spherical(latents, latents_mixtarget, list_mixing_coeffs[i])
|
latents = interpolate_spherical(latents, latents_mixtarget, list_mixing_coeffs[i])
|
||||||
|
|
||||||
# expand the latents if we are doing classifier free guidance
|
# expand the latents if we are doing classifier free guidance
|
||||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||||
latent_model_input = self.pipe.scheduler.scale_model_input(latent_model_input, t)
|
latent_model_input = self.pipe.scheduler.scale_model_input(latent_model_input, t)
|
||||||
|
|
||||||
# predict the noise residual
|
# predict the noise residual
|
||||||
noise_pred = self.pipe.unet(
|
noise_pred = self.pipe.unet(
|
||||||
latent_model_input,
|
latent_model_input,
|
||||||
|
@ -248,7 +249,7 @@ class DiffusersHolder():
|
||||||
# compute the previous noisy sample x_t -> x_t-1
|
# compute the previous noisy sample x_t -> x_t-1
|
||||||
latents = self.pipe.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
latents = self.pipe.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
||||||
list_latents_out.append(latents.clone())
|
list_latents_out.append(latents.clone())
|
||||||
|
|
||||||
if return_image:
|
if return_image:
|
||||||
return self.latent2image(latents)
|
return self.latent2image(latents)
|
||||||
else:
|
else:
|
||||||
|
@ -276,17 +277,8 @@ class DiffusersHolder():
|
||||||
do_classifier_free_guidance = self.guidance_scale > 1.0
|
do_classifier_free_guidance = self.guidance_scale > 1.0
|
||||||
|
|
||||||
# 1. Check inputs. Raise error if not correct & 2. Define call parameters
|
# 1. Check inputs. Raise error if not correct & 2. Define call parameters
|
||||||
if type(mixing_coeffs) == float:
|
list_mixing_coeffs = self.prepare_mixing()
|
||||||
list_mixing_coeffs = (1+self.num_inference_steps) * [mixing_coeffs]
|
|
||||||
elif type(mixing_coeffs) == list:
|
|
||||||
assert len(mixing_coeffs) == self.num_inference_steps, f"len(mixing_coeffs) {len(mixing_coeffs)} != self.num_inference_steps {self.num_inference_steps}"
|
|
||||||
list_mixing_coeffs = mixing_coeffs
|
|
||||||
else:
|
|
||||||
raise ValueError("mixing_coeffs should be float or list with len=num_inference_steps")
|
|
||||||
|
|
||||||
if np.sum(list_mixing_coeffs) > 0:
|
|
||||||
assert len(list_latents_mixing) == self.num_inference_steps, f"len(list_latents_mixing) {len(list_latents_mixing)} != self.num_inference_steps {self.num_inference_steps}"
|
|
||||||
|
|
||||||
# 3. Encode input prompt (already encoded outside bc of mixing, just split here)
|
# 3. Encode input prompt (already encoded outside bc of mixing, just split here)
|
||||||
prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = text_embeddings
|
prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = text_embeddings
|
||||||
|
|
||||||
|
@ -374,10 +366,11 @@ class DiffusersHolder():
|
||||||
list_latents_mixing=None,
|
list_latents_mixing=None,
|
||||||
mixing_coeffs=0.0,
|
mixing_coeffs=0.0,
|
||||||
return_image: Optional[bool] = False):
|
return_image: Optional[bool] = False):
|
||||||
|
|
||||||
|
|
||||||
prompt_embeds = conditioning[0]
|
prompt_embeds = conditioning[0]
|
||||||
|
image = conditioning[1]
|
||||||
|
list_mixing_coeffs = self.prepare_mixing()
|
||||||
|
|
||||||
controlnet = self.pipe.controlnet
|
controlnet = self.pipe.controlnet
|
||||||
control_guidance_start = [0.0]
|
control_guidance_start = [0.0]
|
||||||
control_guidance_end = [1.0]
|
control_guidance_end = [1.0]
|
||||||
|
@ -386,17 +379,14 @@ class DiffusersHolder():
|
||||||
batch_size = 1
|
batch_size = 1
|
||||||
eta = 0.0
|
eta = 0.0
|
||||||
controlnet_conditioning_scale = 1.0
|
controlnet_conditioning_scale = 1.0
|
||||||
image = Image.open("/home/lugo/glif/lora_models/pretrained_model_name_or_path/value_runwayml_stable-diffusion-v1-5_fabian/fabian_in_the_desert/img_001.jpg")
|
|
||||||
|
|
||||||
# align format for control guidance
|
# align format for control guidance
|
||||||
|
|
||||||
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
||||||
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
||||||
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
||||||
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
||||||
|
|
||||||
# 2. Define call parameters
|
# 2. Define call parameters
|
||||||
|
|
||||||
device = self.pipe._execution_device
|
device = self.pipe._execution_device
|
||||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||||
|
@ -424,6 +414,7 @@ class DiffusersHolder():
|
||||||
# 6. Prepare latent variables
|
# 6. Prepare latent variables
|
||||||
generator = torch.Generator(device=self.device).manual_seed(int(420))
|
generator = torch.Generator(device=self.device).manual_seed(int(420))
|
||||||
latents = latents_start.clone()
|
latents = latents_start.clone()
|
||||||
|
list_latents_out = []
|
||||||
|
|
||||||
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
||||||
extra_step_kwargs = self.pipe.prepare_extra_step_kwargs(generator, eta)
|
extra_step_kwargs = self.pipe.prepare_extra_step_kwargs(generator, eta)
|
||||||
|
@ -439,6 +430,17 @@ class DiffusersHolder():
|
||||||
|
|
||||||
# 8. Denoising loop
|
# 8. Denoising loop
|
||||||
for i, t in enumerate(timesteps):
|
for i, t in enumerate(timesteps):
|
||||||
|
if i < idx_start:
|
||||||
|
list_latents_out.append(None)
|
||||||
|
continue
|
||||||
|
elif i == idx_start:
|
||||||
|
latents = latents_start.clone()
|
||||||
|
|
||||||
|
# Mix latents for crossfeeding
|
||||||
|
if i > 0 and list_mixing_coeffs[i] > 0:
|
||||||
|
latents_mixtarget = list_latents_mixing[i - 1].clone()
|
||||||
|
latents = interpolate_spherical(latents, latents_mixtarget, list_mixing_coeffs[i])
|
||||||
|
|
||||||
# expand the latents if we are doing classifier free guidance
|
# expand the latents if we are doing classifier free guidance
|
||||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||||
latent_model_input = self.pipe.scheduler.scale_model_input(latent_model_input, t)
|
latent_model_input = self.pipe.scheduler.scale_model_input(latent_model_input, t)
|
||||||
|
@ -487,10 +489,13 @@ class DiffusersHolder():
|
||||||
# compute the previous noisy sample x_t -> x_t-1
|
# compute the previous noisy sample x_t -> x_t-1
|
||||||
latents = self.pipe.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
latents = self.pipe.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
||||||
|
|
||||||
image = self.pipe.vae.decode(latents / self.pipe.vae.config.scaling_factor, return_dict=False)[0]
|
# Append latents
|
||||||
image, has_nsfw_concept = self.pipe.run_safety_checker(image, device, prompt_embeds.dtype)
|
list_latents_out.append(latents.clone())
|
||||||
image = self.pipe.image_processor.postprocess(image, output_type="pil")
|
|
||||||
return image
|
if return_image:
|
||||||
|
return self.latent2image(latents)
|
||||||
|
else:
|
||||||
|
return list_latents_out
|
||||||
|
|
||||||
#%%
|
#%%
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue