stabel2.0 for mulit trans
This commit is contained in:
parent
578385e411
commit
6f977ebb7e
|
@ -21,34 +21,23 @@ warnings.filterwarnings('ignore')
|
|||
import warnings
|
||||
import torch
|
||||
from tqdm.auto import tqdm
|
||||
from diffusers import StableDiffusionPipeline
|
||||
from diffusers.schedulers import DDIMScheduler
|
||||
from PIL import Image
|
||||
import matplotlib.pyplot as plt
|
||||
import torch
|
||||
from movie_util import MovieSaver
|
||||
from typing import Callable, List, Optional, Union
|
||||
from latent_blending import LatentBlending, add_frames_linear_interp
|
||||
from stable_diffusion_holder import StableDiffusionHolder
|
||||
torch.set_grad_enabled(False)
|
||||
|
||||
#%% First let us spawn a diffusers pipe using DDIMScheduler
|
||||
#%% First let us spawn a stable diffusion holder
|
||||
device = "cuda:0"
|
||||
model_path = "../stable_diffusion_models/stable-diffusion-v1-5"
|
||||
num_inference_steps = 20 # Number of diffusion interations
|
||||
fp_ckpt = "../stable_diffusion_models/ckpt/768-v-ema.ckpt"
|
||||
fp_config = '../stablediffusion/configs/stable-diffusion/v2-inference-v.yaml'
|
||||
|
||||
scheduler = DDIMScheduler(beta_start=0.00085,
|
||||
beta_end=0.012,
|
||||
beta_schedule="scaled_linear",
|
||||
clip_sample=False,
|
||||
set_alpha_to_one=False)
|
||||
sdh = StableDiffusionHolder(fp_ckpt, fp_config, device, num_inference_steps=num_inference_steps)
|
||||
|
||||
pipe = StableDiffusionPipeline.from_pretrained(
|
||||
model_path,
|
||||
revision="fp16",
|
||||
torch_dtype=torch.float16,
|
||||
scheduler=scheduler,
|
||||
use_auth_token=True
|
||||
)
|
||||
pipe = pipe.to(device)
|
||||
|
||||
#%% MULTITRANS
|
||||
|
||||
|
@ -57,18 +46,21 @@ list_nmb_branches = [2, 10, 50, 100, 200] #
|
|||
list_injection_strength = list(np.linspace(0.5, 0.95, 4)) # Branching structure: how deep is the blending
|
||||
list_injection_strength.insert(0, 0.0)
|
||||
|
||||
width = 512
|
||||
height = 512
|
||||
|
||||
|
||||
|
||||
|
||||
guidance_scale = 5
|
||||
fps = 30
|
||||
duration_single_trans = 20
|
||||
width = 512
|
||||
height = 512
|
||||
width = 768
|
||||
height = 768
|
||||
|
||||
lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale)
|
||||
lb = LatentBlending(sdh, num_inference_steps, guidance_scale)
|
||||
|
||||
# deepth_strength = 0.5
|
||||
# num_inference_steps, list_injection_idx, list_nmb_branches = lb.get_branching('medium', deepth_strength, fps*duration_single_trans)
|
||||
|
||||
#list_nmb_branches = [2, 3, 10, 24] # Branching structure: how many branches
|
||||
#list_injection_strength = [0.0, 0.6, 0.8, 0.9] #
|
||||
|
||||
list_prompts = []
|
||||
list_prompts.append("surrealistic statue made of glitter and dirt, standing in a lake, atmospheric light, strange glow")
|
||||
|
@ -82,13 +74,14 @@ list_prompts.append("statue of an ancient cybernetic messenger annoucing good ne
|
|||
|
||||
list_seeds = [234187386, 422209351, 241845736, 28652396, 783279867, 831049796, 234903931]
|
||||
|
||||
fp_movie = "/home/lugo/tmp/latentblending/bubua.mp4"
|
||||
fp_movie = "movie_example3.mp4"
|
||||
ms = MovieSaver(fp_movie, fps=fps)
|
||||
|
||||
lb.run_multi_transition(
|
||||
list_prompts,
|
||||
list_seeds,
|
||||
list_nmb_branches,
|
||||
# list_injection_idx=list_injection_idx,
|
||||
list_injection_strength=list_injection_strength,
|
||||
ms=ms,
|
||||
fps=fps,
|
||||
|
|
|
@ -765,11 +765,14 @@ def get_branching(
|
|||
list_injection_idx_clean = [int(l) for l in list_injection_idx_clean]
|
||||
list_nmb_branches_clean = [int(l) for l in list_nmb_branches_clean]
|
||||
|
||||
print(f"num_inference_steps: {num_inference_steps}")
|
||||
print(f"list_injection_idx: {list_injection_idx_clean}")
|
||||
print(f"list_nmb_branches: {list_nmb_branches_clean}")
|
||||
list_injection_idx = list_injection_idx_clean
|
||||
list_nmb_branches = list_nmb_branches_clean
|
||||
|
||||
return num_inference_steps, list_injection_idx_clean, list_nmb_branches_clean
|
||||
print(f"num_inference_steps: {num_inference_steps}")
|
||||
print(f"list_injection_idx: {list_injection_idx}")
|
||||
print(f"list_nmb_branches: {list_nmb_branches}")
|
||||
|
||||
return num_inference_steps, list_injection_idx, list_nmb_branches
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue