experimental feature, branch2 independence

This commit is contained in:
Johannes Stelzer 2023-01-10 11:00:14 +01:00
parent 3b5f079d01
commit 607961feae
2 changed files with 57 additions and 30 deletions

View File

@ -33,11 +33,6 @@ import copy
"""
experiment with slider as output -> does it change in the browser?
"""
#%%
def compare_dicts(a, b):
@ -80,6 +75,7 @@ class BlendingFrontend():
self.state_prev = {}
self.state_current = {}
self.showing_current = True
self.branch2_independence = False
self.imgs_show_last = []
self.imgs_show_current = []
self.nmb_branches_final = 13
@ -91,13 +87,16 @@ class BlendingFrontend():
self.init_diffusion()
self.height = self.lb.sdh.height
self.width = self.lb.sdh.width
else:
self.height = 420
self.width = 420
def init_diffusion(self):
fp_ckpt = "../stable_diffusion_models/ckpt/v2-1_512-ema-pruned.ckpt"
fp_config = 'configs/v2-inference.yaml'
# fp_ckpt = "../stable_diffusion_models/ckpt/v2-1_512-ema-pruned.ckpt"
# fp_config = 'configs/v2-inference.yaml'
# fp_ckpt = "../stable_diffusion_models/ckpt/v2-1_768-ema-pruned.ckpt"
# fp_config = 'configs/v2-inference-v.yaml'
fp_ckpt = "../stable_diffusion_models/ckpt/v2-1_768-ema-pruned.ckpt"
fp_config = 'configs/v2-inference-v.yaml'
sdh = StableDiffusionHolder(fp_ckpt, fp_config, num_inference_steps=self.num_inference_steps)
self.lb = LatentBlending(sdh)
@ -124,6 +123,11 @@ class BlendingFrontend():
self.mid_compression_scaler = value
print(f"changed mid_compression_scaler to {value}")
def change_branch2_independence(self):
self.branch2_independence = not self.branch2_independence
self.lb.branch2_independence = self.branch2_independence
print(f"changed branch2_independence to {self.branch2_independence}")
def change_height(self, value):
self.height = value
print(f"changed height to {value}")
@ -181,7 +185,7 @@ class BlendingFrontend():
self.imgs_show_last = copy.deepcopy(self.imgs_show_current)
if self.use_debug:
list_imgs = [(255*np.random.rand(200,200,3)).astype(np.uint8) for l in range(5)]
list_imgs = [(255*np.random.rand(self.height,self.width,3)).astype(np.uint8) for l in range(5)]
self.imgs_show_current = copy.deepcopy(list_imgs)
return list_imgs
# FIXME TODO ASSERTS
@ -290,21 +294,22 @@ with gr.Blocks() as demo:
prompt2 = gr.Textbox(label="prompt 2")
negative_prompt = gr.Textbox(label="negative prompt")
with gr.Row():
depth_strength = gr.Slider(0.01, 0.99, self.depth_strength, step=0.01, label='depth_strength', interactive=True)
guidance_scale = gr.Slider(1, 25, self.guidance_scale, step=0.1, label='guidance_scale', interactive=True)
guidance_scale_mid_damper = gr.Slider(0.01, 2.0, self.guidance_scale_mid_damper, step=0.01, label='guidance_scale_mid_damper', interactive=True)
mid_compression_scaler = gr.Slider(1.0, 2.0, self.mid_compression_scaler, step=0.01, label='mid_compression_scaler', interactive=True)
with gr.Row():
num_inference_steps = gr.Slider(5, 100, self.num_inference_steps, step=1, label='num_inference_steps', interactive=True)
nmb_branches_final = gr.Slider(5, 125, self.nmb_branches_final, step=4, label='nmb trans images', interactive=True)
guidance_scale = gr.Slider(1, 25, self.guidance_scale, step=0.1, label='guidance_scale', interactive=True)
height = gr.Slider(256, 2048, self.height, step=128, label='height', interactive=True)
width = gr.Slider(256, 2048, self.width, step=128, label='width', interactive=True)
with gr.Row():
depth_strength = gr.Slider(0.01, 0.99, self.depth_strength, step=0.01, label='depth_strength', interactive=True)
nmb_branches_final = gr.Slider(5, 125, self.nmb_branches_final, step=4, label='nmb trans images', interactive=True)
guidance_scale_mid_damper = gr.Slider(0.01, 2.0, self.guidance_scale_mid_damper, step=0.01, label='guidance_scale_mid_damper', interactive=True)
mid_compression_scaler = gr.Slider(1.0, 2.0, self.mid_compression_scaler, step=0.01, label='mid_compression_scaler', interactive=True)
with gr.Row():
b_newseed1 = gr.Button("rand seed 1")
seed1 = gr.Number(42, label="seed 1", interactive=True)
branch2_independence = gr.Checkbox(label="branch2 independence", interactive=True)
b_newseed2 = gr.Button("rand seed 2")
seed2 = gr.Number(420, label="seed 2", interactive=True)
b_compare = gr.Button("compare")
@ -348,6 +353,7 @@ with gr.Blocks() as demo:
seed2.change(fn=self.change_seed2, inputs=seed2)
fps.change(fn=self.change_fps, inputs=fps)
duration.change(fn=self.change_duration, inputs=duration)
branch2_independence.change(fn=self.change_branch2_independence)
b_newseed1.click(self.randomize_seed1, outputs=seed1)
b_newseed2.click(self.randomize_seed2, outputs=seed2)

View File

@ -103,6 +103,7 @@ class LatentBlending():
self.noise_level_upscaling = 20
self.list_injection_idx = None
self.list_nmb_branches = None
self.branch2_independence = False
self.set_guidance_scale(guidance_scale)
self.init_mode()
@ -487,7 +488,12 @@ class LatentBlending():
self.set_seed(fixed_seeds[0])
elif idx_branch == self.list_nmb_branches[0] -1:
self.set_seed(fixed_seeds[1])
list_latents = self.run_diffusion(list_conditionings, idx_stop=idx_stop)
# Inject latents from first branch for very first block
if not self.branch2_independence and idx_branch==1:
list_latents = self.tree_latents[0][0]
else:
list_latents = self.run_diffusion(list_conditionings, idx_stop=idx_stop)
else:
# find parents latents
b_parent1, b_parent2 = get_closest_idx(fract_mixing, self.tree_fracts[t_block-1])
@ -1099,17 +1105,32 @@ def yml_save(fp_yml, dict_stuff):
#%% le main
if __name__ == "__main__":
# xxxx
#%% RUN UPSCALING_STEP2 (highres)
fp_ckpt= "../stable_diffusion_models/ckpt/x4-upscaler-ema.ckpt"
fp_config = 'configs/x4-upscaling.yaml'
sdh = StableDiffusionHolder(fp_ckpt, fp_config)
#%% /home/lugo/latentblending/230106_210812 /
self = LatentBlending(sdh)
dp_img = "/home/lugo/latentblending/230107_144533"
self.run_upscaling_step2(dp_img)
#%% First let us spawn a stable diffusion holder
device = "cuda"
fp_ckpt = "../stable_diffusion_models/ckpt/v2-1_768-ema-pruned.ckpt"
fp_config = 'configs/v2-inference-v.yaml'
sdh = StableDiffusionHolder(fp_ckpt, fp_config, device)
#%% Next let's set up all parameters
quality = 'medium'
depth_strength = 0.65 # Specifies how deep (in terms of diffusion iterations the first branching happens)
fixed_seeds = [69731932, 504430820]
prompt1 = "photo of a beautiful cherry forest covered in white flowers, ambient light, very detailed, magic"
prompt2 = "photo of an golden statue with a funny hat, surrounded by ferns and vines, grainy analog photograph, mystical ambience, incredible detail"
duration_transition = 12 # In seconds
fps = 30
# Spawn latent blending
self = LatentBlending(sdh)
self.load_branching_profile(quality=quality, depth_strength=0.3)
self.set_prompt1(prompt1)
self.set_prompt2(prompt2)
# Run latent blending
imgs_transition = self.run_transition(fixed_seeds=fixed_seeds)