movie util

This commit is contained in:
sachalin 2022-11-21 20:43:24 +01:00
parent aa464737be
commit 5a66a38bab
3 changed files with 239 additions and 2 deletions

View File

@ -70,8 +70,6 @@ prompt2 = "photo of an eerie statue surrounded by ferns and vines, analog photog
lb.set_prompt1(prompt1) lb.set_prompt1(prompt1)
lb.set_prompt2(prompt2) lb.set_prompt2(prompt2)
imgs_transition = lb.run_transition(list_nmb_branches, list_injection_strength, fixed_seeds=fixed_seeds) imgs_transition = lb.run_transition(list_nmb_branches, list_injection_strength, fixed_seeds=fixed_seeds)
# let's get more cheap frames via linear interpolation # let's get more cheap frames via linear interpolation

View File

@ -267,6 +267,7 @@ class LatentBlending():
self.tree_fracts = [] self.tree_fracts = []
self.tree_status = [] self.tree_status = []
self.tree_final_imgs = [None]*list_nmb_branches[-1] self.tree_final_imgs = [None]*list_nmb_branches[-1]
self.tree_final_imgs_timing = [0]*list_nmb_branches[-1]
nmb_blocks_time = len(list_injection_idx_ext)-1 nmb_blocks_time = len(list_injection_idx_ext)-1
for t_block in range(nmb_blocks_time): for t_block in range(nmb_blocks_time):
@ -321,6 +322,7 @@ class LatentBlending():
list_compute.extend(list_local_stem[::-1]) list_compute.extend(list_local_stem[::-1])
# Diffusion computations start here # Diffusion computations start here
time_start = time.time()
for t_block, idx_branch in tqdm(list_compute, desc="computing transition"): for t_block, idx_branch in tqdm(list_compute, desc="computing transition"):
# print(f"computing t_block {t_block} idx_branch {idx_branch}") # print(f"computing t_block {t_block} idx_branch {idx_branch}")
idx_stop = list_injection_idx_ext[t_block+1] idx_stop = list_injection_idx_ext[t_block+1]
@ -352,6 +354,7 @@ class LatentBlending():
# Convert latents to image directly for the last t_block # Convert latents to image directly for the last t_block
if t_block == nmb_blocks_time-1: if t_block == nmb_blocks_time-1:
self.tree_final_imgs[idx_branch] = self.latent2image(list_latents[-1]) self.tree_final_imgs[idx_branch] = self.latent2image(list_latents[-1])
self.tree_final_imgs_timing[idx_branch] = time.time() - time_start
return self.tree_final_imgs return self.tree_final_imgs
@ -931,6 +934,24 @@ def get_time(resolution=None):
#%% le main #%% le main
if __name__ == "__main__": if __name__ == "__main__":
#%% TMP SURGERY
num_inference_steps = 20 # Number of diffusion interations
list_nmb_branches = [2, 3, 10, 24] # Branching structure: how many branches
list_injection_strength = [0.0, 0.6, 0.8, 0.9] # Branching structure: how deep is the blending
width = 512
height = 512
guidance_scale = 5
fixed_seeds = [993621550, 280335986]
lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale)
prompt1 = "photo of a beautiful forest covered in white flowers, ambient light, very detailed, magic"
prompt2 = "photo of an eerie statue surrounded by ferns and vines, analog photograph kodak portra, mystical ambience, incredible detail"
lb.set_prompt1(prompt1)
lb.set_prompt2(prompt2)
imgs_transition = lb.run_transition(list_nmb_branches, list_injection_strength, fixed_seeds=fixed_seeds)
#%% LOOP #%% LOOP
list_prompts = [] list_prompts = []
list_prompts.append("paiting of a medieval city") list_prompts.append("paiting of a medieval city")

218
movie_util.py Normal file
View File

@ -0,0 +1,218 @@
# Copyright 2022 Lunar Ring. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import subprocess
import os
import numpy as np
from tqdm import tqdm
import cv2
from typing import Callable, List, Optional, Union
import ffmpeg # pip install ffmpeg-python. if error with broken pipe: conda update ffmpeg
#%%
class MovieSaver():
def __init__(
self,
fp_out: str,
fps: int = 24,
crf: int = 24,
codec: str = 'libx264',
preset: str ='fast',
pix_fmt: str = 'yuv420p',
silent_ffmpeg: bool = True
):
r"""
Initializes movie saver class - a human friendly ffmpeg wrapper.
After you init the class, you can dump numpy arrays x into moviesaver.write_frame(x).
Don't forget toi finalize movie file with moviesaver.finalize().
Args:
fp_out: str
Output file name. If it already exists, it will be deleted.
fps: int
Frames per second.
crf: int
ffmpeg doc: the range of the CRF scale is 051, where 0 is lossless
(for 8 bit only, for 10 bit use -qp 0), 23 is the default, and 51 is worst quality possible.
A lower value generally leads to higher quality, and a subjectively sane range is 1728.
Consider 17 or 18 to be visually lossless or nearly so;
it should look the same or nearly the same as the input but it isn't technically lossless.
The range is exponential, so increasing the CRF value +6 results in
roughly half the bitrate / file size, while -6 leads to roughly twice the bitrate.
codec: int
Number of diffusion steps. Larger values will take more compute time.
preset: str
Choose between ultrafast, superfast, veryfast, faster, fast, medium, slow, slower, veryslow.
ffmpeg doc: A preset is a collection of options that will provide a certain encoding speed
to compression ratio. A slower preset will provide better compression
(compression is quality per filesize).
This means that, for example, if you target a certain file size or constant bit rate,
you will achieve better quality with a slower preset. Similarly, for constant quality encoding,
you will simply save bitrate by choosing a slower preset.
pix_fmt: str
Pixel format. Run 'ffmpeg -pix_fmts' in your shell to see all options.
silent_ffmpeg: bool
Surpress the output from ffmpeg.
"""
self.fp_out = fp_out
self.fps = fps
self.crf = crf
self.pix_fmt = pix_fmt
self.codec = codec
self.preset = preset
self.silent_ffmpeg = silent_ffmpeg
if os.path.isfile(fp_out):
os.remove(fp_out)
self.init_done = False
self.nmb_frames = 0
self.shape_hw = [-1, -1]
print(f"MovieSaver initialized. fps={fps} crf={crf} pix_fmt={pix_fmt} codec={codec} preset={preset}")
def initialize(self):
args = (
ffmpeg
.input('pipe:', format='rawvideo', pix_fmt='rgb24', s='{}x{}'.format(self.shape_hw[1], self.shape_hw[0]), framerate=self.fps)
.output(self.fp_out, crf=self.crf, pix_fmt=self.pix_fmt, c=self.codec, preset=self.preset)
.overwrite_output()
.compile()
)
if self.silent_ffmpeg:
self.ffmpg_process = subprocess.Popen(args, stdin=subprocess.PIPE, stderr=subprocess.DEVNULL, stdout=subprocess.DEVNULL)
else:
self.ffmpg_process = subprocess.Popen(args, stdin=subprocess.PIPE)
self.init_done = True
print(f"First frame initialization done. Movie shape: {self.shape_hw}")
def write_frame(self, out_frame: np.ndarray):
r"""
Function to dump a numpy array as frame of a movie.
Args:
out_frame: np.ndarray
Numpy array, in np.uint8 format. Convert with np.astype(x, np.uint8).
Dim 0: y
Dim 1: x
Dim 2: RGB
"""
assert out_frame.dtype == np.uint8, "Convert to np.uint8 before"
assert len(out_frame.shape) == 3, "out_frame needs to be three dimensional, Y X C"
assert out_frame.shape[2] == 3, f"need three color channels, but you provided {out_frame.shape[2]}."
if not self.init_done:
self.shape_hw = out_frame.shape
self.initialize()
assert self.shape_hw == out_frame.shape, "You cannot change the image size after init. Initialized with {self.shape_hw}, out_frame {out_frame.shape}"
# write frame
self.ffmpg_process.stdin.write(
out_frame
.astype(np.uint8)
.tobytes()
)
self.nmb_frames += 1
def finalize(self):
r"""
Call this function to finalize the movie. If you forget to call it your movie will be garbage.
"""
self.ffmpg_process.stdin.close()
self.ffmpg_process.wait()
duration = int(self.nmb_frames / self.fps)
print(f"Movie saved, {duration}s playtime, watch her: {self.fp_out}")
def concatenate_movies(fp_final: str, list_fp_movies: List[str]):
r"""
Concatenate multiple movie segments into one long movie, using ffmpeg.
Parameters
----------
fp_final : str
Full path of the final movie file. Should end with .mp4
list_fp_movies : list[str]
List of full paths of movie segments.
"""
assert fp_final.endswith(".mp4"), "fp_final should end with .mp4"
for fp in list_fp_movies:
assert os.path.isfile(fp), f"Input movie does not exist: {fp}"
assert os.path.getsize(fp) > 100, f"Input movie seems empty: {fp}"
if os.path.isfile(fp_final):
os.remove(fp_final)
# make a list for ffmpeg
list_concat = []
for fp_part in list_fp_movies:
list_concat.append(f"""file '{fp_part}'""")
# save this list
fp_list = fp_final[:-3] + "txt"
with open(fp_list, "w") as fa:
for item in list_concat:
fa.write("%s\n" % item)
dp_movie = os.path.split(fp_final)[0]
cmd = f'ffmpeg -f concat -safe 0 -i {fp_list} -c copy {fp_final}'
subprocess.call(cmd, shell=True, cwd=dp_movie)
os.remove(fp_list)
print(f"concatenate_movies: success! Watch here: {fp_final}")
class MovieReader():
r"""
Class to read in a movie.
"""
def __init__(self, fp_movie):
self.video_player_object = cv2.VideoCapture(fp_movie)
self.nmb_frames = int(self.video_player_object.get(cv2.CAP_PROP_FRAME_COUNT))
self.fps_movie = int(self.video_player_object.get(cv2.CAP_PROP_FPS))
self.shape = [100,100,3]
self.shape_is_set = False
def get_next_frame(self):
success, image = self.video_player_object.read()
if success:
if not self.shape_is_set:
self.shape_is_set = True
self.shape = image.shape
return image
else:
return np.zeros(self.shape)
#%%
if __name__ == "__main__":
fps=2
list_fp_movies = []
for k in range(4):
fp_movie = f"/tmp/my_random_movie_{k}.mp4"
list_fp_movies.append(fp_movie)
ms = MovieSaver(fp_movie, fps=fps)
for fn in tqdm(range(30)):
img = (np.random.rand(512, 1024, 3)*255).astype(np.uint8)
ms.write_frame(img)
ms.finalize()
fp_final = "/tmp/my_concatenated_movie.mp4"
concatenate_movies(fp_final, list_fp_movies)