movie util
This commit is contained in:
parent
aa464737be
commit
5a66a38bab
|
@ -70,8 +70,6 @@ prompt2 = "photo of an eerie statue surrounded by ferns and vines, analog photog
|
||||||
lb.set_prompt1(prompt1)
|
lb.set_prompt1(prompt1)
|
||||||
lb.set_prompt2(prompt2)
|
lb.set_prompt2(prompt2)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
imgs_transition = lb.run_transition(list_nmb_branches, list_injection_strength, fixed_seeds=fixed_seeds)
|
imgs_transition = lb.run_transition(list_nmb_branches, list_injection_strength, fixed_seeds=fixed_seeds)
|
||||||
|
|
||||||
# let's get more cheap frames via linear interpolation
|
# let's get more cheap frames via linear interpolation
|
||||||
|
|
|
@ -267,6 +267,7 @@ class LatentBlending():
|
||||||
self.tree_fracts = []
|
self.tree_fracts = []
|
||||||
self.tree_status = []
|
self.tree_status = []
|
||||||
self.tree_final_imgs = [None]*list_nmb_branches[-1]
|
self.tree_final_imgs = [None]*list_nmb_branches[-1]
|
||||||
|
self.tree_final_imgs_timing = [0]*list_nmb_branches[-1]
|
||||||
|
|
||||||
nmb_blocks_time = len(list_injection_idx_ext)-1
|
nmb_blocks_time = len(list_injection_idx_ext)-1
|
||||||
for t_block in range(nmb_blocks_time):
|
for t_block in range(nmb_blocks_time):
|
||||||
|
@ -321,6 +322,7 @@ class LatentBlending():
|
||||||
list_compute.extend(list_local_stem[::-1])
|
list_compute.extend(list_local_stem[::-1])
|
||||||
|
|
||||||
# Diffusion computations start here
|
# Diffusion computations start here
|
||||||
|
time_start = time.time()
|
||||||
for t_block, idx_branch in tqdm(list_compute, desc="computing transition"):
|
for t_block, idx_branch in tqdm(list_compute, desc="computing transition"):
|
||||||
# print(f"computing t_block {t_block} idx_branch {idx_branch}")
|
# print(f"computing t_block {t_block} idx_branch {idx_branch}")
|
||||||
idx_stop = list_injection_idx_ext[t_block+1]
|
idx_stop = list_injection_idx_ext[t_block+1]
|
||||||
|
@ -352,6 +354,7 @@ class LatentBlending():
|
||||||
# Convert latents to image directly for the last t_block
|
# Convert latents to image directly for the last t_block
|
||||||
if t_block == nmb_blocks_time-1:
|
if t_block == nmb_blocks_time-1:
|
||||||
self.tree_final_imgs[idx_branch] = self.latent2image(list_latents[-1])
|
self.tree_final_imgs[idx_branch] = self.latent2image(list_latents[-1])
|
||||||
|
self.tree_final_imgs_timing[idx_branch] = time.time() - time_start
|
||||||
|
|
||||||
return self.tree_final_imgs
|
return self.tree_final_imgs
|
||||||
|
|
||||||
|
@ -931,6 +934,24 @@ def get_time(resolution=None):
|
||||||
#%% le main
|
#%% le main
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
||||||
|
#%% TMP SURGERY
|
||||||
|
num_inference_steps = 20 # Number of diffusion interations
|
||||||
|
list_nmb_branches = [2, 3, 10, 24] # Branching structure: how many branches
|
||||||
|
list_injection_strength = [0.0, 0.6, 0.8, 0.9] # Branching structure: how deep is the blending
|
||||||
|
width = 512
|
||||||
|
height = 512
|
||||||
|
guidance_scale = 5
|
||||||
|
fixed_seeds = [993621550, 280335986]
|
||||||
|
|
||||||
|
lb = LatentBlending(pipe, device, height, width, num_inference_steps, guidance_scale)
|
||||||
|
prompt1 = "photo of a beautiful forest covered in white flowers, ambient light, very detailed, magic"
|
||||||
|
prompt2 = "photo of an eerie statue surrounded by ferns and vines, analog photograph kodak portra, mystical ambience, incredible detail"
|
||||||
|
lb.set_prompt1(prompt1)
|
||||||
|
lb.set_prompt2(prompt2)
|
||||||
|
|
||||||
|
imgs_transition = lb.run_transition(list_nmb_branches, list_injection_strength, fixed_seeds=fixed_seeds)
|
||||||
|
|
||||||
|
|
||||||
#%% LOOP
|
#%% LOOP
|
||||||
list_prompts = []
|
list_prompts = []
|
||||||
list_prompts.append("paiting of a medieval city")
|
list_prompts.append("paiting of a medieval city")
|
||||||
|
|
|
@ -0,0 +1,218 @@
|
||||||
|
# Copyright 2022 Lunar Ring. All rights reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import subprocess
|
||||||
|
import os
|
||||||
|
import numpy as np
|
||||||
|
from tqdm import tqdm
|
||||||
|
import cv2
|
||||||
|
from typing import Callable, List, Optional, Union
|
||||||
|
import ffmpeg # pip install ffmpeg-python. if error with broken pipe: conda update ffmpeg
|
||||||
|
|
||||||
|
#%%
|
||||||
|
|
||||||
|
class MovieSaver():
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
fp_out: str,
|
||||||
|
fps: int = 24,
|
||||||
|
crf: int = 24,
|
||||||
|
codec: str = 'libx264',
|
||||||
|
preset: str ='fast',
|
||||||
|
pix_fmt: str = 'yuv420p',
|
||||||
|
silent_ffmpeg: bool = True
|
||||||
|
):
|
||||||
|
r"""
|
||||||
|
Initializes movie saver class - a human friendly ffmpeg wrapper.
|
||||||
|
After you init the class, you can dump numpy arrays x into moviesaver.write_frame(x).
|
||||||
|
Don't forget toi finalize movie file with moviesaver.finalize().
|
||||||
|
Args:
|
||||||
|
fp_out: str
|
||||||
|
Output file name. If it already exists, it will be deleted.
|
||||||
|
fps: int
|
||||||
|
Frames per second.
|
||||||
|
crf: int
|
||||||
|
ffmpeg doc: the range of the CRF scale is 0–51, where 0 is lossless
|
||||||
|
(for 8 bit only, for 10 bit use -qp 0), 23 is the default, and 51 is worst quality possible.
|
||||||
|
A lower value generally leads to higher quality, and a subjectively sane range is 17–28.
|
||||||
|
Consider 17 or 18 to be visually lossless or nearly so;
|
||||||
|
it should look the same or nearly the same as the input but it isn't technically lossless.
|
||||||
|
The range is exponential, so increasing the CRF value +6 results in
|
||||||
|
roughly half the bitrate / file size, while -6 leads to roughly twice the bitrate.
|
||||||
|
codec: int
|
||||||
|
Number of diffusion steps. Larger values will take more compute time.
|
||||||
|
preset: str
|
||||||
|
Choose between ultrafast, superfast, veryfast, faster, fast, medium, slow, slower, veryslow.
|
||||||
|
ffmpeg doc: A preset is a collection of options that will provide a certain encoding speed
|
||||||
|
to compression ratio. A slower preset will provide better compression
|
||||||
|
(compression is quality per filesize).
|
||||||
|
This means that, for example, if you target a certain file size or constant bit rate,
|
||||||
|
you will achieve better quality with a slower preset. Similarly, for constant quality encoding,
|
||||||
|
you will simply save bitrate by choosing a slower preset.
|
||||||
|
pix_fmt: str
|
||||||
|
Pixel format. Run 'ffmpeg -pix_fmts' in your shell to see all options.
|
||||||
|
silent_ffmpeg: bool
|
||||||
|
Surpress the output from ffmpeg.
|
||||||
|
"""
|
||||||
|
|
||||||
|
self.fp_out = fp_out
|
||||||
|
self.fps = fps
|
||||||
|
self.crf = crf
|
||||||
|
self.pix_fmt = pix_fmt
|
||||||
|
self.codec = codec
|
||||||
|
self.preset = preset
|
||||||
|
self.silent_ffmpeg = silent_ffmpeg
|
||||||
|
|
||||||
|
if os.path.isfile(fp_out):
|
||||||
|
os.remove(fp_out)
|
||||||
|
|
||||||
|
self.init_done = False
|
||||||
|
self.nmb_frames = 0
|
||||||
|
self.shape_hw = [-1, -1]
|
||||||
|
|
||||||
|
print(f"MovieSaver initialized. fps={fps} crf={crf} pix_fmt={pix_fmt} codec={codec} preset={preset}")
|
||||||
|
|
||||||
|
|
||||||
|
def initialize(self):
|
||||||
|
args = (
|
||||||
|
ffmpeg
|
||||||
|
.input('pipe:', format='rawvideo', pix_fmt='rgb24', s='{}x{}'.format(self.shape_hw[1], self.shape_hw[0]), framerate=self.fps)
|
||||||
|
.output(self.fp_out, crf=self.crf, pix_fmt=self.pix_fmt, c=self.codec, preset=self.preset)
|
||||||
|
.overwrite_output()
|
||||||
|
.compile()
|
||||||
|
)
|
||||||
|
if self.silent_ffmpeg:
|
||||||
|
self.ffmpg_process = subprocess.Popen(args, stdin=subprocess.PIPE, stderr=subprocess.DEVNULL, stdout=subprocess.DEVNULL)
|
||||||
|
else:
|
||||||
|
self.ffmpg_process = subprocess.Popen(args, stdin=subprocess.PIPE)
|
||||||
|
self.init_done = True
|
||||||
|
print(f"First frame initialization done. Movie shape: {self.shape_hw}")
|
||||||
|
|
||||||
|
|
||||||
|
def write_frame(self, out_frame: np.ndarray):
|
||||||
|
r"""
|
||||||
|
Function to dump a numpy array as frame of a movie.
|
||||||
|
Args:
|
||||||
|
out_frame: np.ndarray
|
||||||
|
Numpy array, in np.uint8 format. Convert with np.astype(x, np.uint8).
|
||||||
|
Dim 0: y
|
||||||
|
Dim 1: x
|
||||||
|
Dim 2: RGB
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert out_frame.dtype == np.uint8, "Convert to np.uint8 before"
|
||||||
|
assert len(out_frame.shape) == 3, "out_frame needs to be three dimensional, Y X C"
|
||||||
|
assert out_frame.shape[2] == 3, f"need three color channels, but you provided {out_frame.shape[2]}."
|
||||||
|
|
||||||
|
if not self.init_done:
|
||||||
|
self.shape_hw = out_frame.shape
|
||||||
|
self.initialize()
|
||||||
|
|
||||||
|
assert self.shape_hw == out_frame.shape, "You cannot change the image size after init. Initialized with {self.shape_hw}, out_frame {out_frame.shape}"
|
||||||
|
|
||||||
|
# write frame
|
||||||
|
self.ffmpg_process.stdin.write(
|
||||||
|
out_frame
|
||||||
|
.astype(np.uint8)
|
||||||
|
.tobytes()
|
||||||
|
)
|
||||||
|
|
||||||
|
self.nmb_frames += 1
|
||||||
|
|
||||||
|
|
||||||
|
def finalize(self):
|
||||||
|
r"""
|
||||||
|
Call this function to finalize the movie. If you forget to call it your movie will be garbage.
|
||||||
|
"""
|
||||||
|
self.ffmpg_process.stdin.close()
|
||||||
|
self.ffmpg_process.wait()
|
||||||
|
duration = int(self.nmb_frames / self.fps)
|
||||||
|
print(f"Movie saved, {duration}s playtime, watch her: {self.fp_out}")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def concatenate_movies(fp_final: str, list_fp_movies: List[str]):
|
||||||
|
r"""
|
||||||
|
Concatenate multiple movie segments into one long movie, using ffmpeg.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
fp_final : str
|
||||||
|
Full path of the final movie file. Should end with .mp4
|
||||||
|
list_fp_movies : list[str]
|
||||||
|
List of full paths of movie segments.
|
||||||
|
"""
|
||||||
|
assert fp_final.endswith(".mp4"), "fp_final should end with .mp4"
|
||||||
|
for fp in list_fp_movies:
|
||||||
|
assert os.path.isfile(fp), f"Input movie does not exist: {fp}"
|
||||||
|
assert os.path.getsize(fp) > 100, f"Input movie seems empty: {fp}"
|
||||||
|
|
||||||
|
if os.path.isfile(fp_final):
|
||||||
|
os.remove(fp_final)
|
||||||
|
|
||||||
|
# make a list for ffmpeg
|
||||||
|
list_concat = []
|
||||||
|
for fp_part in list_fp_movies:
|
||||||
|
list_concat.append(f"""file '{fp_part}'""")
|
||||||
|
|
||||||
|
# save this list
|
||||||
|
fp_list = fp_final[:-3] + "txt"
|
||||||
|
with open(fp_list, "w") as fa:
|
||||||
|
for item in list_concat:
|
||||||
|
fa.write("%s\n" % item)
|
||||||
|
|
||||||
|
dp_movie = os.path.split(fp_final)[0]
|
||||||
|
cmd = f'ffmpeg -f concat -safe 0 -i {fp_list} -c copy {fp_final}'
|
||||||
|
subprocess.call(cmd, shell=True, cwd=dp_movie)
|
||||||
|
os.remove(fp_list)
|
||||||
|
print(f"concatenate_movies: success! Watch here: {fp_final}")
|
||||||
|
|
||||||
|
|
||||||
|
class MovieReader():
|
||||||
|
r"""
|
||||||
|
Class to read in a movie.
|
||||||
|
"""
|
||||||
|
def __init__(self, fp_movie):
|
||||||
|
self.video_player_object = cv2.VideoCapture(fp_movie)
|
||||||
|
self.nmb_frames = int(self.video_player_object.get(cv2.CAP_PROP_FRAME_COUNT))
|
||||||
|
self.fps_movie = int(self.video_player_object.get(cv2.CAP_PROP_FPS))
|
||||||
|
self.shape = [100,100,3]
|
||||||
|
self.shape_is_set = False
|
||||||
|
|
||||||
|
def get_next_frame(self):
|
||||||
|
success, image = self.video_player_object.read()
|
||||||
|
if success:
|
||||||
|
if not self.shape_is_set:
|
||||||
|
self.shape_is_set = True
|
||||||
|
self.shape = image.shape
|
||||||
|
return image
|
||||||
|
else:
|
||||||
|
return np.zeros(self.shape)
|
||||||
|
|
||||||
|
#%%
|
||||||
|
if __name__ == "__main__":
|
||||||
|
fps=2
|
||||||
|
list_fp_movies = []
|
||||||
|
for k in range(4):
|
||||||
|
fp_movie = f"/tmp/my_random_movie_{k}.mp4"
|
||||||
|
list_fp_movies.append(fp_movie)
|
||||||
|
ms = MovieSaver(fp_movie, fps=fps)
|
||||||
|
for fn in tqdm(range(30)):
|
||||||
|
img = (np.random.rand(512, 1024, 3)*255).astype(np.uint8)
|
||||||
|
ms.write_frame(img)
|
||||||
|
ms.finalize()
|
||||||
|
|
||||||
|
fp_final = "/tmp/my_concatenated_movie.mp4"
|
||||||
|
concatenate_movies(fp_final, list_fp_movies)
|
||||||
|
|
Loading…
Reference in New Issue