diff --git a/latent_blending.py b/latent_blending.py index 67a7f25..5a3e710 100644 --- a/latent_blending.py +++ b/latent_blending.py @@ -1029,9 +1029,9 @@ def get_time(resolution=None): def get_branching( quality: str = 'medium', - depth: str = 'medium', - strength_injection_first: float = 0.65, + deepth_strength: float = 0.65, nmb_frames: int = 360, + nmb_mindist: int = 3, ): r""" Helper function to set up the branching structure automatically. @@ -1040,51 +1040,38 @@ def get_branching( quality: str Determines how many diffusion steps are being made + how many branches in total. Choose: fast, medium, high, ultra - quality: depth + deepth_strength: float = 0.65, Determines how deep the first injection will happen. Deeper injections will cause (unwanted) formation of new structures, - more shallow values will go into alpha-blendy land - Choose: verydeep, deep, medium, shallow, veryshallow - strength_injection_first: float = 0.65, - ... + more shallow values will go into alpha-blendy land. nmb_frames: int = 360, + total number of frames + nmb_mindist: int = 3 + minimum distance in terms of diffusion iteratinos between subsequent injections + """ - nmb_mindist = 3 #minimum distance between injections - depth = 'override' - #FIXME: XXX nmb frames last has to be enforced. avoid weird cases where no injection... - - if depth == 'verydeep': - strength_injection_first = 0.35 - elif depth == 'deep': - strength_injection_first = 0.45 - elif depth == 'medium': - strength_injection_first = 0.6 - elif depth == 'shallow': - strength_injection_first = 0.8 - elif depth == 'veryshallow': - strength_injection_first = 0.9 - if quality == 'superfast': - num_inference_steps = 8 + if quality == 'lowest': + num_inference_steps = 12 nmb_branches_final = 5 - elif quality == 'fast': + elif quality == 'low': num_inference_steps = 15 - nmb_branches_final = nmb_frames//30 + nmb_branches_final = nmb_frames//16 elif quality == 'medium': num_inference_steps = 30 - nmb_branches_final = nmb_frames//10 + nmb_branches_final = nmb_frames//8 elif quality == 'high': num_inference_steps = 60 - nmb_branches_final = nmb_frames//3 + nmb_branches_final = nmb_frames//4 elif quality == 'ultra': num_inference_steps = 100 - nmb_branches_final = nmb_frames + nmb_branches_final = nmb_frames//2 else: raise ValueError("quality = '{quality}' not supported") - idx_injection_first = int(np.round(num_inference_steps*strength_injection_first)) + idx_injection_first = int(np.round(num_inference_steps*deepth_strength)) idx_injection_last = num_inference_steps - 3 nmb_injections = int(np.floor(num_inference_steps/5)) - 1 @@ -1110,6 +1097,7 @@ def get_branching( return num_inference_steps, list_injection_idx_clean, list_nmb_branches_clean + #%% le main if __name__ == "__main__":