fixes for SDXL 1.0

This commit is contained in:
Johannes Stelzer 2023-10-11 11:17:15 +01:00
parent 512fd56afa
commit 40ee8700ad
3 changed files with 49 additions and 63 deletions

View File

@ -108,10 +108,10 @@ class DiffusersHolder():
pr_encoder = self.pipe._encode_prompt pr_encoder = self.pipe._encode_prompt
prompt_embeds = pr_encoder( prompt_embeds = pr_encoder(
prompt, prompt=prompt,
self.device, device=self.device,
1, num_images_per_prompt=1,
do_classifier_free_guidance, do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=self.negative_prompt, negative_prompt=self.negative_prompt,
prompt_embeds=None, prompt_embeds=None,
negative_prompt_embeds=None, negative_prompt_embeds=None,
@ -132,12 +132,14 @@ class DiffusersHolder():
@torch.no_grad() @torch.no_grad()
def latent2image( def latent2image(
self, self,
latents: torch.FloatTensor): latents: torch.FloatTensor,
convert_numpy=True):
r""" r"""
Returns an image provided a latent representation from diffusion. Returns an image provided a latent representation from diffusion.
Args: Args:
latents: torch.FloatTensor latents: torch.FloatTensor
Result of the diffusion process. Result of the diffusion process.
convert_numpy: if converting to numpy
""" """
if self.use_sd_xl: if self.use_sd_xl:
# make sure the VAE is in float32 mode, as it overflows in float16 # make sure the VAE is in float32 mode, as it overflows in float16
@ -162,8 +164,12 @@ class DiffusersHolder():
latents = latents.float() latents = latents.float()
image = self.pipe.vae.decode(latents / self.pipe.vae.config.scaling_factor, return_dict=False)[0] image = self.pipe.vae.decode(latents / self.pipe.vae.config.scaling_factor, return_dict=False)[0]
image = self.pipe.image_processor.postprocess(image, output_type="pil", do_denormalize=[True] * image.shape[0]) image = self.pipe.image_processor.postprocess(image, output_type="pil", do_denormalize=[True] * image.shape[0])[0]
return np.asarray(image[0]) if convert_numpy:
return np.asarray(image)
else:
return image
def prepare_mixing(self, mixing_coeffs, list_latents_mixing): def prepare_mixing(self, mixing_coeffs, list_latents_mixing):
if type(mixing_coeffs) == float: if type(mixing_coeffs) == float:
@ -266,7 +272,7 @@ class DiffusersHolder():
return_image: Optional[bool] = False): return_image: Optional[bool] = False):
# 0. Default height and width to unet # 0. Default height and width to unet
original_size = (1024, 1024) # FIXME original_size = (self.width_img, self.height_img) # FIXME
crops_coords_top_left = (0, 0) # FIXME crops_coords_top_left = (0, 0) # FIXME
target_size = original_size target_size = original_size
batch_size = 1 batch_size = 1
@ -277,7 +283,7 @@ class DiffusersHolder():
do_classifier_free_guidance = self.guidance_scale > 1.0 do_classifier_free_guidance = self.guidance_scale > 1.0
# 1. Check inputs. Raise error if not correct & 2. Define call parameters # 1. Check inputs. Raise error if not correct & 2. Define call parameters
list_mixing_coeffs = self.prepare_mixing() list_mixing_coeffs = self.prepare_mixing(mixing_coeffs, list_latents_mixing)
# 3. Encode input prompt (already encoded outside bc of mixing, just split here) # 3. Encode input prompt (already encoded outside bc of mixing, just split here)
prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = text_embeddings prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = text_embeddings
@ -517,39 +523,27 @@ steps:
if __name__ == "__main__": if __name__ == "__main__":
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble", torch_dtype=torch.float16) #%%
pipe = StableDiffusionControlNetPipeline.from_pretrained( pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16)
).to("cuda") pipe.to('cuda:1') # xxx
#%%
self = DiffusersHolder(pipe) self = DiffusersHolder(pipe)
# xxx
self.set_dimensions(1024, 704)
self.set_num_inference_steps(40)
# self.set_dimensions(1536, 1024)
prompt = "Surreal painting of eerie, nebulous glow of an indigo moon, a spine-chilling spectacle unfolds; a baroque, marbled hand reaches out from a viscous, purple lake clutching a melting clock, its face distorted in a never-ending scream of hysteria, while a cluster of laughing orchids, their petals morphed into grotesque human lips, festoon a crimson tree weeping blood instead of sap, a psychedelic cat with an unnaturally playful grin and mismatched eyes lounges atop a floating vintage television showing static, an albino peacock with iridescent, crystalline feathers dances around a towering, inverted pyramid on top of which a humanoid figure with an octopus head lounges seductively, all against the backdrop of a sprawling cityscape where buildings are inverted and writhing as if alive, and the sky is punctuated by floating aquatic creatures glowing neon, adding a touch of haunting beauty to this otherwise deeply unsettling tableau"
text_embeddings = self.get_text_embedding(prompt)
generator = torch.Generator(device=self.device).manual_seed(int(420))
latents_start = self.get_noise()
list_latents_1 = self.run_diffusion(text_embeddings, latents_start)
img_orig = self.latent2image(list_latents_1[-1])
# get text encoding
# get image encoding
#%%
# # pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-0.9"
# pretrained_model_name_or_path = "stabilityai/stable-diffusion-2-1"
# pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16)
# pipe.to('cuda')
# # xxx
# self = DiffusersHolder(pipe)
# # xxx
# self.set_num_inference_steps(50)
# # self.set_dimensions(1536, 1024)
# prompt = "photo of a beautiful cherry forest covered in white flowers, ambient light, very detailed, magic"
# text_embeddings = self.get_text_embedding(prompt)
# generator = torch.Generator(device=self.device).manual_seed(int(420))
# latents_start = self.get_noise()
# list_latents_1 = self.run_diffusion(text_embeddings, latents_start)
# img_orig = self.latent2image(list_latents_1[-1])
# %% # %%
""" """

View File

@ -20,34 +20,37 @@ import warnings
warnings.filterwarnings('ignore') warnings.filterwarnings('ignore')
import warnings import warnings
from latent_blending import LatentBlending from latent_blending import LatentBlending
from stable_diffusion_holder import StableDiffusionHolder from diffusers_holder import DiffusersHolder
from diffusers import DiffusionPipeline
from movie_util import concatenate_movies from movie_util import concatenate_movies
from huggingface_hub import hf_hub_download from huggingface_hub import hf_hub_download
# %% First let us spawn a stable diffusion holder. Uncomment your version of choice. # %% First let us spawn a stable diffusion holder. Uncomment your version of choice.
fp_ckpt = hf_hub_download(repo_id="stabilityai/stable-diffusion-2-1-base", filename="v2-1_512-ema-pruned.ckpt") pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
# fp_ckpt = hf_hub_download(repo_id="stabilityai/stable-diffusion-2-1", filename="v2-1_768-ema-pruned.ckpt") pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16)
sdh = StableDiffusionHolder(fp_ckpt) pipe.to('cuda:1')
dh = DiffusersHolder(pipe)
# %% Let's setup the multi transition # %% Let's setup the multi transition
fps = 30 fps = 30
duration_single_trans = 6 duration_single_trans = 20
depth_strength = 0.55 # Specifies how deep (in terms of diffusion iterations the first branching happens) depth_strength = 0.25 # Specifies how deep (in terms of diffusion iterations the first branching happens)
# Specify a list of prompts below # Specify a list of prompts below
list_prompts = [] list_prompts = []
list_prompts.append("surrealistic statue made of glitter and dirt, standing in a lake, atmospheric light, strange glow") list_prompts.append("A panoramic photo of a sentient mirror maze amidst a neon-lit forest, where bioluminescent mushrooms glow eerily, reflecting off the mirrors, and cybernetic crows, with silver wings and ruby eyes, perch ominously, David Lynch, Gaspar Noé, Photograph.")
list_prompts.append("statue of a mix between a tree and human, made of marble, incredibly detailed") list_prompts.append("An unsettling tableau of spectral butterflies with clockwork wings, swirling around an antique typewriter perched precariously atop a floating, gnarled tree trunk, a stormy twilight sky, David Lynch's dreamscape, meticulously crafted.")
list_prompts.append("weird statue of a frog monkey, many colors, standing next to the ruins of an ancient city") # list_prompts.append("A haunting tableau of an antique dollhouse swallowed by a giant venus flytrap under the neon glow of an alien moon, its uncanny light reflecting from shattered porcelain faces and marbles, in a quiet, abandoned amusement park.")
# list_prompts.append("statue of a spider that looked like a human")
# list_prompts.append("statue of a bird that looked like a scorpion")
# list_prompts.append("statue of an ancient cybernetic messenger annoucing good news, golden, futuristic")
# You can optionally specify the seeds # You can optionally specify the seeds
list_seeds = [954375479, 332539350, 956051013, 408831845, 250009012, 675588737] list_seeds = [95437579, 33259350, 956051013, 408831845, 250009012, 675588737]
t_compute_max_allowed = 12 # per segment t_compute_max_allowed = 20 # per segment
fp_movie = 'movie_example2.mp4' fp_movie = 'movie_example2.mp4'
lb = LatentBlending(sdh) lb = LatentBlending(dh)
lb.dh.set_dimensions(1024, 704)
lb.dh.set_num_inference_steps(40)
list_movie_parts = [] list_movie_parts = []
for i in range(len(list_prompts) - 1): for i in range(len(list_prompts) - 1):

View File

@ -111,18 +111,6 @@ class LatentBlending():
self.set_prompt1("") self.set_prompt1("")
self.set_prompt2("") self.set_prompt2("")
# def init_mode(self):
# r"""
# Sets the operational mode. Currently supported are standard, inpainting and x4 upscaling.
# """
# if isinstance(self.dh.model, LatentUpscaleDiffusion):
# self.mode = 'upscale'
# elif isinstance(self.dh.model, LatentInpaintDiffusion):
# self.dh.image_source = None
# self.dh.mask_image = None
# self.mode = 'inpaint'
# else:
# self.mode = 'standard'
def set_dimensions(self, width=None, height=None): def set_dimensions(self, width=None, height=None):
self.dh.set_dimensions(width, height) self.dh.set_dimensions(width, height)
@ -449,6 +437,7 @@ class LatentBlending():
list_compute_steps = self.num_inference_steps - list_idx_injection list_compute_steps = self.num_inference_steps - list_idx_injection
list_compute_steps *= list_nmb_stems list_compute_steps *= list_nmb_stems
t_compute = np.sum(list_compute_steps) * self.dt_per_diff + 0.15 * np.sum(list_nmb_stems) t_compute = np.sum(list_compute_steps) * self.dt_per_diff + 0.15 * np.sum(list_nmb_stems)
t_compute += 2*self.num_inference_steps*self.dt_per_diff # outer branches
increase_done = False increase_done = False
for s_idx in range(len(list_nmb_stems) - 1): for s_idx in range(len(list_nmb_stems) - 1):
if list_nmb_stems[s_idx + 1] / list_nmb_stems[s_idx] >= 2: if list_nmb_stems[s_idx + 1] / list_nmb_stems[s_idx] >= 2: