simple gradio interface for saving jsons
This commit is contained in:
parent
02ca854f43
commit
3de2021542
|
@ -7,6 +7,7 @@ __pycache__/
|
|||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
*.json
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
|
|
|
@ -0,0 +1,75 @@
|
|||
import torch
|
||||
import warnings
|
||||
from diffusers import AutoPipelineForText2Image
|
||||
from latentblending.blending_engine import BlendingEngine
|
||||
from lunar_tools import concatenate_movies
|
||||
import numpy as np
|
||||
torch.set_grad_enabled(False)
|
||||
torch.backends.cudnn.benchmark = False
|
||||
warnings.filterwarnings('ignore')
|
||||
|
||||
import json
|
||||
# %% First let us spawn a stable diffusion holder. Uncomment your version of choice.
|
||||
# pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||
pretrained_model_name_or_path = "stabilityai/sdxl-turbo"
|
||||
|
||||
pipe = AutoPipelineForText2Image.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16, variant="fp16")
|
||||
pipe.to('cuda')
|
||||
be = BlendingEngine(pipe, do_compile=False)
|
||||
|
||||
fp_movie = f'test.mp4'
|
||||
fp_json = "movie_240221_1520.json"
|
||||
duration_single_trans = 10
|
||||
|
||||
# Load the JSON data from the file
|
||||
with open(fp_json, 'r') as file:
|
||||
data = json.load(file)
|
||||
|
||||
# Set up width, height, num_inference steps
|
||||
width = data[0]["width"]
|
||||
height = data[0]["height"]
|
||||
num_inference_steps = data[0]["num_inference_steps"]
|
||||
|
||||
be.set_dimensions((width, height))
|
||||
be.set_num_inference_steps(num_inference_steps)
|
||||
|
||||
# Initialize lists for prompts, negative prompts, and seeds
|
||||
list_prompts = []
|
||||
list_negative_prompts = []
|
||||
list_seeds = []
|
||||
|
||||
# Extract prompts, negative prompts, and seeds from the data
|
||||
for item in data[1:]: # Skip the first item as it contains settings
|
||||
list_prompts.append(item["prompt"])
|
||||
list_negative_prompts.append(item["negative_prompt"])
|
||||
list_seeds.append(item["seed"])
|
||||
|
||||
|
||||
list_movie_parts = []
|
||||
for i in range(len(list_prompts) - 1):
|
||||
# For a multi transition we can save some computation time and recycle the latents
|
||||
if i == 0:
|
||||
be.set_prompt1(list_prompts[i])
|
||||
be.set_negative_prompt(list_negative_prompts[i])
|
||||
be.set_prompt2(list_prompts[i + 1])
|
||||
recycle_img1 = False
|
||||
else:
|
||||
be.swap_forward()
|
||||
be.set_negative_prompt(list_negative_prompts[i+1])
|
||||
be.set_prompt2(list_prompts[i + 1])
|
||||
recycle_img1 = True
|
||||
|
||||
fp_movie_part = f"tmp_part_{str(i).zfill(3)}.mp4"
|
||||
fixed_seeds = list_seeds[i:i + 2]
|
||||
# Run latent blending
|
||||
be.run_transition(
|
||||
recycle_img1=recycle_img1,
|
||||
fixed_seeds=fixed_seeds)
|
||||
|
||||
# Save movie
|
||||
be.write_movie_transition(fp_movie_part, duration_single_trans)
|
||||
list_movie_parts.append(fp_movie_part)
|
||||
|
||||
# Finally, concatente the result
|
||||
concatenate_movies(fp_movie, list_movie_parts)
|
||||
print(f"DONE! MOVIE SAVED IN {fp_movie}")
|
|
@ -1,18 +1,3 @@
|
|||
# Copyright 2022 Lunar Ring. All rights reserved.
|
||||
# Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import torch
|
||||
torch.backends.cudnn.benchmark = False
|
||||
|
@ -20,481 +5,149 @@ torch.set_grad_enabled(False)
|
|||
import numpy as np
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore')
|
||||
import warnings
|
||||
from tqdm.auto import tqdm
|
||||
from PIL import Image
|
||||
from movie_util import MovieSaver, concatenate_movies
|
||||
from latent_blending import LatentBlending
|
||||
from stable_diffusion_holder import StableDiffusionHolder
|
||||
import gradio as gr
|
||||
from dotenv import find_dotenv, load_dotenv
|
||||
import shutil
|
||||
import uuid
|
||||
from utils import get_time, add_frames_linear_interp
|
||||
from huggingface_hub import hf_hub_download
|
||||
from diffusers import AutoPipelineForText2Image
|
||||
from latentblending.blending_engine import BlendingEngine
|
||||
import datetime
|
||||
|
||||
warnings.filterwarnings('ignore')
|
||||
torch.set_grad_enabled(False)
|
||||
torch.backends.cudnn.benchmark = False
|
||||
import json
|
||||
|
||||
|
||||
|
||||
class BlendingFrontend():
|
||||
def __init__(
|
||||
self,
|
||||
sdh,
|
||||
be,
|
||||
share=False):
|
||||
r"""
|
||||
Gradio Helper Class to collect UI data and start latent blending.
|
||||
Args:
|
||||
sdh:
|
||||
StableDiffusionHolder
|
||||
be:
|
||||
Blendingengine
|
||||
share: bool
|
||||
Set true to get a shareable gradio link (e.g. for running a remote server)
|
||||
"""
|
||||
self.be = be
|
||||
self.share = share
|
||||
|
||||
# UI Defaults
|
||||
self.num_inference_steps = 30
|
||||
self.depth_strength = 0.25
|
||||
self.seed1 = 420
|
||||
self.seed2 = 420
|
||||
self.prompt1 = ""
|
||||
self.prompt2 = ""
|
||||
self.negative_prompt = ""
|
||||
self.fps = 30
|
||||
self.duration_video = 8
|
||||
self.t_compute_max_allowed = 10
|
||||
|
||||
self.lb = LatentBlending(sdh)
|
||||
self.lb.sdh.num_inference_steps = self.num_inference_steps
|
||||
self.init_parameters_from_lb()
|
||||
self.init_save_dir()
|
||||
|
||||
# Vars
|
||||
self.list_fp_imgs_current = []
|
||||
self.recycle_img1 = False
|
||||
self.recycle_img2 = False
|
||||
self.list_all_segments = []
|
||||
self.dp_session = ""
|
||||
self.user_id = None
|
||||
self.prompt = None
|
||||
self.negative_prompt = None
|
||||
self.list_seeds = []
|
||||
self.idx_movie = 0
|
||||
self.data = []
|
||||
|
||||
def init_parameters_from_lb(self):
|
||||
r"""
|
||||
Automatically init parameters from latentblending instance
|
||||
"""
|
||||
self.height = self.lb.sdh.height
|
||||
self.width = self.lb.sdh.width
|
||||
self.guidance_scale = self.lb.guidance_scale
|
||||
self.guidance_scale_mid_damper = self.lb.guidance_scale_mid_damper
|
||||
self.mid_compression_scaler = self.lb.mid_compression_scaler
|
||||
self.branch1_crossfeed_power = self.lb.branch1_crossfeed_power
|
||||
self.branch1_crossfeed_range = self.lb.branch1_crossfeed_range
|
||||
self.branch1_crossfeed_decay = self.lb.branch1_crossfeed_decay
|
||||
self.parental_crossfeed_power = self.lb.parental_crossfeed_power
|
||||
self.parental_crossfeed_range = self.lb.parental_crossfeed_range
|
||||
self.parental_crossfeed_power_decay = self.lb.parental_crossfeed_power_decay
|
||||
def take_image0(self):
|
||||
return self.take_image(0)
|
||||
|
||||
def init_save_dir(self):
|
||||
r"""
|
||||
Initializes the directory where stuff is being saved.
|
||||
You can specify this directory in a ".env" file in your latentblending root, setting
|
||||
DIR_OUT='/path/to/saving'
|
||||
"""
|
||||
load_dotenv(find_dotenv(), verbose=False)
|
||||
self.dp_out = os.getenv("DIR_OUT")
|
||||
if self.dp_out is None:
|
||||
self.dp_out = ""
|
||||
self.dp_imgs = os.path.join(self.dp_out, "imgs")
|
||||
os.makedirs(self.dp_imgs, exist_ok=True)
|
||||
self.dp_movies = os.path.join(self.dp_out, "movies")
|
||||
os.makedirs(self.dp_movies, exist_ok=True)
|
||||
self.save_empty_image()
|
||||
def take_image1(self):
|
||||
return self.take_image(1)
|
||||
|
||||
def save_empty_image(self):
|
||||
r"""
|
||||
Saves an empty/black dummy image.
|
||||
"""
|
||||
self.fp_img_empty = os.path.join(self.dp_imgs, 'empty.jpg')
|
||||
Image.fromarray(np.zeros((self.height, self.width, 3), dtype=np.uint8)).save(self.fp_img_empty, quality=5)
|
||||
def take_image2(self):
|
||||
return self.take_image(2)
|
||||
|
||||
def randomize_seed1(self):
|
||||
r"""
|
||||
Randomizes the first seed
|
||||
"""
|
||||
seed = np.random.randint(0, 10000000)
|
||||
self.seed1 = int(seed)
|
||||
print(f"randomize_seed1: new seed = {self.seed1}")
|
||||
return seed
|
||||
def take_image3(self):
|
||||
return self.take_image(3)
|
||||
|
||||
def randomize_seed2(self):
|
||||
r"""
|
||||
Randomizes the second seed
|
||||
"""
|
||||
seed = np.random.randint(0, 10000000)
|
||||
self.seed2 = int(seed)
|
||||
print(f"randomize_seed2: new seed = {self.seed2}")
|
||||
return seed
|
||||
|
||||
def setup_lb(self, list_ui_vals):
|
||||
r"""
|
||||
Sets all parameters from the UI. Since gradio does not support to pass dictionaries,
|
||||
we have to instead pass keys (list_ui_keys, global) and values (list_ui_vals)
|
||||
"""
|
||||
# Collect latent blending variables
|
||||
self.lb.set_width(list_ui_vals[list_ui_keys.index('width')])
|
||||
self.lb.set_height(list_ui_vals[list_ui_keys.index('height')])
|
||||
self.lb.set_prompt1(list_ui_vals[list_ui_keys.index('prompt1')])
|
||||
self.lb.set_prompt2(list_ui_vals[list_ui_keys.index('prompt2')])
|
||||
self.lb.set_negative_prompt(list_ui_vals[list_ui_keys.index('negative_prompt')])
|
||||
self.lb.guidance_scale = list_ui_vals[list_ui_keys.index('guidance_scale')]
|
||||
self.lb.guidance_scale_mid_damper = list_ui_vals[list_ui_keys.index('guidance_scale_mid_damper')]
|
||||
self.t_compute_max_allowed = list_ui_vals[list_ui_keys.index('duration_compute')]
|
||||
self.lb.num_inference_steps = list_ui_vals[list_ui_keys.index('num_inference_steps')]
|
||||
self.lb.sdh.num_inference_steps = list_ui_vals[list_ui_keys.index('num_inference_steps')]
|
||||
self.duration_video = list_ui_vals[list_ui_keys.index('duration_video')]
|
||||
self.lb.seed1 = list_ui_vals[list_ui_keys.index('seed1')]
|
||||
self.lb.seed2 = list_ui_vals[list_ui_keys.index('seed2')]
|
||||
self.lb.branch1_crossfeed_power = list_ui_vals[list_ui_keys.index('branch1_crossfeed_power')]
|
||||
self.lb.branch1_crossfeed_range = list_ui_vals[list_ui_keys.index('branch1_crossfeed_range')]
|
||||
self.lb.branch1_crossfeed_decay = list_ui_vals[list_ui_keys.index('branch1_crossfeed_decay')]
|
||||
self.lb.parental_crossfeed_power = list_ui_vals[list_ui_keys.index('parental_crossfeed_power')]
|
||||
self.lb.parental_crossfeed_range = list_ui_vals[list_ui_keys.index('parental_crossfeed_range')]
|
||||
self.lb.parental_crossfeed_power_decay = list_ui_vals[list_ui_keys.index('parental_crossfeed_power_decay')]
|
||||
self.num_inference_steps = list_ui_vals[list_ui_keys.index('num_inference_steps')]
|
||||
self.depth_strength = list_ui_vals[list_ui_keys.index('depth_strength')]
|
||||
def take_image(self, id_img):
|
||||
if self.prompt is None:
|
||||
print("Cannot take because no prompt was set!")
|
||||
return [None, None, None, None, ""]
|
||||
if self.idx_movie == 0:
|
||||
current_time = datetime.datetime.now()
|
||||
self.fp_out = "movie_" + current_time.strftime("%y%m%d_%H%M") + ".json"
|
||||
self.data.append({"settings": "sdxl", "width": bf.be.dh.width_img, "height": self.be.dh.height_img, "num_inference_steps": self.be.dh.num_inference_steps})
|
||||
|
||||
if len(list_ui_vals[list_ui_keys.index('user_id')]) > 1:
|
||||
self.user_id = list_ui_vals[list_ui_keys.index('user_id')]
|
||||
else:
|
||||
# generate new user id
|
||||
self.user_id = uuid.uuid4().hex
|
||||
print(f"made new user_id: {self.user_id} at {get_time('second')}")
|
||||
seed = self.list_seeds[id_img]
|
||||
|
||||
def save_latents(self, fp_latents, list_latents):
|
||||
r"""
|
||||
Saves a latent trajectory on disk, in npy format.
|
||||
"""
|
||||
list_latents_cpu = [l.cpu().numpy() for l in list_latents]
|
||||
np.save(fp_latents, list_latents_cpu)
|
||||
self.data.append({"iteration": self.idx_movie, "seed": seed, "prompt": self.prompt, "negative_prompt": self.negative_prompt})
|
||||
|
||||
def load_latents(self, fp_latents):
|
||||
r"""
|
||||
Loads a latent trajectory from disk, converts to torch tensor.
|
||||
"""
|
||||
list_latents_cpu = np.load(fp_latents)
|
||||
list_latents = [torch.from_numpy(l).to(self.lb.device) for l in list_latents_cpu]
|
||||
return list_latents
|
||||
# Write the data list to a JSON file
|
||||
with open(self.fp_out, 'w') as f:
|
||||
json.dump(self.data, f, indent=4)
|
||||
|
||||
def compute_img1(self, *args):
|
||||
r"""
|
||||
Computes the first transition image and returns it for display.
|
||||
Sets all other transition images and last image to empty (as they are obsolete with this operation)
|
||||
"""
|
||||
list_ui_vals = args
|
||||
self.setup_lb(list_ui_vals)
|
||||
fp_img1 = os.path.join(self.dp_imgs, f"img1_{self.user_id}")
|
||||
img1 = Image.fromarray(self.lb.compute_latents1(return_image=True))
|
||||
img1.save(fp_img1 + ".jpg")
|
||||
self.save_latents(fp_img1 + ".npy", self.lb.tree_latents[0])
|
||||
self.recycle_img1 = True
|
||||
self.recycle_img2 = False
|
||||
return [fp_img1 + ".jpg", self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.user_id]
|
||||
self.idx_movie += 1
|
||||
self.prompt = None
|
||||
return [None, None, None, None, ""]
|
||||
|
||||
def compute_img2(self, *args):
|
||||
r"""
|
||||
Computes the last transition image and returns it for display.
|
||||
Sets all other transition images to empty (as they are obsolete with this operation)
|
||||
"""
|
||||
if not os.path.isfile(os.path.join(self.dp_imgs, f"img1_{self.user_id}.jpg")): # don't do anything
|
||||
return [self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.user_id]
|
||||
list_ui_vals = args
|
||||
self.setup_lb(list_ui_vals)
|
||||
|
||||
self.lb.tree_latents[0] = self.load_latents(os.path.join(self.dp_imgs, f"img1_{self.user_id}.npy"))
|
||||
fp_img2 = os.path.join(self.dp_imgs, f"img2_{self.user_id}")
|
||||
img2 = Image.fromarray(self.lb.compute_latents2(return_image=True))
|
||||
img2.save(fp_img2 + '.jpg')
|
||||
self.save_latents(fp_img2 + ".npy", self.lb.tree_latents[-1])
|
||||
self.recycle_img2 = True
|
||||
# fixme save seeds. change filenames?
|
||||
return [self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, fp_img2 + ".jpg", self.user_id]
|
||||
def compute_imgs(self, prompt, negative_prompt):
|
||||
self.prompt = prompt
|
||||
self.negative_prompt = negative_prompt
|
||||
self.be.set_prompt1(prompt)
|
||||
self.be.set_prompt2(prompt)
|
||||
self.be.set_negative_prompt(negative_prompt)
|
||||
self.list_seeds = []
|
||||
self.list_images = []
|
||||
for i in range(4):
|
||||
seed = np.random.randint(0, 1000000000)
|
||||
self.be.seed1 = seed
|
||||
self.list_seeds.append(seed)
|
||||
img = self.be.compute_latents1(return_image=True)
|
||||
self.list_images.append(img)
|
||||
return self.list_images
|
||||
|
||||
def compute_transition(self, *args):
|
||||
r"""
|
||||
Computes transition images and movie.
|
||||
"""
|
||||
list_ui_vals = args
|
||||
self.setup_lb(list_ui_vals)
|
||||
print("STARTING TRANSITION...")
|
||||
fixed_seeds = [self.seed1, self.seed2]
|
||||
# Inject loaded latents (other user interference)
|
||||
self.lb.tree_latents[0] = self.load_latents(os.path.join(self.dp_imgs, f"img1_{self.user_id}.npy"))
|
||||
self.lb.tree_latents[-1] = self.load_latents(os.path.join(self.dp_imgs, f"img2_{self.user_id}.npy"))
|
||||
imgs_transition = self.lb.run_transition(
|
||||
recycle_img1=self.recycle_img1,
|
||||
recycle_img2=self.recycle_img2,
|
||||
num_inference_steps=self.num_inference_steps,
|
||||
depth_strength=self.depth_strength,
|
||||
t_compute_max_allowed=self.t_compute_max_allowed,
|
||||
fixed_seeds=fixed_seeds)
|
||||
print(f"Latent Blending pass finished ({get_time('second')}). Resulted in {len(imgs_transition)} images")
|
||||
|
||||
# Subselect three preview images
|
||||
idx_img_prev = np.round(np.linspace(0, len(imgs_transition) - 1, 5)[1:-1]).astype(np.int32)
|
||||
|
||||
list_imgs_preview = []
|
||||
for j in idx_img_prev:
|
||||
list_imgs_preview.append(Image.fromarray(imgs_transition[j]))
|
||||
|
||||
# Save the preview imgs as jpgs on disk so we are not sending umcompressed data around
|
||||
current_timestamp = get_time('second')
|
||||
self.list_fp_imgs_current = []
|
||||
for i in range(len(list_imgs_preview)):
|
||||
fp_img = os.path.join(self.dp_imgs, f"img_preview_{i}_{current_timestamp}.jpg")
|
||||
list_imgs_preview[i].save(fp_img)
|
||||
self.list_fp_imgs_current.append(fp_img)
|
||||
# Insert cheap frames for the movie
|
||||
imgs_transition_ext = add_frames_linear_interp(imgs_transition, self.duration_video, self.fps)
|
||||
|
||||
# Save as movie
|
||||
self.fp_movie = self.get_fp_video_last()
|
||||
if os.path.isfile(self.fp_movie):
|
||||
os.remove(self.fp_movie)
|
||||
ms = MovieSaver(self.fp_movie, fps=self.fps)
|
||||
for img in tqdm(imgs_transition_ext):
|
||||
ms.write_frame(img)
|
||||
ms.finalize()
|
||||
print("DONE SAVING MOVIE! SENDING BACK...")
|
||||
|
||||
# Assemble Output, updating the preview images and le movie
|
||||
list_return = self.list_fp_imgs_current + [self.fp_movie]
|
||||
return list_return
|
||||
|
||||
def stack_forward(self, prompt2, seed2):
|
||||
r"""
|
||||
Allows to generate multi-segment movies. Sets last image -> first image with all
|
||||
relevant parameters.
|
||||
"""
|
||||
# Save preview images, prompts and seeds into dictionary for stacking
|
||||
if len(self.list_all_segments) == 0:
|
||||
timestamp_session = get_time('second')
|
||||
self.dp_session = os.path.join(self.dp_out, f"session_{timestamp_session}")
|
||||
os.makedirs(self.dp_session)
|
||||
|
||||
idx_segment = len(self.list_all_segments)
|
||||
dp_segment = os.path.join(self.dp_session, f"segment_{str(idx_segment).zfill(3)}")
|
||||
|
||||
self.list_all_segments.append(dp_segment)
|
||||
self.lb.write_imgs_transition(dp_segment)
|
||||
|
||||
fp_movie_last = self.get_fp_video_last()
|
||||
fp_movie_next = self.get_fp_video_next()
|
||||
|
||||
shutil.copyfile(fp_movie_last, fp_movie_next)
|
||||
|
||||
self.lb.tree_latents[0] = self.load_latents(os.path.join(self.dp_imgs, f"img1_{self.user_id}.npy"))
|
||||
self.lb.tree_latents[-1] = self.load_latents(os.path.join(self.dp_imgs, f"img2_{self.user_id}.npy"))
|
||||
self.lb.swap_forward()
|
||||
|
||||
shutil.copyfile(os.path.join(self.dp_imgs, f"img2_{self.user_id}.npy"), os.path.join(self.dp_imgs, f"img1_{self.user_id}.npy"))
|
||||
fp_multi = self.multi_concat()
|
||||
list_out = [fp_multi]
|
||||
|
||||
list_out.extend([os.path.join(self.dp_imgs, f"img2_{self.user_id}.jpg")])
|
||||
list_out.extend([self.fp_img_empty] * 4)
|
||||
list_out.append(gr.update(interactive=False, value=prompt2))
|
||||
list_out.append(gr.update(interactive=False, value=seed2))
|
||||
list_out.append("")
|
||||
list_out.append(np.random.randint(0, 10000000))
|
||||
print(f"stack_forward: fp_multi {fp_multi}")
|
||||
return list_out
|
||||
|
||||
def multi_concat(self):
|
||||
r"""
|
||||
Concatentates all stacked segments into one long movie.
|
||||
"""
|
||||
list_fp_movies = self.get_fp_video_all()
|
||||
# Concatenate movies and save
|
||||
fp_final = os.path.join(self.dp_session, f"concat_{self.user_id}.mp4")
|
||||
concatenate_movies(fp_final, list_fp_movies)
|
||||
return fp_final
|
||||
|
||||
def get_fp_video_all(self):
|
||||
r"""
|
||||
Collects all stacked movie segments.
|
||||
"""
|
||||
list_all = os.listdir(self.dp_movies)
|
||||
str_beg = f"movie_{self.user_id}_"
|
||||
list_user = [l for l in list_all if str_beg in l]
|
||||
list_user.sort()
|
||||
list_user = [os.path.join(self.dp_movies, l) for l in list_user]
|
||||
return list_user
|
||||
|
||||
def get_fp_video_next(self):
|
||||
r"""
|
||||
Gets the filepath of the next movie segment.
|
||||
"""
|
||||
list_videos = self.get_fp_video_all()
|
||||
if len(list_videos) == 0:
|
||||
idx_next = 0
|
||||
else:
|
||||
idx_next = len(list_videos)
|
||||
fp_video_next = os.path.join(self.dp_movies, f"movie_{self.user_id}_{str(idx_next).zfill(3)}.mp4")
|
||||
return fp_video_next
|
||||
|
||||
def get_fp_video_last(self):
|
||||
r"""
|
||||
Gets the current video that was saved.
|
||||
"""
|
||||
fp_video_last = os.path.join(self.dp_movies, f"last_{self.user_id}.mp4")
|
||||
return fp_video_last
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# fp_ckpt = hf_hub_download(repo_id="stabilityai/stable-diffusion-2-1-base", filename="v2-1_512-ema-pruned.ckpt")
|
||||
fp_ckpt = hf_hub_download(repo_id="stabilityai/stable-diffusion-2-1", filename="v2-1_768-ema-pruned.ckpt")
|
||||
bf = BlendingFrontend(StableDiffusionHolder(fp_ckpt))
|
||||
# self = BlendingFrontend(None)
|
||||
|
||||
width = 786
|
||||
height = 1024
|
||||
num_inference_steps = 4
|
||||
|
||||
pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
|
||||
# pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16")
|
||||
pipe.to("cuda")
|
||||
|
||||
be = BlendingEngine(pipe)
|
||||
be.set_dimensions((width, height))
|
||||
be.set_num_inference_steps(num_inference_steps)
|
||||
|
||||
bf = BlendingFrontend(be)
|
||||
|
||||
with gr.Blocks() as demo:
|
||||
gr.HTML("""<h1>Latent Blending</h1>
|
||||
<p>Create butter-smooth transitions between prompts, powered by stable diffusion</p>
|
||||
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
|
||||
<br/>
|
||||
<a href="https://huggingface.co/spaces/lunarring/latentblending?duplicate=true">
|
||||
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
||||
</p>""")
|
||||
|
||||
with gr.Row():
|
||||
prompt1 = gr.Textbox(label="prompt 1")
|
||||
prompt2 = gr.Textbox(label="prompt 2")
|
||||
|
||||
with gr.Row():
|
||||
duration_compute = gr.Slider(10, 25, bf.t_compute_max_allowed, step=1, label='waiting time', interactive=True)
|
||||
duration_video = gr.Slider(1, 100, bf.duration_video, step=0.1, label='video duration', interactive=True)
|
||||
height = gr.Slider(256, 1024, bf.height, step=128, label='height', interactive=True)
|
||||
width = gr.Slider(256, 1024, bf.width, step=128, label='width', interactive=True)
|
||||
|
||||
with gr.Accordion("Advanced Settings (click to expand)", open=False):
|
||||
|
||||
with gr.Accordion("Diffusion settings", open=True):
|
||||
with gr.Row():
|
||||
num_inference_steps = gr.Slider(5, 100, bf.num_inference_steps, step=1, label='num_inference_steps', interactive=True)
|
||||
guidance_scale = gr.Slider(1, 25, bf.guidance_scale, step=0.1, label='guidance_scale', interactive=True)
|
||||
prompt = gr.Textbox(label="prompt")
|
||||
negative_prompt = gr.Textbox(label="negative prompt")
|
||||
|
||||
with gr.Accordion("Seed control: adjust seeds for first and last images", open=True):
|
||||
with gr.Row():
|
||||
b_newseed1 = gr.Button("randomize seed 1", variant='secondary')
|
||||
seed1 = gr.Number(bf.seed1, label="seed 1", interactive=True)
|
||||
seed2 = gr.Number(bf.seed2, label="seed 2", interactive=True)
|
||||
b_newseed2 = gr.Button("randomize seed 2", variant='secondary')
|
||||
|
||||
with gr.Accordion("Last image crossfeeding.", open=True):
|
||||
with gr.Row():
|
||||
branch1_crossfeed_power = gr.Slider(0.0, 1.0, bf.branch1_crossfeed_power, step=0.01, label='branch1 crossfeed power', interactive=True)
|
||||
branch1_crossfeed_range = gr.Slider(0.0, 1.0, bf.branch1_crossfeed_range, step=0.01, label='branch1 crossfeed range', interactive=True)
|
||||
branch1_crossfeed_decay = gr.Slider(0.0, 1.0, bf.branch1_crossfeed_decay, step=0.01, label='branch1 crossfeed decay', interactive=True)
|
||||
|
||||
with gr.Accordion("Transition settings", open=True):
|
||||
with gr.Row():
|
||||
parental_crossfeed_power = gr.Slider(0.0, 1.0, bf.parental_crossfeed_power, step=0.01, label='parental crossfeed power', interactive=True)
|
||||
parental_crossfeed_range = gr.Slider(0.0, 1.0, bf.parental_crossfeed_range, step=0.01, label='parental crossfeed range', interactive=True)
|
||||
parental_crossfeed_power_decay = gr.Slider(0.0, 1.0, bf.parental_crossfeed_power_decay, step=0.01, label='parental crossfeed decay', interactive=True)
|
||||
with gr.Row():
|
||||
depth_strength = gr.Slider(0.01, 0.99, bf.depth_strength, step=0.01, label='depth_strength', interactive=True)
|
||||
guidance_scale_mid_damper = gr.Slider(0.01, 2.0, bf.guidance_scale_mid_damper, step=0.01, label='guidance_scale_mid_damper', interactive=True)
|
||||
b_compute = gr.Button('compute new images', variant='primary')
|
||||
|
||||
with gr.Row():
|
||||
b_compute1 = gr.Button('step1: compute first image', variant='primary')
|
||||
b_compute2 = gr.Button('step2: compute last image', variant='primary')
|
||||
b_compute_transition = gr.Button('step3: compute transition', variant='primary')
|
||||
with gr.Column():
|
||||
img0 = gr.Image(label="seed1")
|
||||
b_take0 = gr.Button('take', variant='primary')
|
||||
with gr.Column():
|
||||
img1 = gr.Image(label="seed2")
|
||||
b_take1 = gr.Button('take', variant='primary')
|
||||
with gr.Column():
|
||||
img2 = gr.Image(label="seed3")
|
||||
b_take2 = gr.Button('take', variant='primary')
|
||||
with gr.Column():
|
||||
img3 = gr.Image(label="seed4")
|
||||
b_take3 = gr.Button('take', variant='primary')
|
||||
|
||||
with gr.Row():
|
||||
img1 = gr.Image(label="1/5")
|
||||
img2 = gr.Image(label="2/5", show_progress=False)
|
||||
img3 = gr.Image(label="3/5", show_progress=False)
|
||||
img4 = gr.Image(label="4/5", show_progress=False)
|
||||
img5 = gr.Image(label="5/5")
|
||||
|
||||
with gr.Row():
|
||||
vid_single = gr.Video(label="current single trans")
|
||||
vid_multi = gr.Video(label="concatented multi trans")
|
||||
|
||||
with gr.Row():
|
||||
b_stackforward = gr.Button('append last movie segment (left) to multi movie (right)', variant='primary')
|
||||
|
||||
with gr.Row():
|
||||
gr.Markdown(
|
||||
"""
|
||||
# Parameters
|
||||
## Main
|
||||
- waiting time: set your waiting time for the transition. high values = better quality
|
||||
- video duration: seconds per segment
|
||||
- height/width: in pixels
|
||||
|
||||
## Diffusion settings
|
||||
- num_inference_steps: number of diffusion steps
|
||||
- guidance_scale: latent blending seems to prefer lower values here
|
||||
- negative prompt: enter negative prompt here, applied for all images
|
||||
|
||||
## Last image crossfeeding
|
||||
- branch1_crossfeed_power: Controls the level of cross-feeding between the first and last image branch. For preserving structures.
|
||||
- branch1_crossfeed_range: Sets the duration of active crossfeed during development. High values enforce strong structural similarity.
|
||||
- branch1_crossfeed_decay: Sets decay for branch1_crossfeed_power. Lower values make the decay stronger across the range.
|
||||
|
||||
## Transition settings
|
||||
- parental_crossfeed_power: Similar to branch1_crossfeed_power, however applied for the images withinin the transition.
|
||||
- parental_crossfeed_range: Similar to branch1_crossfeed_range, however applied for the images withinin the transition.
|
||||
- parental_crossfeed_power_decay: Similar to branch1_crossfeed_decay, however applied for the images withinin the transition.
|
||||
- depth_strength: Determines when the blending process will begin in terms of diffusion steps. Low values more inventive but can cause motion.
|
||||
- guidance_scale_mid_damper: Decreases the guidance scale in the middle of a transition.
|
||||
""")
|
||||
|
||||
with gr.Row():
|
||||
user_id = gr.Textbox(label="user id", interactive=False)
|
||||
|
||||
# Collect all UI elemts in list to easily pass as inputs in gradio
|
||||
dict_ui_elem = {}
|
||||
dict_ui_elem["prompt1"] = prompt1
|
||||
dict_ui_elem["negative_prompt"] = negative_prompt
|
||||
dict_ui_elem["prompt2"] = prompt2
|
||||
|
||||
dict_ui_elem["duration_compute"] = duration_compute
|
||||
dict_ui_elem["duration_video"] = duration_video
|
||||
dict_ui_elem["height"] = height
|
||||
dict_ui_elem["width"] = width
|
||||
|
||||
dict_ui_elem["depth_strength"] = depth_strength
|
||||
dict_ui_elem["branch1_crossfeed_power"] = branch1_crossfeed_power
|
||||
dict_ui_elem["branch1_crossfeed_range"] = branch1_crossfeed_range
|
||||
dict_ui_elem["branch1_crossfeed_decay"] = branch1_crossfeed_decay
|
||||
|
||||
dict_ui_elem["num_inference_steps"] = num_inference_steps
|
||||
dict_ui_elem["guidance_scale"] = guidance_scale
|
||||
dict_ui_elem["guidance_scale_mid_damper"] = guidance_scale_mid_damper
|
||||
dict_ui_elem["seed1"] = seed1
|
||||
dict_ui_elem["seed2"] = seed2
|
||||
|
||||
dict_ui_elem["parental_crossfeed_range"] = parental_crossfeed_range
|
||||
dict_ui_elem["parental_crossfeed_power"] = parental_crossfeed_power
|
||||
dict_ui_elem["parental_crossfeed_power_decay"] = parental_crossfeed_power_decay
|
||||
dict_ui_elem["user_id"] = user_id
|
||||
|
||||
# Convert to list, as gradio doesn't seem to accept dicts
|
||||
list_ui_vals = []
|
||||
list_ui_keys = []
|
||||
for k in dict_ui_elem.keys():
|
||||
list_ui_vals.append(dict_ui_elem[k])
|
||||
list_ui_keys.append(k)
|
||||
bf.list_ui_keys = list_ui_keys
|
||||
|
||||
b_newseed1.click(bf.randomize_seed1, outputs=seed1)
|
||||
b_newseed2.click(bf.randomize_seed2, outputs=seed2)
|
||||
b_compute1.click(bf.compute_img1, inputs=list_ui_vals, outputs=[img1, img2, img3, img4, img5, user_id])
|
||||
b_compute2.click(bf.compute_img2, inputs=list_ui_vals, outputs=[img2, img3, img4, img5, user_id])
|
||||
b_compute_transition.click(bf.compute_transition,
|
||||
inputs=list_ui_vals,
|
||||
outputs=[img2, img3, img4, vid_single])
|
||||
|
||||
b_stackforward.click(bf.stack_forward,
|
||||
inputs=[prompt2, seed2],
|
||||
outputs=[vid_multi, img1, img2, img3, img4, img5, prompt1, seed1, prompt2])
|
||||
b_compute.click(bf.compute_imgs, inputs=[prompt, negative_prompt], outputs=[img0, img1, img2, img3])
|
||||
b_take0.click(bf.take_image0, outputs=[img0, img1, img2, img3, prompt])
|
||||
b_take1.click(bf.take_image1, outputs=[img0, img1, img2, img3, prompt])
|
||||
b_take2.click(bf.take_image2, outputs=[img0, img1, img2, img3, prompt])
|
||||
b_take3.click(bf.take_image3, outputs=[img0, img1, img2, img3, prompt])
|
||||
|
||||
demo.launch(share=bf.share, inbrowser=True, inline=False)
|
||||
|
|
Loading…
Reference in New Issue