simple gradio interface for saving jsons

This commit is contained in:
DGX 2024-02-21 15:22:34 +00:00
parent 02ca854f43
commit 3de2021542
3 changed files with 174 additions and 445 deletions

1
.gitignore vendored
View File

@ -7,6 +7,7 @@ __pycache__/
*.so *.so
# Distribution / packaging # Distribution / packaging
*.json
.Python .Python
build/ build/
develop-eggs/ develop-eggs/

View File

@ -0,0 +1,75 @@
import torch
import warnings
from diffusers import AutoPipelineForText2Image
from latentblending.blending_engine import BlendingEngine
from lunar_tools import concatenate_movies
import numpy as np
torch.set_grad_enabled(False)
torch.backends.cudnn.benchmark = False
warnings.filterwarnings('ignore')
import json
# %% First let us spawn a stable diffusion holder. Uncomment your version of choice.
# pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
pretrained_model_name_or_path = "stabilityai/sdxl-turbo"
pipe = AutoPipelineForText2Image.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16, variant="fp16")
pipe.to('cuda')
be = BlendingEngine(pipe, do_compile=False)
fp_movie = f'test.mp4'
fp_json = "movie_240221_1520.json"
duration_single_trans = 10
# Load the JSON data from the file
with open(fp_json, 'r') as file:
data = json.load(file)
# Set up width, height, num_inference steps
width = data[0]["width"]
height = data[0]["height"]
num_inference_steps = data[0]["num_inference_steps"]
be.set_dimensions((width, height))
be.set_num_inference_steps(num_inference_steps)
# Initialize lists for prompts, negative prompts, and seeds
list_prompts = []
list_negative_prompts = []
list_seeds = []
# Extract prompts, negative prompts, and seeds from the data
for item in data[1:]: # Skip the first item as it contains settings
list_prompts.append(item["prompt"])
list_negative_prompts.append(item["negative_prompt"])
list_seeds.append(item["seed"])
list_movie_parts = []
for i in range(len(list_prompts) - 1):
# For a multi transition we can save some computation time and recycle the latents
if i == 0:
be.set_prompt1(list_prompts[i])
be.set_negative_prompt(list_negative_prompts[i])
be.set_prompt2(list_prompts[i + 1])
recycle_img1 = False
else:
be.swap_forward()
be.set_negative_prompt(list_negative_prompts[i+1])
be.set_prompt2(list_prompts[i + 1])
recycle_img1 = True
fp_movie_part = f"tmp_part_{str(i).zfill(3)}.mp4"
fixed_seeds = list_seeds[i:i + 2]
# Run latent blending
be.run_transition(
recycle_img1=recycle_img1,
fixed_seeds=fixed_seeds)
# Save movie
be.write_movie_transition(fp_movie_part, duration_single_trans)
list_movie_parts.append(fp_movie_part)
# Finally, concatente the result
concatenate_movies(fp_movie, list_movie_parts)
print(f"DONE! MOVIE SAVED IN {fp_movie}")

View File

@ -1,18 +1,3 @@
# Copyright 2022 Lunar Ring. All rights reserved.
# Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os import os
import torch import torch
torch.backends.cudnn.benchmark = False torch.backends.cudnn.benchmark = False
@ -20,481 +5,149 @@ torch.set_grad_enabled(False)
import numpy as np import numpy as np
import warnings import warnings
warnings.filterwarnings('ignore') warnings.filterwarnings('ignore')
import warnings
from tqdm.auto import tqdm from tqdm.auto import tqdm
from PIL import Image from PIL import Image
from movie_util import MovieSaver, concatenate_movies
from latent_blending import LatentBlending
from stable_diffusion_holder import StableDiffusionHolder
import gradio as gr import gradio as gr
from dotenv import find_dotenv, load_dotenv
import shutil import shutil
import uuid import uuid
from utils import get_time, add_frames_linear_interp from diffusers import AutoPipelineForText2Image
from huggingface_hub import hf_hub_download from latentblending.blending_engine import BlendingEngine
import datetime
warnings.filterwarnings('ignore')
torch.set_grad_enabled(False)
torch.backends.cudnn.benchmark = False
import json
class BlendingFrontend(): class BlendingFrontend():
def __init__( def __init__(
self, self,
sdh, be,
share=False): share=False):
r""" r"""
Gradio Helper Class to collect UI data and start latent blending. Gradio Helper Class to collect UI data and start latent blending.
Args: Args:
sdh: be:
StableDiffusionHolder Blendingengine
share: bool share: bool
Set true to get a shareable gradio link (e.g. for running a remote server) Set true to get a shareable gradio link (e.g. for running a remote server)
""" """
self.be = be
self.share = share self.share = share
# UI Defaults # UI Defaults
self.num_inference_steps = 30
self.depth_strength = 0.25
self.seed1 = 420 self.seed1 = 420
self.seed2 = 420 self.seed2 = 420
self.prompt1 = "" self.prompt1 = ""
self.prompt2 = "" self.prompt2 = ""
self.negative_prompt = "" self.negative_prompt = ""
self.fps = 30
self.duration_video = 8
self.t_compute_max_allowed = 10
self.lb = LatentBlending(sdh)
self.lb.sdh.num_inference_steps = self.num_inference_steps
self.init_parameters_from_lb()
self.init_save_dir()
# Vars # Vars
self.list_fp_imgs_current = [] self.prompt = None
self.recycle_img1 = False self.negative_prompt = None
self.recycle_img2 = False self.list_seeds = []
self.list_all_segments = [] self.idx_movie = 0
self.dp_session = "" self.data = []
self.user_id = None
def init_parameters_from_lb(self): def take_image0(self):
r""" return self.take_image(0)
Automatically init parameters from latentblending instance
"""
self.height = self.lb.sdh.height
self.width = self.lb.sdh.width
self.guidance_scale = self.lb.guidance_scale
self.guidance_scale_mid_damper = self.lb.guidance_scale_mid_damper
self.mid_compression_scaler = self.lb.mid_compression_scaler
self.branch1_crossfeed_power = self.lb.branch1_crossfeed_power
self.branch1_crossfeed_range = self.lb.branch1_crossfeed_range
self.branch1_crossfeed_decay = self.lb.branch1_crossfeed_decay
self.parental_crossfeed_power = self.lb.parental_crossfeed_power
self.parental_crossfeed_range = self.lb.parental_crossfeed_range
self.parental_crossfeed_power_decay = self.lb.parental_crossfeed_power_decay
def init_save_dir(self): def take_image1(self):
r""" return self.take_image(1)
Initializes the directory where stuff is being saved.
You can specify this directory in a ".env" file in your latentblending root, setting
DIR_OUT='/path/to/saving'
"""
load_dotenv(find_dotenv(), verbose=False)
self.dp_out = os.getenv("DIR_OUT")
if self.dp_out is None:
self.dp_out = ""
self.dp_imgs = os.path.join(self.dp_out, "imgs")
os.makedirs(self.dp_imgs, exist_ok=True)
self.dp_movies = os.path.join(self.dp_out, "movies")
os.makedirs(self.dp_movies, exist_ok=True)
self.save_empty_image()
def save_empty_image(self): def take_image2(self):
r""" return self.take_image(2)
Saves an empty/black dummy image.
"""
self.fp_img_empty = os.path.join(self.dp_imgs, 'empty.jpg')
Image.fromarray(np.zeros((self.height, self.width, 3), dtype=np.uint8)).save(self.fp_img_empty, quality=5)
def randomize_seed1(self): def take_image3(self):
r""" return self.take_image(3)
Randomizes the first seed
"""
seed = np.random.randint(0, 10000000)
self.seed1 = int(seed)
print(f"randomize_seed1: new seed = {self.seed1}")
return seed
def randomize_seed2(self):
r"""
Randomizes the second seed
"""
seed = np.random.randint(0, 10000000)
self.seed2 = int(seed)
print(f"randomize_seed2: new seed = {self.seed2}")
return seed
def setup_lb(self, list_ui_vals): def take_image(self, id_img):
r""" if self.prompt is None:
Sets all parameters from the UI. Since gradio does not support to pass dictionaries, print("Cannot take because no prompt was set!")
we have to instead pass keys (list_ui_keys, global) and values (list_ui_vals) return [None, None, None, None, ""]
""" if self.idx_movie == 0:
# Collect latent blending variables current_time = datetime.datetime.now()
self.lb.set_width(list_ui_vals[list_ui_keys.index('width')]) self.fp_out = "movie_" + current_time.strftime("%y%m%d_%H%M") + ".json"
self.lb.set_height(list_ui_vals[list_ui_keys.index('height')]) self.data.append({"settings": "sdxl", "width": bf.be.dh.width_img, "height": self.be.dh.height_img, "num_inference_steps": self.be.dh.num_inference_steps})
self.lb.set_prompt1(list_ui_vals[list_ui_keys.index('prompt1')])
self.lb.set_prompt2(list_ui_vals[list_ui_keys.index('prompt2')])
self.lb.set_negative_prompt(list_ui_vals[list_ui_keys.index('negative_prompt')])
self.lb.guidance_scale = list_ui_vals[list_ui_keys.index('guidance_scale')]
self.lb.guidance_scale_mid_damper = list_ui_vals[list_ui_keys.index('guidance_scale_mid_damper')]
self.t_compute_max_allowed = list_ui_vals[list_ui_keys.index('duration_compute')]
self.lb.num_inference_steps = list_ui_vals[list_ui_keys.index('num_inference_steps')]
self.lb.sdh.num_inference_steps = list_ui_vals[list_ui_keys.index('num_inference_steps')]
self.duration_video = list_ui_vals[list_ui_keys.index('duration_video')]
self.lb.seed1 = list_ui_vals[list_ui_keys.index('seed1')]
self.lb.seed2 = list_ui_vals[list_ui_keys.index('seed2')]
self.lb.branch1_crossfeed_power = list_ui_vals[list_ui_keys.index('branch1_crossfeed_power')]
self.lb.branch1_crossfeed_range = list_ui_vals[list_ui_keys.index('branch1_crossfeed_range')]
self.lb.branch1_crossfeed_decay = list_ui_vals[list_ui_keys.index('branch1_crossfeed_decay')]
self.lb.parental_crossfeed_power = list_ui_vals[list_ui_keys.index('parental_crossfeed_power')]
self.lb.parental_crossfeed_range = list_ui_vals[list_ui_keys.index('parental_crossfeed_range')]
self.lb.parental_crossfeed_power_decay = list_ui_vals[list_ui_keys.index('parental_crossfeed_power_decay')]
self.num_inference_steps = list_ui_vals[list_ui_keys.index('num_inference_steps')]
self.depth_strength = list_ui_vals[list_ui_keys.index('depth_strength')]
if len(list_ui_vals[list_ui_keys.index('user_id')]) > 1: seed = self.list_seeds[id_img]
self.user_id = list_ui_vals[list_ui_keys.index('user_id')]
else:
# generate new user id
self.user_id = uuid.uuid4().hex
print(f"made new user_id: {self.user_id} at {get_time('second')}")
def save_latents(self, fp_latents, list_latents): self.data.append({"iteration": self.idx_movie, "seed": seed, "prompt": self.prompt, "negative_prompt": self.negative_prompt})
r"""
Saves a latent trajectory on disk, in npy format.
"""
list_latents_cpu = [l.cpu().numpy() for l in list_latents]
np.save(fp_latents, list_latents_cpu)
def load_latents(self, fp_latents): # Write the data list to a JSON file
r""" with open(self.fp_out, 'w') as f:
Loads a latent trajectory from disk, converts to torch tensor. json.dump(self.data, f, indent=4)
"""
list_latents_cpu = np.load(fp_latents)
list_latents = [torch.from_numpy(l).to(self.lb.device) for l in list_latents_cpu]
return list_latents
def compute_img1(self, *args): self.idx_movie += 1
r""" self.prompt = None
Computes the first transition image and returns it for display. return [None, None, None, None, ""]
Sets all other transition images and last image to empty (as they are obsolete with this operation)
"""
list_ui_vals = args
self.setup_lb(list_ui_vals)
fp_img1 = os.path.join(self.dp_imgs, f"img1_{self.user_id}")
img1 = Image.fromarray(self.lb.compute_latents1(return_image=True))
img1.save(fp_img1 + ".jpg")
self.save_latents(fp_img1 + ".npy", self.lb.tree_latents[0])
self.recycle_img1 = True
self.recycle_img2 = False
return [fp_img1 + ".jpg", self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.user_id]
def compute_img2(self, *args):
r"""
Computes the last transition image and returns it for display.
Sets all other transition images to empty (as they are obsolete with this operation)
"""
if not os.path.isfile(os.path.join(self.dp_imgs, f"img1_{self.user_id}.jpg")): # don't do anything
return [self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.user_id]
list_ui_vals = args
self.setup_lb(list_ui_vals)
self.lb.tree_latents[0] = self.load_latents(os.path.join(self.dp_imgs, f"img1_{self.user_id}.npy")) def compute_imgs(self, prompt, negative_prompt):
fp_img2 = os.path.join(self.dp_imgs, f"img2_{self.user_id}") self.prompt = prompt
img2 = Image.fromarray(self.lb.compute_latents2(return_image=True)) self.negative_prompt = negative_prompt
img2.save(fp_img2 + '.jpg') self.be.set_prompt1(prompt)
self.save_latents(fp_img2 + ".npy", self.lb.tree_latents[-1]) self.be.set_prompt2(prompt)
self.recycle_img2 = True self.be.set_negative_prompt(negative_prompt)
# fixme save seeds. change filenames? self.list_seeds = []
return [self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, fp_img2 + ".jpg", self.user_id] self.list_images = []
for i in range(4):
seed = np.random.randint(0, 1000000000)
self.be.seed1 = seed
self.list_seeds.append(seed)
img = self.be.compute_latents1(return_image=True)
self.list_images.append(img)
return self.list_images
def compute_transition(self, *args):
r"""
Computes transition images and movie.
"""
list_ui_vals = args
self.setup_lb(list_ui_vals)
print("STARTING TRANSITION...")
fixed_seeds = [self.seed1, self.seed2]
# Inject loaded latents (other user interference)
self.lb.tree_latents[0] = self.load_latents(os.path.join(self.dp_imgs, f"img1_{self.user_id}.npy"))
self.lb.tree_latents[-1] = self.load_latents(os.path.join(self.dp_imgs, f"img2_{self.user_id}.npy"))
imgs_transition = self.lb.run_transition(
recycle_img1=self.recycle_img1,
recycle_img2=self.recycle_img2,
num_inference_steps=self.num_inference_steps,
depth_strength=self.depth_strength,
t_compute_max_allowed=self.t_compute_max_allowed,
fixed_seeds=fixed_seeds)
print(f"Latent Blending pass finished ({get_time('second')}). Resulted in {len(imgs_transition)} images")
# Subselect three preview images
idx_img_prev = np.round(np.linspace(0, len(imgs_transition) - 1, 5)[1:-1]).astype(np.int32)
list_imgs_preview = []
for j in idx_img_prev:
list_imgs_preview.append(Image.fromarray(imgs_transition[j]))
# Save the preview imgs as jpgs on disk so we are not sending umcompressed data around
current_timestamp = get_time('second')
self.list_fp_imgs_current = []
for i in range(len(list_imgs_preview)):
fp_img = os.path.join(self.dp_imgs, f"img_preview_{i}_{current_timestamp}.jpg")
list_imgs_preview[i].save(fp_img)
self.list_fp_imgs_current.append(fp_img)
# Insert cheap frames for the movie
imgs_transition_ext = add_frames_linear_interp(imgs_transition, self.duration_video, self.fps)
# Save as movie
self.fp_movie = self.get_fp_video_last()
if os.path.isfile(self.fp_movie):
os.remove(self.fp_movie)
ms = MovieSaver(self.fp_movie, fps=self.fps)
for img in tqdm(imgs_transition_ext):
ms.write_frame(img)
ms.finalize()
print("DONE SAVING MOVIE! SENDING BACK...")
# Assemble Output, updating the preview images and le movie
list_return = self.list_fp_imgs_current + [self.fp_movie]
return list_return
def stack_forward(self, prompt2, seed2):
r"""
Allows to generate multi-segment movies. Sets last image -> first image with all
relevant parameters.
"""
# Save preview images, prompts and seeds into dictionary for stacking
if len(self.list_all_segments) == 0:
timestamp_session = get_time('second')
self.dp_session = os.path.join(self.dp_out, f"session_{timestamp_session}")
os.makedirs(self.dp_session)
idx_segment = len(self.list_all_segments)
dp_segment = os.path.join(self.dp_session, f"segment_{str(idx_segment).zfill(3)}")
self.list_all_segments.append(dp_segment)
self.lb.write_imgs_transition(dp_segment)
fp_movie_last = self.get_fp_video_last()
fp_movie_next = self.get_fp_video_next()
shutil.copyfile(fp_movie_last, fp_movie_next)
self.lb.tree_latents[0] = self.load_latents(os.path.join(self.dp_imgs, f"img1_{self.user_id}.npy"))
self.lb.tree_latents[-1] = self.load_latents(os.path.join(self.dp_imgs, f"img2_{self.user_id}.npy"))
self.lb.swap_forward()
shutil.copyfile(os.path.join(self.dp_imgs, f"img2_{self.user_id}.npy"), os.path.join(self.dp_imgs, f"img1_{self.user_id}.npy"))
fp_multi = self.multi_concat()
list_out = [fp_multi]
list_out.extend([os.path.join(self.dp_imgs, f"img2_{self.user_id}.jpg")])
list_out.extend([self.fp_img_empty] * 4)
list_out.append(gr.update(interactive=False, value=prompt2))
list_out.append(gr.update(interactive=False, value=seed2))
list_out.append("")
list_out.append(np.random.randint(0, 10000000))
print(f"stack_forward: fp_multi {fp_multi}")
return list_out
def multi_concat(self):
r"""
Concatentates all stacked segments into one long movie.
"""
list_fp_movies = self.get_fp_video_all()
# Concatenate movies and save
fp_final = os.path.join(self.dp_session, f"concat_{self.user_id}.mp4")
concatenate_movies(fp_final, list_fp_movies)
return fp_final
def get_fp_video_all(self):
r"""
Collects all stacked movie segments.
"""
list_all = os.listdir(self.dp_movies)
str_beg = f"movie_{self.user_id}_"
list_user = [l for l in list_all if str_beg in l]
list_user.sort()
list_user = [os.path.join(self.dp_movies, l) for l in list_user]
return list_user
def get_fp_video_next(self):
r"""
Gets the filepath of the next movie segment.
"""
list_videos = self.get_fp_video_all()
if len(list_videos) == 0:
idx_next = 0
else:
idx_next = len(list_videos)
fp_video_next = os.path.join(self.dp_movies, f"movie_{self.user_id}_{str(idx_next).zfill(3)}.mp4")
return fp_video_next
def get_fp_video_last(self):
r"""
Gets the current video that was saved.
"""
fp_video_last = os.path.join(self.dp_movies, f"last_{self.user_id}.mp4")
return fp_video_last
if __name__ == "__main__": if __name__ == "__main__":
# fp_ckpt = hf_hub_download(repo_id="stabilityai/stable-diffusion-2-1-base", filename="v2-1_512-ema-pruned.ckpt")
fp_ckpt = hf_hub_download(repo_id="stabilityai/stable-diffusion-2-1", filename="v2-1_768-ema-pruned.ckpt") width = 786
bf = BlendingFrontend(StableDiffusionHolder(fp_ckpt)) height = 1024
# self = BlendingFrontend(None) num_inference_steps = 4
pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
# pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16")
pipe.to("cuda")
be = BlendingEngine(pipe)
be.set_dimensions((width, height))
be.set_num_inference_steps(num_inference_steps)
bf = BlendingFrontend(be)
with gr.Blocks() as demo: with gr.Blocks() as demo:
gr.HTML("""<h1>Latent Blending</h1>
<p>Create butter-smooth transitions between prompts, powered by stable diffusion</p>
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<br/>
<a href="https://huggingface.co/spaces/lunarring/latentblending?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
</p>""")
with gr.Row(): with gr.Row():
prompt1 = gr.Textbox(label="prompt 1") prompt = gr.Textbox(label="prompt")
prompt2 = gr.Textbox(label="prompt 2")
with gr.Row():
duration_compute = gr.Slider(10, 25, bf.t_compute_max_allowed, step=1, label='waiting time', interactive=True)
duration_video = gr.Slider(1, 100, bf.duration_video, step=0.1, label='video duration', interactive=True)
height = gr.Slider(256, 1024, bf.height, step=128, label='height', interactive=True)
width = gr.Slider(256, 1024, bf.width, step=128, label='width', interactive=True)
with gr.Accordion("Advanced Settings (click to expand)", open=False):
with gr.Accordion("Diffusion settings", open=True):
with gr.Row():
num_inference_steps = gr.Slider(5, 100, bf.num_inference_steps, step=1, label='num_inference_steps', interactive=True)
guidance_scale = gr.Slider(1, 25, bf.guidance_scale, step=0.1, label='guidance_scale', interactive=True)
negative_prompt = gr.Textbox(label="negative prompt") negative_prompt = gr.Textbox(label="negative prompt")
with gr.Accordion("Seed control: adjust seeds for first and last images", open=True):
with gr.Row(): with gr.Row():
b_newseed1 = gr.Button("randomize seed 1", variant='secondary') b_compute = gr.Button('compute new images', variant='primary')
seed1 = gr.Number(bf.seed1, label="seed 1", interactive=True)
seed2 = gr.Number(bf.seed2, label="seed 2", interactive=True)
b_newseed2 = gr.Button("randomize seed 2", variant='secondary')
with gr.Accordion("Last image crossfeeding.", open=True):
with gr.Row():
branch1_crossfeed_power = gr.Slider(0.0, 1.0, bf.branch1_crossfeed_power, step=0.01, label='branch1 crossfeed power', interactive=True)
branch1_crossfeed_range = gr.Slider(0.0, 1.0, bf.branch1_crossfeed_range, step=0.01, label='branch1 crossfeed range', interactive=True)
branch1_crossfeed_decay = gr.Slider(0.0, 1.0, bf.branch1_crossfeed_decay, step=0.01, label='branch1 crossfeed decay', interactive=True)
with gr.Accordion("Transition settings", open=True):
with gr.Row():
parental_crossfeed_power = gr.Slider(0.0, 1.0, bf.parental_crossfeed_power, step=0.01, label='parental crossfeed power', interactive=True)
parental_crossfeed_range = gr.Slider(0.0, 1.0, bf.parental_crossfeed_range, step=0.01, label='parental crossfeed range', interactive=True)
parental_crossfeed_power_decay = gr.Slider(0.0, 1.0, bf.parental_crossfeed_power_decay, step=0.01, label='parental crossfeed decay', interactive=True)
with gr.Row():
depth_strength = gr.Slider(0.01, 0.99, bf.depth_strength, step=0.01, label='depth_strength', interactive=True)
guidance_scale_mid_damper = gr.Slider(0.01, 2.0, bf.guidance_scale_mid_damper, step=0.01, label='guidance_scale_mid_damper', interactive=True)
with gr.Row(): with gr.Row():
b_compute1 = gr.Button('step1: compute first image', variant='primary') with gr.Column():
b_compute2 = gr.Button('step2: compute last image', variant='primary') img0 = gr.Image(label="seed1")
b_compute_transition = gr.Button('step3: compute transition', variant='primary') b_take0 = gr.Button('take', variant='primary')
with gr.Column():
img1 = gr.Image(label="seed2")
b_take1 = gr.Button('take', variant='primary')
with gr.Column():
img2 = gr.Image(label="seed3")
b_take2 = gr.Button('take', variant='primary')
with gr.Column():
img3 = gr.Image(label="seed4")
b_take3 = gr.Button('take', variant='primary')
with gr.Row(): b_compute.click(bf.compute_imgs, inputs=[prompt, negative_prompt], outputs=[img0, img1, img2, img3])
img1 = gr.Image(label="1/5") b_take0.click(bf.take_image0, outputs=[img0, img1, img2, img3, prompt])
img2 = gr.Image(label="2/5", show_progress=False) b_take1.click(bf.take_image1, outputs=[img0, img1, img2, img3, prompt])
img3 = gr.Image(label="3/5", show_progress=False) b_take2.click(bf.take_image2, outputs=[img0, img1, img2, img3, prompt])
img4 = gr.Image(label="4/5", show_progress=False) b_take3.click(bf.take_image3, outputs=[img0, img1, img2, img3, prompt])
img5 = gr.Image(label="5/5")
with gr.Row():
vid_single = gr.Video(label="current single trans")
vid_multi = gr.Video(label="concatented multi trans")
with gr.Row():
b_stackforward = gr.Button('append last movie segment (left) to multi movie (right)', variant='primary')
with gr.Row():
gr.Markdown(
"""
# Parameters
## Main
- waiting time: set your waiting time for the transition. high values = better quality
- video duration: seconds per segment
- height/width: in pixels
## Diffusion settings
- num_inference_steps: number of diffusion steps
- guidance_scale: latent blending seems to prefer lower values here
- negative prompt: enter negative prompt here, applied for all images
## Last image crossfeeding
- branch1_crossfeed_power: Controls the level of cross-feeding between the first and last image branch. For preserving structures.
- branch1_crossfeed_range: Sets the duration of active crossfeed during development. High values enforce strong structural similarity.
- branch1_crossfeed_decay: Sets decay for branch1_crossfeed_power. Lower values make the decay stronger across the range.
## Transition settings
- parental_crossfeed_power: Similar to branch1_crossfeed_power, however applied for the images withinin the transition.
- parental_crossfeed_range: Similar to branch1_crossfeed_range, however applied for the images withinin the transition.
- parental_crossfeed_power_decay: Similar to branch1_crossfeed_decay, however applied for the images withinin the transition.
- depth_strength: Determines when the blending process will begin in terms of diffusion steps. Low values more inventive but can cause motion.
- guidance_scale_mid_damper: Decreases the guidance scale in the middle of a transition.
""")
with gr.Row():
user_id = gr.Textbox(label="user id", interactive=False)
# Collect all UI elemts in list to easily pass as inputs in gradio
dict_ui_elem = {}
dict_ui_elem["prompt1"] = prompt1
dict_ui_elem["negative_prompt"] = negative_prompt
dict_ui_elem["prompt2"] = prompt2
dict_ui_elem["duration_compute"] = duration_compute
dict_ui_elem["duration_video"] = duration_video
dict_ui_elem["height"] = height
dict_ui_elem["width"] = width
dict_ui_elem["depth_strength"] = depth_strength
dict_ui_elem["branch1_crossfeed_power"] = branch1_crossfeed_power
dict_ui_elem["branch1_crossfeed_range"] = branch1_crossfeed_range
dict_ui_elem["branch1_crossfeed_decay"] = branch1_crossfeed_decay
dict_ui_elem["num_inference_steps"] = num_inference_steps
dict_ui_elem["guidance_scale"] = guidance_scale
dict_ui_elem["guidance_scale_mid_damper"] = guidance_scale_mid_damper
dict_ui_elem["seed1"] = seed1
dict_ui_elem["seed2"] = seed2
dict_ui_elem["parental_crossfeed_range"] = parental_crossfeed_range
dict_ui_elem["parental_crossfeed_power"] = parental_crossfeed_power
dict_ui_elem["parental_crossfeed_power_decay"] = parental_crossfeed_power_decay
dict_ui_elem["user_id"] = user_id
# Convert to list, as gradio doesn't seem to accept dicts
list_ui_vals = []
list_ui_keys = []
for k in dict_ui_elem.keys():
list_ui_vals.append(dict_ui_elem[k])
list_ui_keys.append(k)
bf.list_ui_keys = list_ui_keys
b_newseed1.click(bf.randomize_seed1, outputs=seed1)
b_newseed2.click(bf.randomize_seed2, outputs=seed2)
b_compute1.click(bf.compute_img1, inputs=list_ui_vals, outputs=[img1, img2, img3, img4, img5, user_id])
b_compute2.click(bf.compute_img2, inputs=list_ui_vals, outputs=[img2, img3, img4, img5, user_id])
b_compute_transition.click(bf.compute_transition,
inputs=list_ui_vals,
outputs=[img2, img3, img4, vid_single])
b_stackforward.click(bf.stack_forward,
inputs=[prompt2, seed2],
outputs=[vid_multi, img1, img2, img3, img4, img5, prompt1, seed1, prompt2])
demo.launch(share=bf.share, inbrowser=True, inline=False) demo.launch(share=bf.share, inbrowser=True, inline=False)