Merge pull request #12 from lunarring/sdxl_turbo

Sdxl turbo
This commit is contained in:
Johannes Stelzer 2024-01-09 17:06:51 +01:00 committed by GitHub
commit 321d083c7e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 508 additions and 536 deletions

View File

@ -17,7 +17,7 @@ import torch
import numpy as np
import warnings
from typing import Optional
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from utils import interpolate_spherical
from diffusers import DiffusionPipeline, StableDiffusionControlNetPipeline, ControlNetModel
from diffusers.models.attention_processor import (
@ -26,6 +26,7 @@ from diffusers.models.attention_processor import (
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import retrieve_timesteps
warnings.filterwarnings('ignore')
torch.backends.cudnn.benchmark = False
torch.set_grad_enabled(False)
@ -45,23 +46,26 @@ class DiffusersHolder():
self.width_latent = self.pipe.unet.config.sample_size
self.height_latent = self.pipe.unet.config.sample_size
self.width_img = self.width_latent * self.pipe.vae_scale_factor
self.height_img = self.height_latent * self.pipe.vae_scale_factor
def init_types(self):
assert hasattr(self.pipe, "__class__"), "No valid diffusers pipeline found."
assert hasattr(self.pipe.__class__, "__name__"), "No valid diffusers pipeline found."
if self.pipe.__class__.__name__ == 'StableDiffusionXLPipeline':
self.pipe.scheduler.set_timesteps(self.num_inference_steps, device=self.device)
self.use_sd_xl = True
prompt_embeds, _, _, _ = self.pipe.encode_prompt("test")
else:
self.use_sd_xl = False
prompt_embeds = self.pipe._encode_prompt("test", self.device, 1, True)
self.dtype = prompt_embeds.dtype
self.is_sdxl_turbo = 'turbo' in self.pipe._name_or_path
def set_num_inference_steps(self, num_inference_steps):
self.num_inference_steps = num_inference_steps
if self.use_sd_xl:
self.pipe.scheduler.set_timesteps(self.num_inference_steps, device=self.device)
self.pipe.scheduler.set_timesteps(self.num_inference_steps, device=self.device)
def set_dimensions(self, size_output):
s = self.pipe.vae_scale_factor
@ -87,74 +91,72 @@ class DiffusersHolder():
if len(self.negative_prompt) > 1:
self.negative_prompt = [self.negative_prompt[0]]
def get_text_embedding(self, prompt, do_classifier_free_guidance=True):
if self.use_sd_xl:
pr_encoder = self.pipe.encode_prompt
else:
pr_encoder = self.pipe._encode_prompt
prompt_embeds = pr_encoder(
def get_text_embedding(self, prompt):
do_classifier_free_guidance = self.guidance_scale > 1 and self.pipe.unet.config.time_cond_proj_dim is None
text_embeddings = self.pipe.encode_prompt(
prompt=prompt,
device=self.device,
prompt_2=prompt,
device=self.pipe._execution_device,
num_images_per_prompt=1,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=self.negative_prompt,
negative_prompt_2=self.negative_prompt,
prompt_embeds=None,
negative_prompt_embeds=None,
pooled_prompt_embeds=None,
negative_pooled_prompt_embeds=None,
lora_scale=None,
clip_skip=None,#self.pipe._clip_skip,
)
return prompt_embeds
return text_embeddings
def get_noise(self, seed=420):
H = self.height_latent
W = self.width_latent
C = self.pipe.unet.config.in_channels
generator = torch.Generator(device=self.device).manual_seed(int(seed))
latents = torch.randn((1, C, H, W), generator=generator, dtype=self.dtype, device=self.device)
if self.use_sd_xl:
latents = latents * self.pipe.scheduler.init_noise_sigma
latents = self.pipe.prepare_latents(
1,
self.pipe.unet.config.in_channels,
self.height_img,
self.width_img,
torch.float16,
self.pipe._execution_device,
torch.Generator(device=self.device).manual_seed(int(seed)),
None,
)
return latents
@torch.no_grad()
def latent2image(
self,
latents: torch.FloatTensor,
convert_numpy=True):
output_type="pil"):
r"""
Returns an image provided a latent representation from diffusion.
Args:
latents: torch.FloatTensor
Result of the diffusion process.
convert_numpy: if converting to numpy
output_type: "pil" or "np"
"""
if self.use_sd_xl:
# make sure the VAE is in float32 mode, as it overflows in float16
self.pipe.vae.to(dtype=torch.float32)
assert output_type in ["pil", "np"]
use_torch_2_0_or_xformers = isinstance(
self.pipe.vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
self.pipe.vae.post_quant_conv.to(latents.dtype)
self.pipe.vae.decoder.conv_in.to(latents.dtype)
self.pipe.vae.decoder.mid_block.to(latents.dtype)
else:
latents = latents.float()
# make sure the VAE is in float32 mode, as it overflows in float16
needs_upcasting = self.pipe.vae.dtype == torch.float16 and self.pipe.vae.config.force_upcast
if needs_upcasting:
self.pipe.upcast_vae()
latents = latents.to(next(iter(self.pipe.vae.post_quant_conv.parameters())).dtype)
image = self.pipe.vae.decode(latents / self.pipe.vae.config.scaling_factor, return_dict=False)[0]
image = self.pipe.image_processor.postprocess(image, output_type="pil", do_denormalize=[True] * image.shape[0])[0]
if convert_numpy:
return np.asarray(image)
else:
return image
# cast back to fp16 if needed
if needs_upcasting:
self.pipe.vae.to(dtype=torch.float16)
image = self.pipe.image_processor.postprocess(image, output_type=output_type)[0]
return image
def prepare_mixing(self, mixing_coeffs, list_latents_mixing):
if type(mixing_coeffs) == float:
@ -178,111 +180,94 @@ class DiffusersHolder():
mixing_coeffs=0.0,
return_image: Optional[bool] = False):
if self.pipe.__class__.__name__ == 'StableDiffusionXLPipeline':
return self.run_diffusion_sd_xl(text_embeddings, latents_start, idx_start, list_latents_mixing, mixing_coeffs, return_image)
elif self.pipe.__class__.__name__ == 'StableDiffusionPipeline':
return self.run_diffusion_sd12x(text_embeddings, latents_start, idx_start, list_latents_mixing, mixing_coeffs, return_image)
elif self.pipe.__class__.__name__ == 'StableDiffusionControlNetPipeline':
pass
return self.run_diffusion_sd_xl(text_embeddings, latents_start, idx_start, list_latents_mixing, mixing_coeffs, return_image)
@torch.no_grad()
def run_diffusion_sd12x(
self,
text_embeddings: torch.FloatTensor,
latents_start: torch.FloatTensor,
idx_start: int = 0,
list_latents_mixing=None,
mixing_coeffs=0.0,
return_image: Optional[bool] = False):
list_mixing_coeffs = self.prepare_mixing()
do_classifier_free_guidance = self.guidance_scale > 1.0
# accomodate different sd model types
self.pipe.scheduler.set_timesteps(self.num_inference_steps - 1, device=self.device)
timesteps = self.pipe.scheduler.timesteps
if len(timesteps) != self.num_inference_steps:
self.pipe.scheduler.set_timesteps(self.num_inference_steps, device=self.device)
timesteps = self.pipe.scheduler.timesteps
latents = latents_start.clone()
list_latents_out = []
for i, t in enumerate(timesteps):
# Set the right starting latents
if i < idx_start:
list_latents_out.append(None)
continue
elif i == idx_start:
latents = latents_start.clone()
# Mix latents
if i > 0 and list_mixing_coeffs[i] > 0:
latents_mixtarget = list_latents_mixing[i - 1].clone()
latents = interpolate_spherical(latents, latents_mixtarget, list_mixing_coeffs[i])
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.pipe.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.pipe.unet(
latent_model_input,
t,
encoder_hidden_states=text_embeddings,
return_dict=False,
)[0]
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.pipe.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
list_latents_out.append(latents.clone())
if return_image:
return self.latent2image(latents)
else:
return list_latents_out
@torch.no_grad()
def run_diffusion_sd_xl(
self,
text_embeddings: list,
latents_start: torch.FloatTensor,
idx_start: int = 0,
list_latents_mixing=None,
mixing_coeffs=0.0,
return_image: Optional[bool] = False):
self,
text_embeddings: tuple,
latents_start: torch.FloatTensor,
idx_start: int = 0,
list_latents_mixing=None,
mixing_coeffs=0.0,
return_image: Optional[bool] = False,
):
prompt_2 = None
height = None
width = None
timesteps = None
denoising_end = None
negative_prompt_2 = None
num_images_per_prompt = 1
eta = 0.0
generator = None
latents = None
prompt_embeds = None
negative_prompt_embeds = None
pooled_prompt_embeds = None
negative_pooled_prompt_embeds = None
ip_adapter_image = None
output_type = "pil"
return_dict = True
cross_attention_kwargs = None
guidance_rescale = 0.0
original_size = None
crops_coords_top_left = (0, 0)
target_size = None
negative_original_size = None
negative_crops_coords_top_left = (0, 0)
negative_target_size = None
clip_skip = None
callback = None
callback_on_step_end = None
callback_on_step_end_tensor_inputs = ["latents"]
# kwargs are additional keyword arguments and don't need a default value set here.
# 0. Default height and width to unet
original_size = (self.width_img, self.height_img)
crops_coords_top_left = (0, 0)
target_size = original_size
batch_size = 1
eta = 0.0
num_images_per_prompt = 1
cross_attention_kwargs = None
generator = torch.Generator(device=self.device) # dummy generator
do_classifier_free_guidance = self.guidance_scale > 1.0
height = height or self.pipe.default_sample_size * self.pipe.vae_scale_factor
width = width or self.pipe.default_sample_size * self.pipe.vae_scale_factor
# 1. Check inputs. Raise error if not correct & 2. Define call parameters
original_size = original_size or (height, width)
target_size = target_size or (height, width)
# 1. Check inputs. skipped.
self.pipe._guidance_scale = self.guidance_scale
self.pipe._guidance_rescale = guidance_rescale
self.pipe._clip_skip = clip_skip
self.pipe._cross_attention_kwargs = cross_attention_kwargs
self.pipe._denoising_end = denoising_end
self.pipe._interrupt = False
# 2. Define call parameters
list_mixing_coeffs = self.prepare_mixing(mixing_coeffs, list_latents_mixing)
batch_size = 1
# 3. Encode input prompt (already encoded outside bc of mixing, just split here)
prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = text_embeddings
device = self.pipe._execution_device
# 3. Encode input prompt
lora_scale = None
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = text_embeddings
# 4. Prepare timesteps
self.pipe.scheduler.set_timesteps(self.num_inference_steps, device=self.device)
timesteps = self.pipe.scheduler.timesteps
timesteps, num_inference_steps = retrieve_timesteps(self.pipe.scheduler, self.num_inference_steps, device, timesteps)
# 5. Prepare latent variables
num_channels_latents = self.pipe.unet.config.in_channels
latents = latents_start.clone()
list_latents_out = []
# 6. Prepare extra step kwargs. usedummy generator
extra_step_kwargs = self.pipe.prepare_extra_step_kwargs(generator, eta) # dummy
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.pipe.prepare_extra_step_kwargs(generator, eta)
# 7. Prepare added time ids & embeddings
add_text_embeds = pooled_prompt_embeds
@ -298,20 +283,50 @@ class DiffusersHolder():
dtype=prompt_embeds.dtype,
text_encoder_projection_dim=text_encoder_projection_dim,
)
if negative_original_size is not None and negative_target_size is not None:
negative_add_time_ids = self.pipe._get_add_time_ids(
negative_original_size,
negative_crops_coords_top_left,
negative_target_size,
dtype=prompt_embeds.dtype,
text_encoder_projection_dim=text_encoder_projection_dim,
)
else:
negative_add_time_ids = add_time_ids
negative_add_time_ids = add_time_ids
if self.pipe.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.to(self.device)
add_text_embeds = add_text_embeds.to(self.device)
add_time_ids = add_time_ids.to(self.device).repeat(batch_size * num_images_per_prompt, 1)
if ip_adapter_image is not None:
output_hidden_state = False if isinstance(self.pipe.unet.encoder_hid_proj, ImageProjection) else True
image_embeds, negative_image_embeds = self.pipe.encode_image(
ip_adapter_image, device, num_images_per_prompt, output_hidden_state
)
if self.pipe.do_classifier_free_guidance:
image_embeds = torch.cat([negative_image_embeds, image_embeds])
image_embeds = image_embeds.to(device)
# 8. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.pipe.scheduler.order, 0)
# 9. Optionally get Guidance Scale Embedding
timestep_cond = None
if self.pipe.unet.config.time_cond_proj_dim is not None:
guidance_scale_tensor = torch.tensor(self.pipe.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
timestep_cond = self.pipe.get_guidance_scale_embedding(
guidance_scale_tensor, embedding_dim=self.pipe.unet.config.time_cond_proj_dim
).to(device=device, dtype=latents.dtype)
self.pipe._num_timesteps = len(timesteps)
for i, t in enumerate(timesteps):
# Set the right starting latents
# Write latents out and skip
if i < idx_start:
list_latents_out.append(None)
continue
@ -323,26 +338,34 @@ class DiffusersHolder():
latents_mixtarget = list_latents_mixing[i - 1].clone()
latents = interpolate_spherical(latents, latents_mixtarget, list_mixing_coeffs[i])
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
# Always scale latents
latent_model_input = torch.cat([latents] * 2) if self.pipe.do_classifier_free_guidance else latents
latent_model_input = self.pipe.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
if ip_adapter_image is not None:
added_cond_kwargs["image_embeds"] = image_embeds
noise_pred = self.pipe.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
timestep_cond=timestep_cond,
cross_attention_kwargs=self.pipe.cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
if self.pipe.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
noise_pred = noise_pred_uncond + self.pipe.guidance_scale * (noise_pred_text - noise_pred_uncond)
if self.pipe.do_classifier_free_guidance and self.pipe.guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.pipe.guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = self.pipe.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
@ -350,145 +373,7 @@ class DiffusersHolder():
# Append latents
list_latents_out.append(latents.clone())
if return_image:
return self.latent2image(latents)
else:
return list_latents_out
@torch.no_grad()
def run_diffusion_controlnet(
self,
conditioning: list,
latents_start: torch.FloatTensor,
idx_start: int = 0,
list_latents_mixing=None,
mixing_coeffs=0.0,
return_image: Optional[bool] = False):
prompt_embeds = conditioning[0]
image = conditioning[1]
list_mixing_coeffs = self.prepare_mixing()
controlnet = self.pipe.controlnet
control_guidance_start = [0.0]
control_guidance_end = [1.0]
guess_mode = False
num_images_per_prompt = 1
batch_size = 1
eta = 0.0
controlnet_conditioning_scale = 1.0
# align format for control guidance
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
# 2. Define call parameters
device = self.pipe._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = self.guidance_scale > 1.0
# 4. Prepare image
image = self.pipe.prepare_image(
image=image,
width=None,
height=None,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=self.device,
dtype=controlnet.dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
guess_mode=guess_mode,
)
height, width = image.shape[-2:]
# 5. Prepare timesteps
self.pipe.scheduler.set_timesteps(self.num_inference_steps, device=self.device)
timesteps = self.pipe.scheduler.timesteps
# 6. Prepare latent variables
generator = torch.Generator(device=self.device).manual_seed(int(420))
latents = latents_start.clone()
list_latents_out = []
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.pipe.prepare_extra_step_kwargs(generator, eta)
# 7.1 Create tensor stating which controlnets to keep
controlnet_keep = []
for i in range(len(timesteps)):
keeps = [
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
for s, e in zip(control_guidance_start, control_guidance_end)
]
controlnet_keep.append(keeps[0] if len(keeps) == 1 else keeps)
# 8. Denoising loop
for i, t in enumerate(timesteps):
if i < idx_start:
list_latents_out.append(None)
continue
elif i == idx_start:
latents = latents_start.clone()
# Mix latents for crossfeeding
if i > 0 and list_mixing_coeffs[i] > 0:
latents_mixtarget = list_latents_mixing[i - 1].clone()
latents = interpolate_spherical(latents, latents_mixtarget, list_mixing_coeffs[i])
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.pipe.scheduler.scale_model_input(latent_model_input, t)
control_model_input = latent_model_input
controlnet_prompt_embeds = prompt_embeds
if isinstance(controlnet_keep[i], list):
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
else:
cond_scale = controlnet_conditioning_scale * controlnet_keep[i]
down_block_res_samples, mid_block_res_sample = self.pipe.controlnet(
control_model_input,
t,
encoder_hidden_states=controlnet_prompt_embeds,
controlnet_cond=image,
conditioning_scale=cond_scale,
guess_mode=guess_mode,
return_dict=False,
)
if guess_mode and do_classifier_free_guidance:
# Infered ControlNet only for the conditional batch.
# To apply the output of ControlNet to both the unconditional and conditional batches,
# add 0 to the unconditional batch to keep it unchanged.
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
# predict the noise residual
noise_pred = self.pipe.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=None,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.pipe.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# Append latents
list_latents_out.append(latents.clone())
if return_image:
return self.latent2image(latents)
@ -496,26 +381,108 @@ class DiffusersHolder():
return list_latents_out
#%%
if __name__ == "__main__":
from PIL import Image
#%%
pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16)
pipe.to('cuda') # xxx
#%%
from diffusers import AutoencoderTiny
# pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
pretrained_model_name_or_path = "stabilityai/sdxl-turbo"
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16, variant="fp16")
pipe.to("cuda")
#%
# pipe.vae = AutoencoderTiny.from_pretrained('madebyollin/taesdxl', torch_device='cuda', torch_dtype=torch.float16)
# pipe.vae = pipe.vae.cuda()
#%% resanity
import time
self = DiffusersHolder(pipe)
prompt1 = "photo of underwater landscape, fish, und the sea, incredible detail, high resolution"
negative_prompt = "blurry, ugly, pale"
num_inference_steps = 4
guidance_scale = 0
self.set_num_inference_steps(num_inference_steps)
self.guidance_scale = guidance_scale
prefix='turbo'
for i in range(10):
self.set_negative_prompt(negative_prompt)
text_embeddings = self.get_text_embedding(prompt1)
latents_start = self.get_noise(np.random.randint(111111))
t0 = time.time()
# img_refx = self.pipe(prompt=prompt1, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale)[0]
img_refx = self.run_diffusion_sd_xl(text_embeddings=text_embeddings, latents_start=latents_start, return_image=False)
dt_ref = time.time() - t0
img_refx.save(f"x_{prefix}_{i}.jpg")
# xxx
self.set_dimensions((1024, 704))
self.set_num_inference_steps(40)
# self.set_dimensions(1536, 1024)
prompt = "Surreal painting of eerie, nebulous glow of an indigo moon, a spine-chilling spectacle unfolds; a baroque, marbled hand reaches out from a viscous, purple lake clutching a melting clock, its face distorted in a never-ending scream of hysteria, while a cluster of laughing orchids, their petals morphed into grotesque human lips, festoon a crimson tree weeping blood instead of sap, a psychedelic cat with an unnaturally playful grin and mismatched eyes lounges atop a floating vintage television showing static, an albino peacock with iridescent, crystalline feathers dances around a towering, inverted pyramid on top of which a humanoid figure with an octopus head lounges seductively, all against the backdrop of a sprawling cityscape where buildings are inverted and writhing as if alive, and the sky is punctuated by floating aquatic creatures glowing neon, adding a touch of haunting beauty to this otherwise deeply unsettling tableau"
text_embeddings = self.get_text_embedding(prompt)
generator = torch.Generator(device=self.device).manual_seed(int(420))
latents_start = self.get_noise()
list_latents_1 = self.run_diffusion(text_embeddings, latents_start)
img_orig = self.latent2image(list_latents_1[-1])
# self.set_negative_prompt(negative_prompt)
# self.set_num_inference_steps(num_inference_steps)
# text_embeddings1 = self.get_text_embedding(prompt1)
# prompt_embeds1, negative_prompt_embeds1, pooled_prompt_embeds1, negative_pooled_prompt_embeds1 = text_embeddings1
# latents_start = self.get_noise(420)
# t0 = time.time()
# img_dh = self.run_diffusion_sd_xl_resanity(text_embeddings1, latents_start, idx_start=0, return_image=True)
# dt_dh = time.time() - t0
# xxxx
# #%%
# self = DiffusersHolder(pipe)
# num_inference_steps = 4
# self.set_num_inference_steps(num_inference_steps)
# latents_start = self.get_noise(420)
# guidance_scale = 0
# self.guidance_scale = 0
# #% get embeddings1
# prompt1 = "Photo of a colorful landscape with a blue sky with clouds"
# text_embeddings1 = self.get_text_embedding(prompt1)
# prompt_embeds1, negative_prompt_embeds1, pooled_prompt_embeds1, negative_pooled_prompt_embeds1 = text_embeddings1
# #% get embeddings2
# prompt2 = "Photo of a tree"
# text_embeddings2 = self.get_text_embedding(prompt2)
# prompt_embeds2, negative_prompt_embeds2, pooled_prompt_embeds2, negative_pooled_prompt_embeds2 = text_embeddings2
# latents1 = self.run_diffusion_sd_xl(text_embeddings1, latents_start, idx_start=0, return_image=False)
# img1 = self.run_diffusion_sd_xl(text_embeddings1, latents_start, idx_start=0, return_image=True)
# img1B = self.run_diffusion_sd_xl(text_embeddings1, latents_start, idx_start=0, return_image=True)
# # latents2 = self.run_diffusion_sd_xl(text_embeddings2, latents_start, idx_start=0, return_image=False)
# # # check if brings same image if restarted
# # img1_return = self.run_diffusion_sd_xl(text_embeddings1, latents1[idx_mix-1], idx_start=idx_start, return_image=True)
# # mix latents
# #%%
# idx_mix = 2
# fract=0.8
# latents_start_mixed = interpolate_spherical(latents1[idx_mix-1], latents2[idx_mix-1], fract)
# prompt_embeds = interpolate_spherical(prompt_embeds1, prompt_embeds2, fract)
# pooled_prompt_embeds = interpolate_spherical(pooled_prompt_embeds1, pooled_prompt_embeds2, fract)
# negative_prompt_embeds = negative_prompt_embeds1
# negative_pooled_prompt_embeds = negative_pooled_prompt_embeds1
# text_embeddings_mix = [prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds]
# self.run_diffusion_sd_xl(text_embeddings_mix, latents_start_mixed, idx_start=idx_start, return_image=True)

View File

@ -17,41 +17,25 @@ import torch
import warnings
from latent_blending import LatentBlending
from diffusers_holder import DiffusersHolder
from diffusers import DiffusionPipeline
from diffusers import AutoPipelineForText2Image
warnings.filterwarnings('ignore')
torch.set_grad_enabled(False)
torch.backends.cudnn.benchmark = False
# %% First let us spawn a stable diffusion holder. Uncomment your version of choice.
pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16)
pipe.to('cuda')
pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
pipe.to("cuda")
dh = DiffusersHolder(pipe)
# %% Next let's set up all parameters
depth_strength = 0.55 # Specifies how deep (in terms of diffusion iterations the first branching happens)
t_compute_max_allowed = 60 # Determines the quality of the transition in terms of compute time you grant it
num_inference_steps = 30
size_output = (1024, 1024)
prompt1 = "underwater landscape, fish, und the sea, incredible detail, high resolution"
prompt2 = "rendering of an alien planet, strange plants, strange creatures, surreal"
negative_prompt = "blurry, ugly, pale" # Optional
fp_movie = 'movie_example1.mp4'
duration_transition = 12 # In seconds
# Spawn latent blending
lb = LatentBlending(dh)
lb.set_prompt1(prompt1)
lb.set_prompt2(prompt2)
lb.set_dimensions(size_output)
lb.set_negative_prompt(negative_prompt)
lb.set_prompt1("photo of underwater landscape, fish, und the sea, incredible detail, high resolution")
lb.set_prompt2("rendering of an alien planet, strange plants, strange creatures, surreal")
lb.set_negative_prompt("blurry, ugly, pale")
# Run latent blending
lb.run_transition(
depth_strength=depth_strength,
num_inference_steps=num_inference_steps,
t_compute_max_allowed=t_compute_max_allowed)
lb.run_transition()
# Save movie
lb.write_movie_transition(fp_movie, duration_transition)
lb.write_movie_transition('movie_example1.mp4', duration_transition=12)

View File

@ -17,24 +17,20 @@ import torch
import warnings
from latent_blending import LatentBlending
from diffusers_holder import DiffusersHolder
from diffusers import DiffusionPipeline
from diffusers import AutoPipelineForText2Image
from movie_util import concatenate_movies
torch.set_grad_enabled(False)
torch.backends.cudnn.benchmark = False
warnings.filterwarnings('ignore')
# %% First let us spawn a stable diffusion holder. Uncomment your version of choice.
pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16)
pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
pipe.to('cuda')
dh = DiffusersHolder(pipe)
# %% Let's setup the multi transition
fps = 30
duration_single_trans = 20
depth_strength = 0.25 # Specifies how deep (in terms of diffusion iterations the first branching happens)
size_output = (1280, 768)
num_inference_steps = 30
duration_single_trans = 10
# Specify a list of prompts below
list_prompts = []
@ -45,12 +41,8 @@ list_prompts.append("photo of a house, high detail")
# You can optionally specify the seeds
list_seeds = [95437579, 33259350, 956051013]
t_compute_max_allowed = 20 # per segment
fp_movie = 'movie_example2.mp4'
lb = LatentBlending(dh)
lb.set_dimensions(size_output)
lb.dh.set_num_inference_steps(num_inference_steps)
list_movie_parts = []
for i in range(len(list_prompts) - 1):
@ -69,8 +61,6 @@ for i in range(len(list_prompts) - 1):
# Run latent blending
lb.run_transition(
recycle_img1=recycle_img1,
depth_strength=depth_strength,
t_compute_max_allowed=t_compute_max_allowed,
fixed_seeds=fixed_seeds)
# Save movie

View File

@ -33,18 +33,11 @@ class LatentBlending():
def __init__(
self,
dh: None,
guidance_scale: float = 4,
guidance_scale_mid_damper: float = 0.5,
mid_compression_scaler: float = 1.2):
r"""
Initializes the latent blending class.
Args:
guidance_scale: float
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
guidance_scale_mid_damper: float = 0.5
Reduces the guidance scale towards the middle of the transition.
A value of 0.5 would decrease the guidance_scale towards the middle linearly by 0.5.
@ -76,37 +69,49 @@ class LatentBlending():
self.tree_status = None
self.tree_final_imgs = []
self.list_nmb_branches_prev = []
self.list_injection_idx_prev = []
self.text_embedding1 = None
self.text_embedding2 = None
self.image1_lowres = None
self.image2_lowres = None
self.negative_prompt = None
self.num_inference_steps = self.dh.num_inference_steps
self.noise_level_upscaling = 20
self.list_injection_idx = None
self.list_nmb_branches = None
# Mixing parameters
self.branch1_crossfeed_power = 0.3
self.branch1_crossfeed_range = 0.3
self.branch1_crossfeed_decay = 0.99
self.parental_crossfeed_power = 0.3
self.parental_crossfeed_range = 0.6
self.parental_crossfeed_power_decay = 0.9
self.set_guidance_scale(guidance_scale)
self.set_guidance_scale()
self.multi_transition_img_first = None
self.multi_transition_img_last = None
self.dt_per_diff = 0
self.spatial_mask = None
self.dt_unet_step = 0
self.lpips = lpips.LPIPS(net='alex').cuda(self.device)
self.set_prompt1("")
self.set_prompt2("")
self.set_branch1_crossfeed()
self.set_parental_crossfeed()
self.set_num_inference_steps()
self.benchmark_speed()
self.set_branching()
def benchmark_speed(self):
"""
Measures the time per diffusion step and for the vae decoding
"""
text_embeddings = self.dh.get_text_embedding("test")
latents_start = self.dh.get_noise(np.random.randint(111111))
# warmup
list_latents = self.dh.run_diffusion_sd_xl(text_embeddings=text_embeddings, latents_start=latents_start, return_image=False, idx_start=self.num_inference_steps-1)
# bench unet
t0 = time.time()
list_latents = self.dh.run_diffusion_sd_xl(text_embeddings=text_embeddings, latents_start=latents_start, return_image=False, idx_start=self.num_inference_steps-1)
self.dt_unet_step = time.time() - t0
# bench vae
t0 = time.time()
img = self.dh.latent2image(list_latents[-1])
self.dt_vae = time.time() - t0
def set_dimensions(self, size_output=None):
r"""
sets the size of the output video.
@ -115,12 +120,23 @@ class LatentBlending():
width x height
Note: the size will get automatically adjusted to be divisable by 32.
"""
if size_output is None:
if self.dh.is_sdxl_turbo:
size_output = (512, 512)
else:
size_output = (1024, 1024)
self.dh.set_dimensions(size_output)
def set_guidance_scale(self, guidance_scale):
def set_guidance_scale(self, guidance_scale=None):
r"""
sets the guidance scale.
"""
if guidance_scale is None:
if self.dh.is_sdxl_turbo:
guidance_scale = 0.0
else:
guidance_scale = 4.0
self.guidance_scale_base = guidance_scale
self.guidance_scale = guidance_scale
self.dh.guidance_scale = guidance_scale
@ -142,7 +158,7 @@ class LatentBlending():
self.guidance_scale = guidance_scale_effective
self.dh.guidance_scale = guidance_scale_effective
def set_branch1_crossfeed(self, crossfeed_power, crossfeed_range, crossfeed_decay):
def set_branch1_crossfeed(self, crossfeed_power=0, crossfeed_range=0, crossfeed_decay=0):
r"""
Sets the crossfeed parameters for the first branch to the last branch.
Args:
@ -157,7 +173,7 @@ class LatentBlending():
self.branch1_crossfeed_range = np.clip(crossfeed_range, 0, 1)
self.branch1_crossfeed_decay = np.clip(crossfeed_decay, 0, 1)
def set_parental_crossfeed(self, crossfeed_power, crossfeed_range, crossfeed_decay):
def set_parental_crossfeed(self, crossfeed_power=None, crossfeed_range=None, crossfeed_decay=None):
r"""
Sets the crossfeed parameters for all transition images (within the first and last branch).
Args:
@ -168,9 +184,22 @@ class LatentBlending():
crossfeed_decay: float [0,1]
Sets decay for branch1_crossfeed_power. Lower values make the decay stronger across the range.
"""
if self.dh.is_sdxl_turbo:
if crossfeed_power is None:
crossfeed_power = 1.0
if crossfeed_range is None:
crossfeed_range = 1.0
if crossfeed_decay is None:
crossfeed_decay = 1.0
else:
crossfeed_power = 0.3
crossfeed_range = 0.6
crossfeed_decay = 0.9
self.parental_crossfeed_power = np.clip(crossfeed_power, 0, 1)
self.parental_crossfeed_range = np.clip(crossfeed_range, 0, 1)
self.parental_crossfeed_power_decay = np.clip(crossfeed_decay, 0, 1)
self.parental_crossfeed_decay = np.clip(crossfeed_decay, 0, 1)
def set_prompt1(self, prompt: str):
r"""
@ -210,25 +239,20 @@ class LatentBlending():
"""
self.image2_lowres = image
def run_transition(
self,
recycle_img1: Optional[bool] = False,
recycle_img2: Optional[bool] = False,
num_inference_steps: Optional[int] = 30,
depth_strength: Optional[float] = 0.3,
t_compute_max_allowed: Optional[float] = None,
nmb_max_branches: Optional[int] = None,
fixed_seeds: Optional[List[int]] = None):
r"""
Function for computing transitions.
Returns a list of transition images using spherical latent blending.
Args:
recycle_img1: Optional[bool]:
Don't recompute the latents for the first keyframe (purely prompt1). Saves compute.
recycle_img2: Optional[bool]:
Don't recompute the latents for the second keyframe (purely prompt2). Saves compute.
num_inference_steps:
Number of diffusion steps. Higher values will take more compute time.
def set_num_inference_steps(self, num_inference_steps=None):
if self.dh.is_sdxl_turbo:
if num_inference_steps is None:
num_inference_steps = 4
else:
if num_inference_steps is None:
num_inference_steps = 30
self.num_inference_steps = num_inference_steps
self.dh.set_num_inference_steps(num_inference_steps)
def set_branching(self, depth_strength=None, t_compute_max_allowed=None, nmb_max_branches=None):
"""
Sets the branching structure of the blending tree. Default arguments depend on pipe!
depth_strength:
Determines how deep the first injection will happen.
Deeper injections will cause (unwanted) formation of new structures,
@ -240,6 +264,45 @@ class LatentBlending():
Either provide t_compute_max_allowed or nmb_max_branches. The maximum number of branches to be computed. Higher values give better
results. Use this if you want to have controllable results independent
of your computer.
"""
if self.dh.is_sdxl_turbo:
assert t_compute_max_allowed is None, "time-based branching not supported for SDXL Turbo"
if depth_strength is not None:
idx_inject = int(round(self.num_inference_steps*depth_strength))
else:
idx_inject = 2
if nmb_max_branches is None:
nmb_max_branches = 10
self.list_idx_injection = [idx_inject]
self.list_nmb_stems = [nmb_max_branches]
else:
if depth_strength is None:
depth_strength = 0.5
if t_compute_max_allowed is None and nmb_max_branches is None:
t_compute_max_allowed = 20
elif t_compute_max_allowed is not None and nmb_max_branches is not None:
raise ValueErorr("Either specify t_compute_max_allowed or nmb_max_branches")
self.list_idx_injection, self.list_nmb_stems = self.get_time_based_branching(depth_strength, t_compute_max_allowed, nmb_max_branches)
def run_transition(
self,
recycle_img1: Optional[bool] = False,
recycle_img2: Optional[bool] = False,
fixed_seeds: Optional[List[int]] = None):
r"""
Function for computing transitions.
Returns a list of transition images using spherical latent blending.
Args:
recycle_img1: Optional[bool]:
Don't recompute the latents for the first keyframe (purely prompt1). Saves compute.
recycle_img2: Optional[bool]:
Don't recompute the latents for the second keyframe (purely prompt2). Saves compute.
num_inference_steps:
Number of diffusion steps. Higher values will take more compute time.
fixed_seeds: Optional[List[int)]:
You can supply two seeds that are used for the first and second keyframe (prompt1 and prompt2).
Otherwise random seeds will be taken.
@ -249,6 +312,7 @@ class LatentBlending():
assert self.text_embedding1 is not None, 'Set the first text embedding with .set_prompt1(...) before'
assert self.text_embedding2 is not None, 'Set the second text embedding with .set_prompt2(...) before'
# Random seeds
if fixed_seeds is not None:
if fixed_seeds == 'randomize':
@ -259,9 +323,6 @@ class LatentBlending():
self.seed1 = fixed_seeds[0]
self.seed2 = fixed_seeds[1]
# Ensure correct num_inference_steps in holder
self.num_inference_steps = num_inference_steps
self.dh.set_num_inference_steps(num_inference_steps)
# Compute / Recycle first image
if not recycle_img1 or len(self.tree_latents[0]) != self.num_inference_steps:
@ -280,28 +341,27 @@ class LatentBlending():
self.tree_fracts = [0.0, 1.0]
self.tree_final_imgs = [self.dh.latent2image((self.tree_latents[0][-1])), self.dh.latent2image((self.tree_latents[-1][-1]))]
self.tree_idx_injection = [0, 0]
self.tree_similarities = [self.get_tree_similarities]
# Hard-fix. Apply spatial mask only for list_latents2 but not for transition. WIP...
self.spatial_mask = None
# Set up branching scheme (dependent on provided compute time)
list_idx_injection, list_nmb_stems = self.get_time_based_branching(depth_strength, t_compute_max_allowed, nmb_max_branches)
# Run iteratively, starting with the longest trajectory.
# Always inserting new branches where they are needed most according to image similarity
for s_idx in tqdm(range(len(list_idx_injection))):
nmb_stems = list_nmb_stems[s_idx]
idx_injection = list_idx_injection[s_idx]
for s_idx in tqdm(range(len(self.list_idx_injection))):
nmb_stems = self.list_nmb_stems[s_idx]
idx_injection = self.list_idx_injection[s_idx]
for i in range(nmb_stems):
fract_mixing, b_parent1, b_parent2 = self.get_mixing_parameters(idx_injection)
self.set_guidance_mid_dampening(fract_mixing)
list_latents = self.compute_latents_mix(fract_mixing, b_parent1, b_parent2, idx_injection)
self.insert_into_tree(fract_mixing, idx_injection, list_latents)
# print(f"fract_mixing: {fract_mixing} idx_injection {idx_injection}")
# print(f"fract_mixing: {fract_mixing} idx_injection {idx_injection} bp1 {b_parent1} bp2 {b_parent2}")
return self.tree_final_imgs
def compute_latents1(self, return_image=False):
r"""
Runs a diffusion trajectory for the first image
@ -318,7 +378,7 @@ class LatentBlending():
latents_start=latents_start,
idx_start=0)
t1 = time.time()
self.dt_per_diff = (t1 - t0) / self.num_inference_steps
self.dt_unet_step = (t1 - t0) / self.num_inference_steps
self.tree_latents[0] = list_latents1
if return_image:
return self.dh.latent2image(list_latents1[-1])
@ -388,7 +448,7 @@ class LatentBlending():
mixing_coeffs = idx_injection * [self.parental_crossfeed_power]
nmb_mixing = idx_mixing_stop - idx_injection
if nmb_mixing > 0:
mixing_coeffs.extend(list(np.linspace(self.parental_crossfeed_power, self.parental_crossfeed_power * self.parental_crossfeed_power_decay, nmb_mixing)))
mixing_coeffs.extend(list(np.linspace(self.parental_crossfeed_power, self.parental_crossfeed_power * self.parental_crossfeed_decay, nmb_mixing)))
mixing_coeffs.extend((self.num_inference_steps - len(mixing_coeffs)) * [0])
latents_start = list_latents_parental_mix[idx_injection - 1]
list_latents = self.run_diffusion(
@ -417,8 +477,10 @@ class LatentBlending():
results. Use this if you want to have controllable results independent
of your computer.
"""
idx_injection_base = int(round(self.num_inference_steps * depth_strength))
list_idx_injection = np.arange(idx_injection_base, self.num_inference_steps - 1, 3)
idx_injection_base = int(np.floor(self.num_inference_steps * depth_strength))
steps = int(np.ceil(self.num_inference_steps/10))
list_idx_injection = np.arange(idx_injection_base, self.num_inference_steps, steps)
list_nmb_stems = np.ones(len(list_idx_injection), dtype=np.int32)
t_compute = 0
@ -436,11 +498,11 @@ class LatentBlending():
while not stop_criterion_reached:
list_compute_steps = self.num_inference_steps - list_idx_injection
list_compute_steps *= list_nmb_stems
t_compute = np.sum(list_compute_steps) * self.dt_per_diff + 0.15 * np.sum(list_nmb_stems)
t_compute += 2 * self.num_inference_steps * self.dt_per_diff # outer branches
t_compute = np.sum(list_compute_steps) * self.dt_unet_step + self.dt_vae * np.sum(list_nmb_stems)
t_compute += 2 * (self.num_inference_steps * self.dt_unet_step + self.dt_vae) # outer branches
increase_done = False
for s_idx in range(len(list_nmb_stems) - 1):
if list_nmb_stems[s_idx + 1] / list_nmb_stems[s_idx] >= 2:
if list_nmb_stems[s_idx + 1] / list_nmb_stems[s_idx] >= 1:
list_nmb_stems[s_idx] += 1
increase_done = True
break
@ -471,15 +533,15 @@ class LatentBlending():
the index in terms of diffusion steps, where the next insertion will start.
"""
# get_lpips_similarity
similarities = []
for i in range(len(self.tree_final_imgs) - 1):
similarities.append(self.get_lpips_similarity(self.tree_final_imgs[i], self.tree_final_imgs[i + 1]))
similarities = self.tree_similarities
# similarities = self.get_tree_similarities()
b_closest1 = np.argmax(similarities)
b_closest2 = b_closest1 + 1
fract_closest1 = self.tree_fracts[b_closest1]
fract_closest2 = self.tree_fracts[b_closest2]
fract_mixing = (fract_closest1 + fract_closest2) / 2
# Ensure that the parents are indeed older!
# Ensure that the parents are indeed older
b_parent1 = b_closest1
while True:
if self.tree_idx_injection[b_parent1] < idx_injection:
@ -492,7 +554,6 @@ class LatentBlending():
break
else:
b_parent2 += 1
fract_mixing = (fract_closest1 + fract_closest2) / 2
return fract_mixing, b_parent1, b_parent2
def insert_into_tree(self, fract_mixing, idx_injection, list_latents):
@ -506,11 +567,21 @@ class LatentBlending():
list_latents: list
list of the latents to be inserted
"""
img_insert = self.dh.latent2image(list_latents[-1])
b_parent1, b_parent2 = self.get_closest_idx(fract_mixing)
self.tree_latents.insert(b_parent1 + 1, list_latents)
self.tree_final_imgs.insert(b_parent1 + 1, self.dh.latent2image(list_latents[-1]))
self.tree_fracts.insert(b_parent1 + 1, fract_mixing)
self.tree_idx_injection.insert(b_parent1 + 1, idx_injection)
left_sim = self.get_lpips_similarity(img_insert, self.tree_final_imgs[b_parent1])
right_sim = self.get_lpips_similarity(img_insert, self.tree_final_imgs[b_parent2])
idx_insert = b_parent1 + 1
self.tree_latents.insert(idx_insert, list_latents)
self.tree_final_imgs.insert(idx_insert, img_insert)
self.tree_fracts.insert(idx_insert, fract_mixing)
self.tree_idx_injection.insert(idx_insert, idx_injection)
# update similarities
self.tree_similarities[b_parent1] = left_sim
self.tree_similarities.insert(idx_insert, right_sim)
def get_noise(self, seed):
r"""
@ -552,119 +623,29 @@ class LatentBlending():
self.dh.set_num_inference_steps(self.num_inference_steps)
assert type(list_conditionings) is list, "list_conditionings need to be a list"
if self.dh.use_sd_xl:
text_embeddings = list_conditionings[0]
return self.dh.run_diffusion_sd_xl(
text_embeddings=text_embeddings,
latents_start=latents_start,
idx_start=idx_start,
list_latents_mixing=list_latents_mixing,
mixing_coeffs=mixing_coeffs,
return_image=return_image)
text_embeddings = list_conditionings[0]
return self.dh.run_diffusion_sd_xl(
text_embeddings=text_embeddings,
latents_start=latents_start,
idx_start=idx_start,
list_latents_mixing=list_latents_mixing,
mixing_coeffs=mixing_coeffs,
return_image=return_image)
else:
text_embeddings = list_conditionings[0]
return self.dh.run_diffusion_standard(
text_embeddings=text_embeddings,
latents_start=latents_start,
idx_start=idx_start,
list_latents_mixing=list_latents_mixing,
mixing_coeffs=mixing_coeffs,
return_image=return_image)
def run_upscaling(
self,
dp_img: str,
depth_strength: float = 0.65,
num_inference_steps: int = 100,
nmb_max_branches_highres: int = 5,
nmb_max_branches_lowres: int = 6,
duration_single_segment=3,
fps=24,
fixed_seeds: Optional[List[int]] = None):
r"""
Runs upscaling with the x4 model. Requires that you run a transition before with a low-res model and save the results using write_imgs_transition.
Args:
dp_img: str
Path to the low-res transition path (as saved in write_imgs_transition)
depth_strength:
Determines how deep the first injection will happen.
Deeper injections will cause (unwanted) formation of new structures,
more shallow values will go into alpha-blendy land.
num_inference_steps:
Number of diffusion steps. Higher values will take more compute time.
nmb_max_branches_highres: int
Number of final branches of the upscaling transition pass. Note this is the number
of branches between each pair of low-res images.
nmb_max_branches_lowres: int
Number of input low-res images, subsampling all transition images written in the low-res pass.
Setting this number lower (e.g. 6) will decrease the compute time but not affect the results too much.
duration_single_segment: float
The duration of each high-res movie segment. You will have nmb_max_branches_lowres-1 segments in total.
fps: float
frames per second of movie
fixed_seeds: Optional[List[int)]:
You can supply two seeds that are used for the first and second keyframe (prompt1 and prompt2).
Otherwise random seeds will be taken.
"""
fp_yml = os.path.join(dp_img, "lowres.yaml")
fp_movie = os.path.join(dp_img, "movie_highres.mp4")
ms = MovieSaver(fp_movie, fps=fps)
assert os.path.isfile(fp_yml), "lowres.yaml does not exist. did you forget run_upscaling_step1?"
dict_stuff = yml_load(fp_yml)
# load lowres images
nmb_images_lowres = dict_stuff['nmb_images']
prompt1 = dict_stuff['prompt1']
prompt2 = dict_stuff['prompt2']
idx_img_lowres = np.round(np.linspace(0, nmb_images_lowres - 1, nmb_max_branches_lowres)).astype(np.int32)
imgs_lowres = []
for i in idx_img_lowres:
fp_img_lowres = os.path.join(dp_img, f"lowres_img_{str(i).zfill(4)}.jpg")
assert os.path.isfile(fp_img_lowres), f"{fp_img_lowres} does not exist. did you forget run_upscaling_step1?"
imgs_lowres.append(Image.open(fp_img_lowres))
# set up upscaling
text_embeddingA = self.dh.get_text_embedding(prompt1)
text_embeddingB = self.dh.get_text_embedding(prompt2)
list_fract_mixing = np.linspace(0, 1, nmb_max_branches_lowres - 1)
for i in range(nmb_max_branches_lowres - 1):
print(f"Starting movie segment {i+1}/{nmb_max_branches_lowres-1}")
self.text_embedding1 = interpolate_linear(text_embeddingA, text_embeddingB, list_fract_mixing[i])
self.text_embedding2 = interpolate_linear(text_embeddingA, text_embeddingB, 1 - list_fract_mixing[i])
if i == 0:
recycle_img1 = False
else:
self.swap_forward()
recycle_img1 = True
self.set_image1(imgs_lowres[i])
self.set_image2(imgs_lowres[i + 1])
list_imgs = self.run_transition(
recycle_img1=recycle_img1,
recycle_img2=False,
num_inference_steps=num_inference_steps,
depth_strength=depth_strength,
nmb_max_branches=nmb_max_branches_highres)
list_imgs_interp = add_frames_linear_interp(list_imgs, fps, duration_single_segment)
# Save movie frame
for img in list_imgs_interp:
ms.write_frame(img)
ms.finalize()
@torch.no_grad()
def get_mixed_conditioning(self, fract_mixing):
if self.dh.use_sd_xl:
text_embeddings_mix = []
for i in range(len(self.text_embedding1)):
text_embeddings_mix.append(interpolate_linear(self.text_embedding1[i], self.text_embedding2[i], fract_mixing))
list_conditionings = [text_embeddings_mix]
else:
text_embeddings_mix = interpolate_linear(self.text_embedding1, self.text_embedding2, fract_mixing)
list_conditionings = [text_embeddings_mix]
text_embeddings_mix = []
for i in range(len(self.text_embedding1)):
if self.text_embedding1[i] is None:
mix = None
else:
mix = interpolate_linear(self.text_embedding1[i], self.text_embedding2[i], fract_mixing)
text_embeddings_mix.append(mix)
list_conditionings = [text_embeddings_mix]
return list_conditionings
@torch.no_grad()
@ -733,7 +714,7 @@ class LatentBlending():
'num_inference_steps', 'depth_strength', 'guidance_scale',
'guidance_scale_mid_damper', 'mid_compression_scaler', 'negative_prompt',
'branch1_crossfeed_power', 'branch1_crossfeed_range', 'branch1_crossfeed_decay'
'parental_crossfeed_power', 'parental_crossfeed_range', 'parental_crossfeed_power_decay']
'parental_crossfeed_power', 'parental_crossfeed_range', 'parental_crossfeed_decay']
for v in grab_vars:
if hasattr(self, v):
if v == 'seed1' or v == 'seed2':
@ -797,16 +778,22 @@ class LatentBlending():
Used to determine the optimal point of insertion to create smooth transitions.
High values indicate low similarity.
"""
tensorA = torch.from_numpy(imgA).float().cuda(self.device)
tensorA = torch.from_numpy(np.asarray(imgA)).float().cuda(self.device)
tensorA = 2 * tensorA / 255.0 - 1
tensorA = tensorA.permute([2, 0, 1]).unsqueeze(0)
tensorB = torch.from_numpy(imgB).float().cuda(self.device)
tensorB = torch.from_numpy(np.asarray(imgB)).float().cuda(self.device)
tensorB = 2 * tensorB / 255.0 - 1
tensorB = tensorB.permute([2, 0, 1]).unsqueeze(0)
lploss = self.lpips(tensorA, tensorB)
lploss = float(lploss[0][0][0][0])
return lploss
def get_tree_similarities(self):
similarities = []
for i in range(len(self.tree_final_imgs) - 1):
similarities.append(self.get_lpips_similarity(self.tree_final_imgs[i], self.tree_final_imgs[i + 1]))
return similarities
# Auxiliary functions
def get_closest_idx(
self,
@ -831,3 +818,46 @@ class LatentBlending():
b_parent1 = tmp
return b_parent1, b_parent2
#%%
if __name__ == "__main__":
# %% First let us spawn a stable diffusion holder. Uncomment your version of choice.
from diffusers_holder import DiffusersHolder
from diffusers import DiffusionPipeline
from diffusers import AutoencoderTiny
# pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
pretrained_model_name_or_path = "stabilityai/sdxl-turbo"
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16, variant="fp16")
pipe.to("cuda")
pipe.vae = AutoencoderTiny.from_pretrained('madebyollin/taesdxl', torch_device='cuda', torch_dtype=torch.float16)
pipe.vae = pipe.vae.cuda()
dh = DiffusersHolder(pipe)
# %% Next let's set up all parameters
prompt1 = "photo of underwater landscape, fish, und the sea, incredible detail, high resolution"
prompt2 = "rendering of an alien planet, strange plants, strange creatures, surreal"
negative_prompt = "blurry, ugly, pale" # Optional
duration_transition = 12 # In seconds
# Spawn latent blending
lb = LatentBlending(dh)
lb.set_prompt1(prompt1)
lb.set_prompt2(prompt2)
lb.set_negative_prompt(negative_prompt)
# Run latent blending
t0 = time.time()
lb.run_transition(fixed_seeds=[420, 421])
dt = time.time() - t0
# Save movie
fp_movie = f'test.mp4'
lb.write_movie_transition(fp_movie, duration_transition)

View File

@ -262,7 +262,6 @@ def add_subtitles_to_video(
class MovieReader():
r"""
Class to read in a movie.

View File

@ -24,7 +24,7 @@ import datetime
from typing import List, Union
torch.set_grad_enabled(False)
import yaml
import PIL
@torch.no_grad()
def interpolate_spherical(p0, p1, fract_mixing: float):
@ -142,6 +142,8 @@ def add_frames_linear_interp(
if nmb_frames_missing < 1:
return list_imgs
if type(list_imgs[0]) == PIL.Image.Image:
list_imgs = [np.asarray(l) for l in list_imgs]
list_imgs_float = [img.astype(np.float32) for img in list_imgs]
# Distribute missing frames, append nmb_frames_to_insert(i) frames for each frame
mean_nmb_frames_insert = nmb_frames_missing / nmb_frames_diff