This commit is contained in:
Johannes Stelzer 2023-02-20 07:22:01 +01:00
parent 64dc488e29
commit 1c575384b0
3 changed files with 77 additions and 0 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 207 KiB

View File

Before

Width:  |  Height:  |  Size: 213 KiB

After

Width:  |  Height:  |  Size: 213 KiB

77
example3_upscaling.py Normal file
View File

@ -0,0 +1,77 @@
# Copyright 2022 Lunar Ring. All rights reserved.
# Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os, sys
import torch
torch.backends.cudnn.benchmark = False
import numpy as np
import warnings
warnings.filterwarnings('ignore')
import warnings
import torch
from tqdm.auto import tqdm
from PIL import Image
# import matplotlib.pyplot as plt
import torch
from movie_util import MovieSaver
from typing import Callable, List, Optional, Union
from latent_blending import LatentBlending, add_frames_linear_interp
from stable_diffusion_holder import StableDiffusionHolder
torch.set_grad_enabled(False)
#%% Define vars for low-resoltion pass
prompt1 = "photo of mount vesuvius erupting a terrifying pyroclastic ash cloud"
prompt2 = "photo of a inside a building full of ash, fire, death, destruction, explosions"
fixed_seeds = [5054613, 1168652]
width = 512
height = 384
num_inference_steps_lores = 40
nmb_max_branches_lores = 10
depth_strength_lores = 0.5
fp_ckpt_lores = "../stable_diffusion_models/ckpt/v2-1_512-ema-pruned.ckpt"
#%% Define vars for high-resoltion pass
fp_ckpt_hires = "../stable_diffusion_models/ckpt/x4-upscaler-ema.ckpt"
depth_strength_hires = 0.65
num_inference_steps_hires = 100
nmb_branches_final_hires = 6
dp_imgs = "tmp_transition" # folder for results and intermediate steps
#%% Run low-res pass
sdh = StableDiffusionHolder(fp_ckpt_lores)
#%%
lb = LatentBlending(sdh)
lb.set_prompt1(prompt1)
lb.set_prompt2(prompt2)
lb.set_width(width)
lb.set_height(height)
# Run latent blending
lb.run_transition(
depth_strength = depth_strength_lores,
nmb_max_branches = nmb_max_branches_lores,
fixed_seeds = fixed_seeds
)
lb.write_imgs_transition(dp_imgs)
#%% Run high-res pass
sdh = StableDiffusionHolder(fp_ckpt_hires)
lb = LatentBlending(sdh)
lb.run_upscaling(dp_imgs, depth_strength_hires, num_inference_steps_hires, nmb_branches_final_hires)