negative prompts
This commit is contained in:
parent
34cc1edd57
commit
16da42c10e
33
gradio_ui.py
33
gradio_ui.py
|
@ -35,9 +35,6 @@ import copy
|
||||||
|
|
||||||
"""
|
"""
|
||||||
experiment with slider as output -> does it change in the browser?
|
experiment with slider as output -> does it change in the browser?
|
||||||
guidance scale has no effect
|
|
||||||
get a movie as result
|
|
||||||
seed bug: also shows changes from before
|
|
||||||
mid compression scaler can destroy tree
|
mid compression scaler can destroy tree
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
@ -77,9 +74,10 @@ class BlendingFrontend():
|
||||||
self.guidance_scale = 4.0
|
self.guidance_scale = 4.0
|
||||||
self.guidance_scale_mid_damper = 0.5
|
self.guidance_scale_mid_damper = 0.5
|
||||||
self.mid_compression_scaler = 1.2
|
self.mid_compression_scaler = 1.2
|
||||||
self.prompt1 = ''
|
self.prompt1 = ""
|
||||||
self.prompt2 = ''
|
self.prompt2 = ""
|
||||||
self.dp_base = '/home/lugo/latentblending'
|
self.negative_prompt = ""
|
||||||
|
self.dp_base = "/home/lugo/latentblending"
|
||||||
self.list_settings = []
|
self.list_settings = []
|
||||||
self.state_prev = {}
|
self.state_prev = {}
|
||||||
self.state_current = {}
|
self.state_current = {}
|
||||||
|
@ -137,6 +135,9 @@ class BlendingFrontend():
|
||||||
self.prompt2 = value
|
self.prompt2 = value
|
||||||
# print(f"changed prompt2 to {value}")
|
# print(f"changed prompt2 to {value}")
|
||||||
|
|
||||||
|
def change_negative_prompt(self, value):
|
||||||
|
self.negative_prompt = value
|
||||||
|
|
||||||
def change_seed1(self, value):
|
def change_seed1(self, value):
|
||||||
self.seed1 = int(value)
|
self.seed1 = int(value)
|
||||||
|
|
||||||
|
@ -170,15 +171,6 @@ class BlendingFrontend():
|
||||||
self.lb.sdh.height = self.height
|
self.lb.sdh.height = self.height
|
||||||
self.lb.sdh.width = self.width
|
self.lb.sdh.width = self.width
|
||||||
|
|
||||||
# list_nmb_branches = [2, 6, 15]
|
|
||||||
# list_injection_strength = [0.0, self.depth_strength, 0.9]
|
|
||||||
|
|
||||||
# self.lb.setup_branching(
|
|
||||||
# num_inference_steps = self.num_inference_steps,
|
|
||||||
# list_nmb_branches = list_nmb_branches,
|
|
||||||
# list_injection_strength = list_injection_strength
|
|
||||||
# )
|
|
||||||
|
|
||||||
self.lb.autosetup_branching(
|
self.lb.autosetup_branching(
|
||||||
depth_strength = self.depth_strength,
|
depth_strength = self.depth_strength,
|
||||||
num_inference_steps = self.num_inference_steps,
|
num_inference_steps = self.num_inference_steps,
|
||||||
|
@ -187,6 +179,7 @@ class BlendingFrontend():
|
||||||
|
|
||||||
self.lb.set_prompt1(self.prompt1)
|
self.lb.set_prompt1(self.prompt1)
|
||||||
self.lb.set_prompt2(self.prompt2)
|
self.lb.set_prompt2(self.prompt2)
|
||||||
|
self.lb.set_negative_prompt(self.negative_prompt)
|
||||||
|
|
||||||
self.lb.guidance_scale = self.guidance_scale
|
self.lb.guidance_scale = self.guidance_scale
|
||||||
self.lb.guidance_scale_mid_damper = self.guidance_scale_mid_damper
|
self.lb.guidance_scale_mid_damper = self.guidance_scale_mid_damper
|
||||||
|
@ -276,8 +269,8 @@ self = BlendingFrontend()
|
||||||
with gr.Blocks() as demo:
|
with gr.Blocks() as demo:
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
text1 = gr.Textbox(label="prompt 1")
|
prompt1 = gr.Textbox(label="prompt 1")
|
||||||
text2 = gr.Textbox(label="prompt 2")
|
prompt2 = gr.Textbox(label="prompt 2")
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
depth_strength = gr.Slider(0.01, 0.99, self.depth_strength, step=0.01, label='depth_strength', interactive=True)
|
depth_strength = gr.Slider(0.01, 0.99, self.depth_strength, step=0.01, label='depth_strength', interactive=True)
|
||||||
|
@ -289,6 +282,7 @@ with gr.Blocks() as demo:
|
||||||
num_inference_steps = gr.Slider(5, 100, self.num_inference_steps, step=1, label='num_inference_steps', interactive=True)
|
num_inference_steps = gr.Slider(5, 100, self.num_inference_steps, step=1, label='num_inference_steps', interactive=True)
|
||||||
height = gr.Slider(256, 2048, self.height, step=128, label='height', interactive=True)
|
height = gr.Slider(256, 2048, self.height, step=128, label='height', interactive=True)
|
||||||
width = gr.Slider(256, 2048, self.width, step=128, label='width', interactive=True)
|
width = gr.Slider(256, 2048, self.width, step=128, label='width', interactive=True)
|
||||||
|
negative_prompt = gr.Textbox(label="negative prompt")
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
b_newseed1 = gr.Button("rand seed 1")
|
b_newseed1 = gr.Button("rand seed 1")
|
||||||
|
@ -324,10 +318,11 @@ with gr.Blocks() as demo:
|
||||||
|
|
||||||
height.change(fn=self.change_height, inputs=height)
|
height.change(fn=self.change_height, inputs=height)
|
||||||
width.change(fn=self.change_width, inputs=width)
|
width.change(fn=self.change_width, inputs=width)
|
||||||
text1.change(fn=self.change_prompt1, inputs=text1)
|
prompt1.change(fn=self.change_prompt1, inputs=prompt1)
|
||||||
text2.change(fn=self.change_prompt2, inputs=text2)
|
prompt2.change(fn=self.change_prompt2, inputs=prompt2)
|
||||||
seed1.change(fn=self.change_seed1, inputs=seed1)
|
seed1.change(fn=self.change_seed1, inputs=seed1)
|
||||||
seed2.change(fn=self.change_seed2, inputs=seed2)
|
seed2.change(fn=self.change_seed2, inputs=seed2)
|
||||||
|
negative_prompt.change(fn=self.change_negative_prompt, inputs=negative_prompt)
|
||||||
|
|
||||||
b_newseed1.click(self.randomize_seed1, outputs=seed1)
|
b_newseed1.click(self.randomize_seed1, outputs=seed1)
|
||||||
b_newseed2.click(self.randomize_seed2, outputs=seed2)
|
b_newseed2.click(self.randomize_seed2, outputs=seed2)
|
||||||
|
|
|
@ -86,6 +86,7 @@ class LatentBlending():
|
||||||
# Initialize vars
|
# Initialize vars
|
||||||
self.prompt1 = ""
|
self.prompt1 = ""
|
||||||
self.prompt2 = ""
|
self.prompt2 = ""
|
||||||
|
self.negative_prompt = ""
|
||||||
self.tree_latents = None
|
self.tree_latents = None
|
||||||
self.tree_fracts = None
|
self.tree_fracts = None
|
||||||
self.tree_status = None
|
self.tree_status = None
|
||||||
|
@ -127,6 +128,12 @@ class LatentBlending():
|
||||||
self.guidance_scale = guidance_scale
|
self.guidance_scale = guidance_scale
|
||||||
self.sdh.guidance_scale = guidance_scale
|
self.sdh.guidance_scale = guidance_scale
|
||||||
|
|
||||||
|
def set_negative_prompt(self, negative_prompt):
|
||||||
|
r"""Set the negative prompt. Currenty only one negative prompt is supported
|
||||||
|
"""
|
||||||
|
self.negative_prompt = negative_prompt
|
||||||
|
self.sdh.set_negative_prompt(negative_prompt)
|
||||||
|
|
||||||
def set_guidance_mid_dampening(self, fract_mixing):
|
def set_guidance_mid_dampening(self, fract_mixing):
|
||||||
r"""
|
r"""
|
||||||
Tunes the guidance scale down as a linear function of fract_mixing,
|
Tunes the guidance scale down as a linear function of fract_mixing,
|
||||||
|
@ -1096,10 +1103,23 @@ if __name__ == "__main__":
|
||||||
dp_img = "/home/lugo/latentblending/230107_144533"
|
dp_img = "/home/lugo/latentblending/230107_144533"
|
||||||
self.run_upscaling_step2(dp_img)
|
self.run_upscaling_step2(dp_img)
|
||||||
|
|
||||||
|
|
||||||
#%%
|
#%%
|
||||||
"""
|
"""
|
||||||
|
mr stealy
|
||||||
|
|
||||||
|
|
||||||
|
elif isinstance(negative_prompt, str):
|
||||||
|
uncond_tokens = [negative_prompt]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
#%%
|
||||||
|
"""
|
||||||
|
|
||||||
TODO Coding:
|
TODO Coding:
|
||||||
CHECK IF ALL STUFF WORKS STILL: STANDARD MODEL, INPAINTING
|
CHECK IF ALL STUFF WORKS STILL: STANDARD MODEL, INPAINTING
|
||||||
RUNNING WITHOUT PROMPT!
|
RUNNING WITHOUT PROMPT!
|
||||||
|
|
|
@ -144,6 +144,8 @@ class StableDiffusionHolder:
|
||||||
self.mask_empty = Image.fromarray(255*np.ones([self.width, self.height], dtype=np.uint8))
|
self.mask_empty = Image.fromarray(255*np.ones([self.width, self.height], dtype=np.uint8))
|
||||||
self.image_empty = Image.fromarray(np.zeros([self.width, self.height, 3], dtype=np.uint8))
|
self.image_empty = Image.fromarray(np.zeros([self.width, self.height, 3], dtype=np.uint8))
|
||||||
|
|
||||||
|
self.negative_prompt = [""]
|
||||||
|
|
||||||
|
|
||||||
def init_model(self, fp_ckpt, fp_config):
|
def init_model(self, fp_ckpt, fp_config):
|
||||||
assert os.path.isfile(fp_ckpt), f"Your model checkpoint file does not exist: {fp_ckpt}"
|
assert os.path.isfile(fp_ckpt), f"Your model checkpoint file does not exist: {fp_ckpt}"
|
||||||
|
@ -158,7 +160,17 @@ class StableDiffusionHolder:
|
||||||
self.model = self.model.to(self.device)
|
self.model = self.model.to(self.device)
|
||||||
self.sampler = DDIMSampler(self.model)
|
self.sampler = DDIMSampler(self.model)
|
||||||
|
|
||||||
|
def set_negative_prompt(self, negative_prompt):
|
||||||
|
r"""Set the negative prompt. Currenty only one negative prompt is supported
|
||||||
|
"""
|
||||||
|
|
||||||
|
if isinstance(negative_prompt, str):
|
||||||
|
self.negative_prompt = [negative_prompt]
|
||||||
|
else:
|
||||||
|
self.negative_prompt = negative_prompt
|
||||||
|
|
||||||
|
if len(self.negative_prompt) > 1:
|
||||||
|
self.negative_prompt = [self.negative_prompt[0]]
|
||||||
|
|
||||||
def init_auto_res(self):
|
def init_auto_res(self):
|
||||||
r"""Automatically set the resolution to the one used in training.
|
r"""Automatically set the resolution to the one used in training.
|
||||||
|
@ -266,7 +278,7 @@ class StableDiffusionHolder:
|
||||||
with precision_scope("cuda"):
|
with precision_scope("cuda"):
|
||||||
with self.model.ema_scope():
|
with self.model.ema_scope():
|
||||||
if self.guidance_scale != 1.0:
|
if self.guidance_scale != 1.0:
|
||||||
uc = self.model.get_learned_conditioning([""])
|
uc = self.model.get_learned_conditioning(self.negative_prompt)
|
||||||
else:
|
else:
|
||||||
uc = None
|
uc = None
|
||||||
shape_latents = [self.C, self.height // self.f, self.width // self.f]
|
shape_latents = [self.C, self.height // self.f, self.width // self.f]
|
||||||
|
@ -532,177 +544,28 @@ class StableDiffusionHolder:
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
||||||
|
|
||||||
fp_ckpt= "../stable_diffusion_models/ckpt/x4-upscaler-ema.ckpt"
|
|
||||||
fp_config = 'configs/x4-upscaling.yaml'
|
|
||||||
num_inference_steps = 100
|
|
||||||
self = StableDiffusionHolder(fp_ckpt, fp_config, num_inference_steps=num_inference_steps)
|
|
||||||
xxx
|
|
||||||
#%% image A
|
|
||||||
image = Image.open('/home/lugo/latentblending/test1/img_0007.jpg')
|
|
||||||
image = image.resize((32*20, 32*12))
|
|
||||||
promptA = "photo of a an ancient castle surrounded by a forest"
|
|
||||||
noise_level = 20 #gradio min=0, max=350, value=20
|
|
||||||
text_embeddingA = self.get_text_embedding(promptA)
|
|
||||||
cond, uc_full = self.get_cond_upscaling(image, text_embeddingA, noise_level)
|
|
||||||
|
|
||||||
list_samplesA = self.run_diffusion_upscaling(cond, uc_full)
|
|
||||||
image_result = Image.fromarray(self.latent2image(list_samplesA[-1]))
|
|
||||||
image_result.save('/home/lugo/latentblending/test1/high/imgA.jpg')
|
|
||||||
|
|
||||||
|
|
||||||
#%% image B
|
|
||||||
from latent_blending import interpolate_linear, interpolate_spherical
|
|
||||||
image = Image.open('/home/lugo/latentblending/test1/img_0006.jpg')
|
|
||||||
image = image.resize((32*20, 32*12))
|
|
||||||
promptA = "photo of a an ancient castle surrounded by a forest"
|
|
||||||
promptB = "photo of a beautiful island on the horizon, blue sea with waves"
|
|
||||||
noise_level = 20 #gradio min=0, max=350, value=20
|
|
||||||
text_embeddingA = self.get_text_embedding(promptA)
|
|
||||||
text_embeddingB = self.get_text_embedding(promptB)
|
|
||||||
text_embedding = interpolate_linear(text_embeddingA, text_embeddingB, 1/8)
|
|
||||||
|
|
||||||
cond, uc_full = self.get_cond_upscaling(image, text_embedding, noise_level)
|
|
||||||
|
|
||||||
list_samplesB = self.run_diffusion_upscaling(cond, uc_full)
|
|
||||||
image_result = Image.fromarray(self.latent2image(list_samplesB[-1]))
|
|
||||||
image_result.save('/home/lugo/latentblending/test1/high/imgB.jpg')
|
|
||||||
|
|
||||||
|
|
||||||
#%% reality check: run only for 50 iter.
|
|
||||||
image = Image.open('/home/lugo/latentblending/test1/img_0007.jpg')
|
|
||||||
image = image.resize((32*20, 32*12))
|
|
||||||
promptA = "photo of a an ancient castle surrounded by a forest"
|
|
||||||
noise_level = 20 #gradio min=0, max=350, value=20
|
|
||||||
text_embeddingA = self.get_text_embedding(promptA)
|
|
||||||
cond, uc_full = self.get_cond_upscaling(image, text_embeddingA, noise_level)
|
|
||||||
|
|
||||||
latents_inject = list_samplesA[50]
|
|
||||||
list_samplesAx = self.run_diffusion_upscaling(cond, uc_full, latents_inject, idx_start=50)
|
|
||||||
image_result = Image.fromarray(self.latent2image(list_samplesAx[-1]))
|
|
||||||
image_result.save('/home/lugo/latentblending/test1/high/imgA_restart.jpg')
|
|
||||||
|
|
||||||
# RESULTS ARE NOT EXACTLY IDENTICAL! INVESTIGATE WHY
|
|
||||||
|
|
||||||
#%% mix in the middle! which uc_full should be taken?
|
|
||||||
# expA: take the one from A
|
|
||||||
idx_start = 90
|
|
||||||
latentsA = list_samplesA[idx_start]
|
|
||||||
latentsB = list_samplesB[idx_start]
|
|
||||||
latents_inject = interpolate_spherical(latentsA, latentsB, 0.5)
|
|
||||||
|
|
||||||
image = Image.open('/home/lugo/latentblending/test1/img_0007.jpg')
|
|
||||||
image = image.resize((32*20, 32*12))
|
|
||||||
promptA = "photo of a an ancient castle surrounded by a forest"
|
|
||||||
noise_level = 20 #gradio min=0, max=350, value=20
|
|
||||||
text_embeddingA = self.get_text_embedding(promptA)
|
|
||||||
cond, uc_full = self.get_cond_upscaling(image, text_embeddingA, noise_level)
|
|
||||||
|
|
||||||
list_samples = self.run_diffusion_upscaling(cond, uc_full, latents_inject, idx_start=idx_start)
|
|
||||||
image_result = Image.fromarray(self.latent2image(list_samples[-1]))
|
|
||||||
image_result.save('/home/lugo/latentblending/test1/high/img_mix_expA_late.jpg')
|
|
||||||
|
|
||||||
|
|
||||||
#%% mix in the middle! which uc_full should be taken?
|
|
||||||
# expA: take the one from B
|
|
||||||
idx_start = 90
|
|
||||||
latentsA = list_samplesA[idx_start]
|
|
||||||
latentsB = list_samplesB[idx_start]
|
|
||||||
latents_inject = interpolate_spherical(latentsA, latentsB, 0.5)
|
|
||||||
|
|
||||||
image = Image.open('/home/lugo/latentblending/test1/img_0006.jpg').resize((32*20, 32*12))
|
|
||||||
promptA = "photo of a an ancient castle surrounded by a forest"
|
|
||||||
promptB = "photo of a beautiful island on the horizon, blue sea with waves"
|
|
||||||
noise_level = 20 #gradio min=0, max=350, value=20
|
|
||||||
text_embeddingA = self.get_text_embedding(promptA)
|
|
||||||
text_embeddingB = self.get_text_embedding(promptB)
|
|
||||||
text_embedding = interpolate_linear(text_embeddingA, text_embeddingB, 1/8)
|
|
||||||
cond, uc_full = self.get_cond_upscaling(image, text_embedding, noise_level)
|
|
||||||
|
|
||||||
list_samples = self.run_diffusion_upscaling(cond, uc_full, latents_inject, idx_start=idx_start)
|
|
||||||
image_result = Image.fromarray(self.latent2image(list_samples[-1]))
|
|
||||||
image_result.save('/home/lugo/latentblending/test1/high/img_mix_expB_late.jpg')
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#%% lets blend the uc_full too!
|
|
||||||
# expC
|
|
||||||
|
|
||||||
idx_start = 50
|
|
||||||
list_mix = np.linspace(0, 1, 20)
|
|
||||||
for fract_mix in list_mix:
|
|
||||||
# fract_mix = 0.75
|
|
||||||
latentsA = list_samplesA[idx_start]
|
|
||||||
latentsB = list_samplesB[idx_start]
|
|
||||||
latents_inject = interpolate_spherical(latentsA, latentsB, fract_mix)
|
|
||||||
|
|
||||||
text_embeddingA = self.get_text_embedding(promptA)
|
|
||||||
text_embeddingB = self.get_text_embedding(promptB)
|
|
||||||
text_embedding = interpolate_linear(text_embeddingA, text_embeddingB, 1/8)
|
|
||||||
|
|
||||||
imageA = Image.open('/home/lugo/latentblending/test1/img_0007.jpg').resize((32*20, 32*12))
|
|
||||||
condA, uc_fullA = self.get_cond_upscaling(imageA, text_embedding, noise_level)
|
|
||||||
|
|
||||||
imageB = Image.open('/home/lugo/latentblending/test1/img_0006.jpg').resize((32*20, 32*12))
|
|
||||||
condB, uc_fullB = self.get_cond_upscaling(imageB, text_embedding, noise_level)
|
|
||||||
|
|
||||||
condA['c_concat'][0] = interpolate_spherical(condA['c_concat'][0], condB['c_concat'][0], fract_mix)
|
|
||||||
uc_fullA['c_concat'][0] = interpolate_spherical(uc_fullA['c_concat'][0], uc_fullB['c_concat'][0], fract_mix)
|
|
||||||
|
|
||||||
list_samples = self.run_diffusion_upscaling(condA, uc_fullA, latents_inject, idx_start=idx_start)
|
|
||||||
image_result = Image.fromarray(self.latent2image(list_samples[-1]))
|
|
||||||
image_result.save(f'/home/lugo/latentblending/test1/high/img_mix_expC_{fract_mix}_start{idx_start}.jpg')
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#%%
|
|
||||||
|
|
||||||
list_imgs = os.listdir('/home/lugo/latentblending/test1/high/')
|
|
||||||
list_imgs = [l for l in list_imgs if "expC" in l]
|
|
||||||
list_imgs.pop(0)
|
|
||||||
|
|
||||||
lx = []
|
|
||||||
for fn in list_imgs:
|
|
||||||
Image.open
|
|
||||||
|
|
||||||
|
|
||||||
#%%
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if False:
|
|
||||||
|
|
||||||
num_inference_steps = 20 # Number of diffusion interations
|
num_inference_steps = 20 # Number of diffusion interations
|
||||||
|
|
||||||
# fp_ckpt = "../stable_diffusion_models/ckpt/768-v-ema.ckpt"
|
# fp_ckpt = "../stable_diffusion_models/ckpt/768-v-ema.ckpt"
|
||||||
# fp_config = '../stablediffusion/configs/stable-diffusion/v2-inference-v.yaml'
|
# fp_config = '../stablediffusion/configs/stable-diffusion/v2-inference-v.yaml'
|
||||||
|
|
||||||
fp_ckpt= "../stable_diffusion_models/ckpt/512-inpainting-ema.ckpt"
|
# fp_ckpt= "../stable_diffusion_models/ckpt/512-inpainting-ema.ckpt"
|
||||||
fp_config = '../stablediffusion/configs//stable-diffusion/v2-inpainting-inference.yaml'
|
# fp_config = '../stablediffusion/configs//stable-diffusion/v2-inpainting-inference.yaml'
|
||||||
|
|
||||||
sdh = StableDiffusionHolder(fp_ckpt, fp_config, num_inference_steps)
|
fp_ckpt = "../stable_diffusion_models/ckpt/v2-1_768-ema-pruned.ckpt"
|
||||||
# fp_ckpt= "../stable_diffusion_models/ckpt/512-base-ema.ckpt"
|
fp_config = 'configs/v2-inference-v.yaml'
|
||||||
# fp_config = '../stablediffusion/configs//stable-diffusion/v2-inference.yaml'
|
|
||||||
|
|
||||||
|
|
||||||
|
self = StableDiffusionHolder(fp_ckpt, fp_config, num_inference_steps)
|
||||||
|
|
||||||
image_source = Image.fromarray((255*np.random.rand(512,512,3)).astype(np.uint8))
|
#%%
|
||||||
mask = 255*np.ones([512,512], dtype=np.uint8)
|
prompt = "painting of a house"
|
||||||
mask[0:50, 0:50] = 0
|
te = self.get_text_embedding(prompt)
|
||||||
mask = Image.fromarray(mask)
|
|
||||||
|
|
||||||
sdh.init_inpainting(image_source, mask)
|
|
||||||
text_embedding = sdh.get_text_embedding("photo of a strange house, surreal painting")
|
|
||||||
list_latents = sdh.run_diffusion_inpaint(text_embedding)
|
|
||||||
|
|
||||||
idx_inject = 3
|
|
||||||
img_orig = sdh.latent2image(list_latents[-1])
|
|
||||||
list_inject = sdh.run_diffusion_inpaint(text_embedding, list_latents[idx_inject], idx_start=idx_inject+1)
|
|
||||||
img_inject = sdh.latent2image(list_inject[-1])
|
|
||||||
|
|
||||||
img_diff = img_orig - img_inject
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
plt.imshow(np.concatenate((img_orig, img_inject, img_diff), axis=1))
|
|
||||||
|
|
||||||
|
img = self.run_diffusion_standard(te, return_image=True)
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue