Latent blending enables lightning-fast video transitions with incredible smoothness between prompts. Powered by [stable diffusion 2.1](https://stability.ai/blog/stablediffusion2-1-release7-dec-2022), this method involves specific mixing of intermediate latent representations to create a seamless transition – with users having the option to fully customize the transition and run high-resolution upscaling.
You can run a high-res transition using the x4 upscaling model in a two-stage procedure, see `example4_upscaling.py`. [View as video here.](https://vimeo.com/787639426/f88dae2ea6)
The strength of the diffusion iterations determines when the blending process will begin. A value close to zero results in more creative and intricate outcomes, while a value closer to one indicates a simpler alpha blending. However, low values may also bring about the introduction of additional objects and motion.
In the figure above, a diffusion tree is illustrated. The diffusion steps are represented on the y-axis, with temporal blending on the x-axis. The diffusion trajectory for the first prompt is the most left column, with the trajectory for the second prompt to the right. At the third iteration, three branches are created, followed by seven at iteration six and the final ten at iteration nine.
This example can be manually set up using the following code
Instead of specifying the absolute injection indices using list_injection_idx, we can also pass the list_injection_strength, which are independent of the total number of diffusion iterations (num_inference_steps).
With latent blending, we can create transitions that appear to defy the laws of nature, yet appear completely natural and believable. The key is to surpress processing in our [dorsal visual stream](https://en.wikipedia.org/wiki/Two-streams_hypothesis#Dorsal_stream), which is achieved by avoiding motion in the transition. Without motion, our visual system has difficulties detecting the transition, leaving viewers with the illusion of a single, continuous image. However, when motion is introduced, the visual system can detect the transition and the viewer becomes aware of the transition, leading to a jarring effect. Therefore, best results will be achieved when optimizing the transition parameters, particularly the depth of the first injection.