78 lines
2.4 KiB
Python
78 lines
2.4 KiB
Python
|
# Copyright 2022 Lunar Ring. All rights reserved.
|
||
|
# Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import os, sys
|
||
|
import torch
|
||
|
torch.backends.cudnn.benchmark = False
|
||
|
import numpy as np
|
||
|
import warnings
|
||
|
warnings.filterwarnings('ignore')
|
||
|
import warnings
|
||
|
import torch
|
||
|
from tqdm.auto import tqdm
|
||
|
from PIL import Image
|
||
|
# import matplotlib.pyplot as plt
|
||
|
import torch
|
||
|
from movie_util import MovieSaver
|
||
|
from typing import Callable, List, Optional, Union
|
||
|
from latent_blending import LatentBlending, add_frames_linear_interp
|
||
|
from stable_diffusion_holder import StableDiffusionHolder
|
||
|
torch.set_grad_enabled(False)
|
||
|
|
||
|
#%% Define vars for low-resoltion pass
|
||
|
prompt1 = "photo of mount vesuvius erupting a terrifying pyroclastic ash cloud"
|
||
|
prompt2 = "photo of a inside a building full of ash, fire, death, destruction, explosions"
|
||
|
fixed_seeds = [5054613, 1168652]
|
||
|
|
||
|
width = 512
|
||
|
height = 384
|
||
|
num_inference_steps_lores = 40
|
||
|
nmb_max_branches_lores = 10
|
||
|
depth_strength_lores = 0.5
|
||
|
|
||
|
fp_ckpt_lores = "../stable_diffusion_models/ckpt/v2-1_512-ema-pruned.ckpt"
|
||
|
|
||
|
#%% Define vars for high-resoltion pass
|
||
|
fp_ckpt_hires = "../stable_diffusion_models/ckpt/x4-upscaler-ema.ckpt"
|
||
|
depth_strength_hires = 0.65
|
||
|
num_inference_steps_hires = 100
|
||
|
nmb_branches_final_hires = 6
|
||
|
dp_imgs = "tmp_transition" # folder for results and intermediate steps
|
||
|
|
||
|
|
||
|
#%% Run low-res pass
|
||
|
sdh = StableDiffusionHolder(fp_ckpt_lores)
|
||
|
|
||
|
#%%
|
||
|
lb = LatentBlending(sdh)
|
||
|
lb.set_prompt1(prompt1)
|
||
|
lb.set_prompt2(prompt2)
|
||
|
lb.set_width(width)
|
||
|
lb.set_height(height)
|
||
|
|
||
|
# Run latent blending
|
||
|
lb.run_transition(
|
||
|
depth_strength = depth_strength_lores,
|
||
|
nmb_max_branches = nmb_max_branches_lores,
|
||
|
fixed_seeds = fixed_seeds
|
||
|
)
|
||
|
|
||
|
lb.write_imgs_transition(dp_imgs)
|
||
|
|
||
|
#%% Run high-res pass
|
||
|
sdh = StableDiffusionHolder(fp_ckpt_hires)
|
||
|
lb = LatentBlending(sdh)
|
||
|
lb.run_upscaling(dp_imgs, depth_strength_hires, num_inference_steps_hires, nmb_branches_final_hires)
|