latentblending/stable_diffusion_holder.py

611 lines
24 KiB
Python
Raw Normal View History

# Copyright 2022 Lunar Ring. All rights reserved.
2023-01-11 11:58:59 +00:00
# Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os, sys
dp_git = "/home/lugo/git/"
sys.path.append(os.path.join(dp_git,'garden4'))
sys.path.append('util')
import torch
torch.backends.cudnn.benchmark = False
import numpy as np
import warnings
warnings.filterwarnings('ignore')
import time
import subprocess
import warnings
import torch
from tqdm.auto import tqdm
from PIL import Image
2023-01-08 09:32:58 +00:00
# import matplotlib.pyplot as plt
import torch
from movie_util import MovieSaver
import datetime
from typing import Callable, List, Optional, Union
import inspect
from threading import Thread
torch.set_grad_enabled(False)
from omegaconf import OmegaConf
from torch import autocast
from contextlib import nullcontext
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
2023-01-08 09:32:58 +00:00
from einops import repeat, rearrange
#%%
def pad_image(input_image):
pad_w, pad_h = np.max(((2, 2), np.ceil(
np.array(input_image.size) / 64).astype(int)), axis=0) * 64 - input_image.size
im_padded = Image.fromarray(
np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))
return im_padded
def make_batch_inpaint(
image,
mask,
txt,
device,
num_samples=1):
image = np.array(image.convert("RGB"))
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
mask = np.array(mask.convert("L"))
mask = mask.astype(np.float32) / 255.0
mask = mask[None, None]
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
masked_image = image * (mask < 0.5)
batch = {
"image": repeat(image.to(device=device), "1 ... -> n ...", n=num_samples),
"txt": num_samples * [txt],
"mask": repeat(mask.to(device=device), "1 ... -> n ...", n=num_samples),
"masked_image": repeat(masked_image.to(device=device), "1 ... -> n ...", n=num_samples),
}
return batch
2023-01-08 09:32:58 +00:00
def make_batch_superres(
image,
txt,
device,
num_samples=1,
):
image = np.array(image.convert("RGB"))
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
batch = {
"lr": rearrange(image, 'h w c -> 1 c h w'),
"txt": num_samples * [txt],
}
batch["lr"] = repeat(batch["lr"].to(device=device),
"1 ... -> n ...", n=num_samples)
return batch
def make_noise_augmentation(model, batch, noise_level=None):
x_low = batch[model.low_scale_key]
x_low = x_low.to(memory_format=torch.contiguous_format).float()
x_aug, noise_level = model.low_scale_model(x_low, noise_level)
return x_aug, noise_level
class StableDiffusionHolder:
def __init__(self,
fp_ckpt: str = None,
fp_config: str = None,
2023-01-08 09:32:58 +00:00
num_inference_steps: int = 30,
height: Optional[int] = None,
width: Optional[int] = None,
2023-01-08 09:32:58 +00:00
device: str = None,
precision: str='autocast',
):
2023-01-09 08:58:18 +00:00
r"""
Initializes the stable diffusion holder, which contains the models and sampler.
Args:
fp_ckpt: File pointer to the .ckpt model file
fp_config: File pointer to the .yaml config file
num_inference_steps: Number of diffusion iterations. Will be overwritten by latent blending.
height: Height of the resulting image.
width: Width of the resulting image.
device: Device to run the model on.
precision: Precision to run the model on.
"""
self.seed = 42
self.guidance_scale = 5.0
if device is None:
self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
else:
self.device = device
self.precision = precision
self.init_model(fp_ckpt, fp_config)
self.f = 8 #downsampling factor, most often 8 or 16",
self.C = 4
self.ddim_eta = 0
self.num_inference_steps = num_inference_steps
2022-12-31 12:14:37 +00:00
if height is None and width is None:
self.init_auto_res()
2022-12-31 12:14:37 +00:00
else:
assert height is not None, "specify both width and height"
assert width is not None, "specify both width and height"
self.height = height
self.width = width
# Inpainting inits
self.mask_empty = Image.fromarray(255*np.ones([self.width, self.height], dtype=np.uint8))
self.image_empty = Image.fromarray(np.zeros([self.width, self.height, 3], dtype=np.uint8))
2023-01-08 10:48:44 +00:00
self.negative_prompt = [""]
def init_model(self, fp_ckpt, fp_config):
2023-01-09 08:58:18 +00:00
r"""Loads the models and sampler.
"""
assert os.path.isfile(fp_ckpt), f"Your model checkpoint file does not exist: {fp_ckpt}"
2023-01-08 09:32:58 +00:00
self.fp_ckpt = fp_ckpt
2023-01-12 09:06:02 +00:00
# Auto init the config?
if fp_config is None:
fn_ckpt = os.path.basename(fp_ckpt)
if 'depth' in fn_ckpt:
fp_config = 'configs/v2-midas-inference.yaml'
elif 'inpain' in fn_ckpt:
fp_config = 'configs/v2-inpainting-inference.yaml'
elif 'upscaler' in fn_ckpt:
fp_config = 'configs/x4-upscaling.yaml'
elif '512' in fn_ckpt:
fp_config = 'configs/v2-inference.yaml'
elif '768'in fn_ckpt:
fp_config = 'configs/v2-inference-v.yaml'
else:
raise ValueError("auto detect of config failed. please specify fp_config manually!")
2023-01-12 09:09:19 +00:00
assert os.path.isfile(fp_config), "Auto-init of the config file failed. Please specify manually."
2023-01-12 09:06:02 +00:00
assert os.path.isfile(fp_config), f"Your config file does not exist: {fp_config}"
2023-01-08 09:32:58 +00:00
config = OmegaConf.load(fp_config)
2023-01-08 09:32:58 +00:00
self.model = instantiate_from_config(config.model)
self.model.load_state_dict(torch.load(fp_ckpt)["state_dict"], strict=False)
self.model = self.model.to(self.device)
self.sampler = DDIMSampler(self.model)
def init_auto_res(self):
r"""Automatically set the resolution to the one used in training.
"""
if '768' in self.fp_ckpt:
self.height = 768
self.width = 768
else:
self.height = 512
self.width = 512
2023-01-12 09:06:02 +00:00
def set_negative_prompt(self, negative_prompt):
r"""Set the negative prompt. Currenty only one negative prompt is supported
"""
if isinstance(negative_prompt, str):
self.negative_prompt = [negative_prompt]
else:
self.negative_prompt = negative_prompt
if len(self.negative_prompt) > 1:
self.negative_prompt = [self.negative_prompt[0]]
def init_inpainting(
self,
image_source: Union[Image.Image, np.ndarray] = None,
mask_image: Union[Image.Image, np.ndarray] = None,
init_empty: Optional[bool] = False,
):
r"""
Initializes inpainting with a source and maks image.
Args:
image_source: Union[Image.Image, np.ndarray]
Source image onto which the mask will be applied.
mask_image: Union[Image.Image, np.ndarray]
Mask image, value = 0 will stay untouched, value = 255 subjet to diffusion
init_empty: Optional[bool]:
Initialize inpainting with an empty image and mask, effectively disabling inpainting,
useful for generating a first image for transitions using diffusion.
"""
if not init_empty:
assert image_source is not None, "init_inpainting: you need to provide image_source"
assert mask_image is not None, "init_inpainting: you need to provide mask_image"
if type(image_source) == np.ndarray:
image_source = Image.fromarray(image_source)
self.image_source = image_source
if type(mask_image) == np.ndarray:
mask_image = Image.fromarray(mask_image)
self.mask_image = mask_image
else:
self.mask_image = self.mask_empty
self.image_source = self.image_empty
def get_text_embedding(self, prompt):
c = self.model.get_learned_conditioning(prompt)
return c
2023-01-08 09:32:58 +00:00
@torch.no_grad()
def get_cond_upscaling(self, image, text_embedding, noise_level):
r"""
Initializes the conditioning for the x4 upscaling model.
"""
image = pad_image(image) # resize to integer multiple of 32
w, h = image.size
noise_level = torch.Tensor(1 * [noise_level]).to(self.sampler.model.device).long()
batch = make_batch_superres(image, txt="placeholder", device=self.device, num_samples=1)
x_augment, noise_level = make_noise_augmentation(self.model, batch, noise_level)
cond = {"c_concat": [x_augment], "c_crossattn": [text_embedding], "c_adm": noise_level}
# uncond cond
uc_cross = self.model.get_unconditional_conditioning(1, "")
uc_full = {"c_concat": [x_augment], "c_crossattn": [uc_cross], "c_adm": noise_level}
return cond, uc_full
@torch.no_grad()
def run_diffusion_standard(
self,
text_embeddings: torch.FloatTensor,
latents_for_injection: torch.FloatTensor = None,
idx_start: int = -1,
idx_stop: int = -1,
return_image: Optional[bool] = False
):
r"""
Wrapper function for run_diffusion_standard and run_diffusion_inpaint.
Depending on the mode, the correct one will be executed.
Args:
text_embeddings: torch.FloatTensor
Text embeddings used for diffusion
latents_for_injection: torch.FloatTensor
Latents that are used for injection
idx_start: int
Index of the diffusion process start and where the latents_for_injection are injected
idx_stop: int
Index of the diffusion process end.
return_image: Optional[bool]
Optionally return image directly
"""
if latents_for_injection is None:
do_inject_latents = False
else:
do_inject_latents = True
precision_scope = autocast if self.precision == "autocast" else nullcontext
generator = torch.Generator(device=self.device).manual_seed(int(self.seed))
2022-12-09 14:03:20 +00:00
with precision_scope("cuda"):
with self.model.ema_scope():
if self.guidance_scale != 1.0:
2023-01-08 10:48:44 +00:00
uc = self.model.get_learned_conditioning(self.negative_prompt)
2022-12-09 14:03:20 +00:00
else:
uc = None
shape_latents = [self.C, self.height // self.f, self.width // self.f]
self.sampler.make_schedule(ddim_num_steps=self.num_inference_steps-1, ddim_eta=self.ddim_eta, verbose=False)
C, H, W = shape_latents
size = (1, C, H, W)
b = size[0]
2022-12-09 14:03:20 +00:00
latents = torch.randn(size, generator=generator, device=self.device)
timesteps = self.sampler.ddim_timesteps
time_range = np.flip(timesteps)
total_steps = timesteps.shape[0]
2022-12-09 14:03:20 +00:00
# collect latents
list_latents_out = []
for i, step in enumerate(time_range):
if do_inject_latents:
# Inject latent at right place
if i < idx_start:
continue
elif i == idx_start:
latents = latents_for_injection.clone()
if i == idx_stop:
return list_latents_out
# print(f"diffusion iter {i}")
index = total_steps - i - 1
ts = torch.full((b,), step, device=self.device, dtype=torch.long)
outs = self.sampler.p_sample_ddim(latents, text_embeddings, ts, index=index, use_original_steps=False,
quantize_denoised=False, temperature=1.0,
noise_dropout=0.0, score_corrector=None,
corrector_kwargs=None,
unconditional_guidance_scale=self.guidance_scale,
unconditional_conditioning=uc,
dynamic_threshold=None)
latents, pred_x0 = outs
list_latents_out.append(latents.clone())
if return_image:
return self.latent2image(latents)
else:
return list_latents_out
@torch.no_grad()
def run_diffusion_inpaint(
self,
text_embeddings: torch.FloatTensor,
latents_for_injection: torch.FloatTensor = None,
idx_start: int = -1,
idx_stop: int = -1,
return_image: Optional[bool] = False
):
r"""
Runs inpaint-based diffusion. Returns a list of latents that were computed.
Adaptations allow to supply
a) starting index for diffusion
b) stopping index for diffusion
c) latent representations that are injected at the starting index
Furthermore the intermittent latents are collected and returned.
Adapted from diffusers (https://github.com/huggingface/diffusers)
Args:
text_embeddings: torch.FloatTensor
Text embeddings used for diffusion
latents_for_injection: torch.FloatTensor
Latents that are used for injection
idx_start: int
Index of the diffusion process start and where the latents_for_injection are injected
idx_stop: int
Index of the diffusion process end.
return_image: Optional[bool]
Optionally return image directly
"""
if latents_for_injection is None:
do_inject_latents = False
else:
do_inject_latents = True
precision_scope = autocast if self.precision == "autocast" else nullcontext
generator = torch.Generator(device=self.device).manual_seed(int(self.seed))
2022-12-09 14:03:20 +00:00
with precision_scope("cuda"):
with self.model.ema_scope():
2023-01-08 09:32:58 +00:00
batch = make_batch_inpaint(self.image_source, self.mask_image, txt="willbereplaced", device=self.device, num_samples=1)
2022-12-09 14:03:20 +00:00
c = text_embeddings
c_cat = list()
for ck in self.model.concat_keys:
cc = batch[ck].float()
if ck != self.model.masked_image_key:
bchw = [1, 4, self.height // 8, self.width // 8]
cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
else:
cc = self.model.get_first_stage_encoding(self.model.encode_first_stage(cc))
c_cat.append(cc)
c_cat = torch.cat(c_cat, dim=1)
# cond
cond = {"c_concat": [c_cat], "c_crossattn": [c]}
# uncond cond
uc_cross = self.model.get_unconditional_conditioning(1, "")
uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}
shape_latents = [self.model.channels, self.height // 8, self.width // 8]
2022-12-09 14:03:20 +00:00
self.sampler.make_schedule(ddim_num_steps=self.num_inference_steps-1, ddim_eta=0., verbose=False)
# sampling
C, H, W = shape_latents
size = (1, C, H, W)
2022-12-09 14:03:20 +00:00
device = self.model.betas.device
b = size[0]
latents = torch.randn(size, generator=generator, device=device)
timesteps = self.sampler.ddim_timesteps
time_range = np.flip(timesteps)
total_steps = timesteps.shape[0]
2022-12-09 14:03:20 +00:00
# collect latents
list_latents_out = []
for i, step in enumerate(time_range):
if do_inject_latents:
# Inject latent at right place
if i < idx_start:
continue
elif i == idx_start:
latents = latents_for_injection.clone()
if i == idx_stop:
return list_latents_out
index = total_steps - i - 1
ts = torch.full((b,), step, device=device, dtype=torch.long)
outs = self.sampler.p_sample_ddim(latents, cond, ts, index=index, use_original_steps=False,
quantize_denoised=False, temperature=1.0,
noise_dropout=0.0, score_corrector=None,
corrector_kwargs=None,
unconditional_guidance_scale=self.guidance_scale,
unconditional_conditioning=uc_full,
dynamic_threshold=None)
latents, pred_x0 = outs
list_latents_out.append(latents.clone())
if return_image:
return self.latent2image(latents)
else:
return list_latents_out
2023-01-08 09:32:58 +00:00
@torch.no_grad()
def run_diffusion_upscaling(
self,
cond,
uc_full,
latents_for_injection: torch.FloatTensor = None,
idx_start: int = -1,
idx_stop: int = -1,
return_image: Optional[bool] = False
):
r"""
Wrapper function for run_diffusion_standard and run_diffusion_inpaint.
Depending on the mode, the correct one will be executed.
Args:
??
latents_for_injection: torch.FloatTensor
Latents that are used for injection
idx_start: int
Index of the diffusion process start and where the latents_for_injection are injected
idx_stop: int
Index of the diffusion process end.
return_image: Optional[bool]
Optionally return image directly
"""
if latents_for_injection is None:
do_inject_latents = False
else:
do_inject_latents = True
precision_scope = autocast if self.precision == "autocast" else nullcontext
generator = torch.Generator(device=self.device).manual_seed(int(self.seed))
h = uc_full['c_concat'][0].shape[2]
w = uc_full['c_concat'][0].shape[3]
with precision_scope("cuda"):
with self.model.ema_scope():
shape_latents = [self.model.channels, h, w]
self.sampler.make_schedule(ddim_num_steps=self.num_inference_steps-1, ddim_eta=self.ddim_eta, verbose=False)
C, H, W = shape_latents
size = (1, C, H, W)
b = size[0]
latents = torch.randn(size, generator=generator, device=self.device)
timesteps = self.sampler.ddim_timesteps
time_range = np.flip(timesteps)
total_steps = timesteps.shape[0]
# collect latents
list_latents_out = []
for i, step in enumerate(time_range):
if do_inject_latents:
# Inject latent at right place
if i < idx_start:
continue
elif i == idx_start:
latents = latents_for_injection.clone()
2023-01-08 09:32:58 +00:00
if i == idx_stop:
return list_latents_out
# print(f"diffusion iter {i}")
index = total_steps - i - 1
ts = torch.full((b,), step, device=self.device, dtype=torch.long)
outs = self.sampler.p_sample_ddim(latents, cond, ts, index=index, use_original_steps=False,
quantize_denoised=False, temperature=1.0,
noise_dropout=0.0, score_corrector=None,
corrector_kwargs=None,
unconditional_guidance_scale=self.guidance_scale,
unconditional_conditioning=uc_full,
dynamic_threshold=None)
latents, pred_x0 = outs
list_latents_out.append(latents.clone())
if return_image:
return self.latent2image(latents)
else:
return list_latents_out
@torch.no_grad()
def latent2image(
self,
latents: torch.FloatTensor
):
r"""
Returns an image provided a latent representation from diffusion.
Args:
latents: torch.FloatTensor
Result of the diffusion process.
"""
x_sample = self.model.decode_first_stage(latents)
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255 * x_sample[0,:,:].permute([1,2,0]).cpu().numpy()
image = x_sample.astype(np.uint8)
return image
if __name__ == "__main__":
2023-01-08 09:32:58 +00:00
2023-01-08 10:48:44 +00:00
num_inference_steps = 20 # Number of diffusion interations
2023-01-08 10:48:44 +00:00
# fp_ckpt = "../stable_diffusion_models/ckpt/768-v-ema.ckpt"
# fp_config = '../stablediffusion/configs/stable-diffusion/v2-inference-v.yaml'
2023-01-08 10:48:44 +00:00
# fp_ckpt= "../stable_diffusion_models/ckpt/512-inpainting-ema.ckpt"
# fp_config = '../stablediffusion/configs//stable-diffusion/v2-inpainting-inference.yaml'
2023-01-08 09:32:58 +00:00
2023-01-08 10:48:44 +00:00
fp_ckpt = "../stable_diffusion_models/ckpt/v2-1_768-ema-pruned.ckpt"
2023-01-12 09:06:02 +00:00
# fp_config = 'configs/v2-inference-v.yaml'
2023-01-08 09:32:58 +00:00
2023-01-12 09:06:02 +00:00
self = StableDiffusionHolder(fp_ckpt, num_inference_steps=num_inference_steps)
xxx
2023-01-08 09:32:58 +00:00
2023-01-08 10:48:44 +00:00
#%%
2023-01-11 11:58:59 +00:00
self.width = 1536
self.height = 768
prompt = "360 degree equirectangular, a huge rocky hill full of pianos and keyboards, musical instruments, cinematic, masterpiece 8 k, artstation"
self.set_negative_prompt("out of frame, faces, rendering, blurry")
2023-01-08 10:48:44 +00:00
te = self.get_text_embedding(prompt)
2023-01-08 09:32:58 +00:00
2023-01-08 10:48:44 +00:00
img = self.run_diffusion_standard(te, return_image=True)
2023-01-11 11:58:59 +00:00
Image.fromarray(img).show()
2023-01-08 09:32:58 +00:00