latentblending/gradio_ui.py

401 lines
16 KiB
Python
Raw Normal View History

2023-01-08 09:33:45 +00:00
# Copyright 2022 Lunar Ring. All rights reserved.
2023-01-11 11:58:59 +00:00
# Written by Johannes Stelzer, email stelzer@lunar-ring.ai twitter @j_stelzer
2023-01-08 09:33:45 +00:00
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os, sys
import torch
torch.backends.cudnn.benchmark = False
import numpy as np
import warnings
warnings.filterwarnings('ignore')
import warnings
import torch
from tqdm.auto import tqdm
from PIL import Image
import torch
2023-01-15 15:52:42 +00:00
from movie_util import MovieSaver, concatenate_movies
2023-01-08 09:33:45 +00:00
from typing import Callable, List, Optional, Union
2023-01-12 09:16:31 +00:00
from latent_blending import get_time, yml_save, LatentBlending, add_frames_linear_interp, compare_dicts
2023-01-08 09:33:45 +00:00
from stable_diffusion_holder import StableDiffusionHolder
torch.set_grad_enabled(False)
import gradio as gr
import copy
2023-01-15 11:02:11 +00:00
2023-01-08 09:33:45 +00:00
#%%
class BlendingFrontend():
2023-01-12 03:11:56 +00:00
def __init__(self, sdh=None):
if sdh is None:
self.use_debug = True
else:
self.use_debug = False
self.lb = LatentBlending(sdh)
2023-01-08 09:33:45 +00:00
self.share = True
2023-01-12 19:35:51 +00:00
self.num_inference_steps = 20
2023-01-08 09:33:45 +00:00
self.depth_strength = 0.25
self.seed1 = 42
self.seed2 = 420
self.guidance_scale = 4.0
self.guidance_scale_mid_damper = 0.5
self.mid_compression_scaler = 1.2
2023-01-08 10:48:44 +00:00
self.prompt1 = ""
self.prompt2 = ""
self.negative_prompt = ""
2023-01-08 09:33:45 +00:00
self.list_settings = []
self.state_current = {}
self.showing_current = True
2023-01-14 11:56:10 +00:00
self.branch1_influence = 0.02
2023-01-12 19:35:51 +00:00
self.nmb_branches_final = 9
self.nmb_imgs_show = 5 # don't change
2023-01-09 08:58:26 +00:00
self.fps = 30
2023-01-11 10:36:44 +00:00
self.duration = 10
2023-01-15 15:52:42 +00:00
self.dict_multi_trans = {}
self.dict_multi_trans_include = {}
self.multi_trans_currently_shown = []
self.list_fp_imgs_current = []
self.current_timestamp = None
self.nmb_trans_stack = 8
2023-01-09 08:58:26 +00:00
2023-01-08 09:33:45 +00:00
if not self.use_debug:
2023-01-12 03:11:56 +00:00
self.lb.sdh.num_inference_steps = self.num_inference_steps
2023-01-09 08:58:26 +00:00
self.height = self.lb.sdh.height
self.width = self.lb.sdh.width
else:
self.height = 768
self.width = 768
2023-01-08 09:33:45 +00:00
2023-01-15 15:52:42 +00:00
# make dummy image
self.fp_img_empty = 'empty.jpg'
Image.fromarray(np.zeros((self.height, self.width, 3), dtype=np.uint8)).save(self.fp_img_empty, quality=5)
2023-01-08 09:33:45 +00:00
def change_depth_strength(self, value):
self.depth_strength = value
print(f"changed depth_strength to {value}")
def change_num_inference_steps(self, value):
self.num_inference_steps = value
print(f"changed num_inference_steps to {value}")
def change_guidance_scale(self, value):
self.guidance_scale = value
self.lb.set_guidance_scale(value)
print(f"changed guidance_scale to {value}")
def change_guidance_scale_mid_damper(self, value):
self.guidance_scale_mid_damper = value
print(f"changed guidance_scale_mid_damper to {value}")
def change_mid_compression_scaler(self, value):
self.mid_compression_scaler = value
print(f"changed mid_compression_scaler to {value}")
2023-01-10 12:53:29 +00:00
def change_branch1_influence(self, value):
self.branch1_influence = value
print(f"changed branch1_influence to {value}")
2023-01-08 09:33:45 +00:00
def change_height(self, value):
self.height = value
print(f"changed height to {value}")
def change_width(self, value):
self.width = value
print(f"changed width to {value}")
2023-01-09 08:58:26 +00:00
def change_nmb_branches_final(self, value):
self.nmb_branches_final = value
print(f"changed nmb_branches_final to {value}")
def change_duration(self, value):
self.duration = value
print(f"changed duration to {value}")
def change_fps(self, value):
self.fps = value
print(f"changed fps to {value}")
2023-01-08 10:48:44 +00:00
def change_negative_prompt(self, value):
self.negative_prompt = value
2023-01-08 09:33:45 +00:00
def change_seed1(self, value):
self.seed1 = int(value)
def change_seed2(self, value):
self.seed2 = int(value)
def randomize_seed1(self):
seed = np.random.randint(0, 10000000)
self.change_seed1(seed)
print(f"randomize_seed1: new seed = {self.seed1}")
return seed
def randomize_seed2(self):
seed = np.random.randint(0, 10000000)
self.change_seed2(seed)
print(f"randomize_seed2: new seed = {self.seed2}")
return seed
2023-01-15 15:52:42 +00:00
def compute_transition(self, prompt1, prompt2):
self.prompt1 = prompt1
self.prompt2 = prompt2
2023-01-08 09:33:45 +00:00
print("STARTING DIFFUSION!")
self.state_current = self.get_state_dict()
if self.use_debug:
list_imgs = [(255*np.random.rand(self.height,self.width,3)).astype(np.uint8) for l in range(5)]
list_imgs = [Image.fromarray(l) for l in list_imgs]
print("DONE! SENDING BACK RESULTS")
2023-01-08 09:33:45 +00:00
return list_imgs
2023-01-11 13:00:01 +00:00
2023-01-15 15:52:42 +00:00
# Collect latent blending variables
2023-01-11 13:00:01 +00:00
self.lb.set_width(self.width)
self.lb.set_height(self.height)
2023-01-08 09:33:45 +00:00
self.lb.autosetup_branching(
depth_strength = self.depth_strength,
num_inference_steps = self.num_inference_steps,
2023-01-09 08:58:26 +00:00
nmb_branches_final = self.nmb_branches_final,
nmb_mindist = 3)
2023-01-08 09:33:45 +00:00
self.lb.set_prompt1(self.prompt1)
self.lb.set_prompt2(self.prompt2)
2023-01-08 10:48:44 +00:00
self.lb.set_negative_prompt(self.negative_prompt)
2023-01-08 09:33:45 +00:00
self.lb.guidance_scale = self.guidance_scale
self.lb.guidance_scale_mid_damper = self.guidance_scale_mid_damper
self.lb.mid_compression_scaler = self.mid_compression_scaler
2023-01-10 12:53:29 +00:00
self.lb.branch1_influence = self.branch1_influence
2023-01-08 09:33:45 +00:00
fixed_seeds = [self.seed1, self.seed2]
2023-01-15 11:02:11 +00:00
2023-01-15 15:52:42 +00:00
# Run Latent Blending
imgs_transition = self.lb.run_transition(fixed_seeds=fixed_seeds)
print(f"Latent Blending pass finished. Resulted in {len(imgs_transition)} images")
2023-01-09 08:58:26 +00:00
2023-01-15 15:52:42 +00:00
# Subselect the preview images (hard fixed to self.nmb_imgs_show=5)
2023-01-09 08:58:26 +00:00
assert np.mod((self.nmb_branches_final-self.nmb_imgs_show)/4, 1)==0, 'self.nmb_branches_final illegal value!'
idx_list = np.linspace(0, self.nmb_branches_final-1, self.nmb_imgs_show).astype(np.int32)
2023-01-15 11:02:11 +00:00
list_imgs_preview = []
2023-01-08 09:33:45 +00:00
for j in idx_list:
2023-01-15 11:02:11 +00:00
list_imgs_preview.append(Image.fromarray(imgs_transition[j]))
2023-01-12 19:35:51 +00:00
2023-01-15 15:52:42 +00:00
# Save the preview imgs as jpgs on disk so we are not sending umcompressed data around
self.current_timestamp = get_time('second')
self.list_fp_imgs_current = []
2023-01-15 11:02:11 +00:00
for i in range(len(list_imgs_preview)):
2023-01-15 15:52:42 +00:00
fp_img = f"img_preview_{i}_{self.current_timestamp}.jpg"
2023-01-15 11:02:11 +00:00
list_imgs_preview[i].save(fp_img)
2023-01-15 15:52:42 +00:00
self.list_fp_imgs_current.append(fp_img)
2023-01-15 15:52:42 +00:00
# Insert cheap frames for the movie
2023-01-15 11:02:11 +00:00
imgs_transition_ext = add_frames_linear_interp(imgs_transition, self.duration, self.fps)
2023-01-08 09:33:45 +00:00
2023-01-15 11:02:11 +00:00
# Save as movie
2023-01-15 15:52:42 +00:00
fp_movie = self.get_fp_movie(self.current_timestamp)
2023-01-08 09:33:45 +00:00
if os.path.isfile(fp_movie):
os.remove(fp_movie)
2023-01-15 11:02:11 +00:00
ms = MovieSaver(fp_movie, fps=self.fps)
2023-01-08 09:33:45 +00:00
for img in tqdm(imgs_transition_ext):
ms.write_frame(img)
ms.finalize()
2023-01-15 11:02:11 +00:00
print("DONE SAVING MOVIE! SENDING BACK...")
2023-01-15 15:52:42 +00:00
# Assemble Output, updating the preview images and le movie
list_return = self.list_fp_imgs_current + [fp_movie]
2023-01-15 11:02:11 +00:00
return list_return
2023-01-15 15:52:42 +00:00
def get_fp_movie(self, timestamp, is_stacked=False):
if not is_stacked:
return f"movie_{timestamp}.mp4"
else:
return f"movie_stacked_{timestamp}.mp4"
2023-01-15 11:02:11 +00:00
2023-01-15 15:52:42 +00:00
def stack_forward(self, prompt2, seed2):
# Save preview images, prompts and seeds into dictionary for stacking
self.dict_multi_trans[self.current_timestamp] = generate_list_output(self.prompt1, self.prompt2, self.seed1, self.seed2, self.list_fp_imgs_current)
self.dict_multi_trans_include[self.current_timestamp] = True
self.lb.swap_forward()
list_out = [self.list_fp_imgs_current[-1]]
list_out.extend([self.fp_img_empty]*4)
list_out.append(prompt2)
list_out.append(seed2)
list_out.append("")
list_out.append(np.random.randint(0, 10000000))
list_out_multi_tab = self.update_trans_stacks()
list_out.extend(list_out_multi_tab)
# self.nmb_trans_stack = len(self.dict_multi_trans_include)
return list_out
2023-01-08 09:33:45 +00:00
2023-01-15 15:52:42 +00:00
def stack_movie(self):
# collect all that are in...
list_fp_movies = []
for timestamp in self.multi_trans_currently_shown:
if timestamp is not None:
list_fp_movies.append(self.get_fp_movie(timestamp))
fp_stacked = self.get_fp_movie(get_time('second'), True)
concatenate_movies(fp_stacked, list_fp_movies)
return fp_stacked
2023-01-08 09:33:45 +00:00
2023-01-15 15:52:42 +00:00
2023-01-08 09:33:45 +00:00
def get_state_dict(self):
state_dict = {}
grab_vars = ['prompt1', 'prompt2', 'seed1', 'seed2', 'height', 'width',
'num_inference_steps', 'depth_strength', 'guidance_scale',
'guidance_scale_mid_damper', 'mid_compression_scaler']
for v in grab_vars:
state_dict[v] = getattr(self, v)
return state_dict
2023-01-15 15:52:42 +00:00
def update_trans_stacks(self):
print("Updating transition stack...")
self.multi_trans_currently_shown = []
list_output = []
# Figure out which transitions should be shown
for timestamp in self.dict_multi_trans_include.keys():
if len(self.multi_trans_currently_shown) >= self.nmb_trans_stack:
continue
if self.dict_multi_trans_include[timestamp]:
last_timestamp_vals = self.dict_multi_trans[timestamp]
list_output.extend(self.dict_multi_trans[timestamp])
self.multi_trans_currently_shown.append(timestamp)
print(f"including timestamp: {timestamp}")
# Fill with empty images if below nmb_trans_stack
nmb_empty_missing = self.nmb_trans_stack - len(self.multi_trans_currently_shown)
for i in range(nmb_empty_missing):
list_output.extend([gr.update(visible=False)]*len(last_timestamp_vals))
self.multi_trans_currently_shown.append(None)
2023-01-08 09:33:45 +00:00
2023-01-15 15:52:42 +00:00
return list_output
def remove_trans(self, idx_row):
idx_row = int(idx_row)
# do removal...
if idx_row < len(self.multi_trans_currently_shown):
timestamp = self.multi_trans_currently_shown[idx_row]
if timestamp in self.dict_multi_trans_include.keys():
self.dict_multi_trans_include[timestamp] = False
print(f"remove_trans called: {timestamp}")
else:
print(f"remove_trans called: idx_row too large {idx_row}")
return self.update_trans_stacks()
def get_img_rand():
return (255*np.random.rand(self.height,self.width,3)).astype(np.uint8)
def generate_list_output(
prompt1,
prompt2,
seed1,
seed2,
list_fp_imgs,
):
list_output = []
list_output.append(prompt1)
list_output.append(prompt2)
list_output.append(seed1)
list_output.append(seed2)
for fp_img in list_fp_imgs:
list_output.append(fp_img)
return list_output
2023-01-08 09:33:45 +00:00
2023-01-12 03:11:56 +00:00
if __name__ == "__main__":
2023-01-08 09:33:45 +00:00
2023-01-15 15:52:42 +00:00
# fp_ckpt = "../stable_diffusion_models/ckpt/v2-1_768-ema-pruned.ckpt"
fp_ckpt = "../stable_diffusion_models/ckpt/v2-1_512-ema-pruned.ckpt"
sdh = StableDiffusionHolder(fp_ckpt)
self = BlendingFrontend(sdh) # Yes this is possible in python and yes it is an awesome trick
2023-01-12 03:11:56 +00:00
with gr.Blocks() as demo:
with gr.Row():
prompt1 = gr.Textbox(label="prompt 1")
prompt2 = gr.Textbox(label="prompt 2")
negative_prompt = gr.Textbox(label="negative prompt")
with gr.Row():
nmb_branches_final = gr.Slider(5, 125, self.nmb_branches_final, step=4, label='nmb trans images', interactive=True)
height = gr.Slider(256, 2048, self.height, step=128, label='height', interactive=True)
width = gr.Slider(256, 2048, self.width, step=128, label='width', interactive=True)
2023-01-08 09:33:45 +00:00
2023-01-12 03:11:56 +00:00
with gr.Row():
num_inference_steps = gr.Slider(5, 100, self.num_inference_steps, step=1, label='num_inference_steps', interactive=True)
branch1_influence = gr.Slider(0.0, 1.0, self.branch1_influence, step=0.01, label='branch1_influence', interactive=True)
guidance_scale = gr.Slider(1, 25, self.guidance_scale, step=0.1, label='guidance_scale', interactive=True)
2023-01-09 08:58:26 +00:00
2023-01-12 03:11:56 +00:00
with gr.Row():
depth_strength = gr.Slider(0.01, 0.99, self.depth_strength, step=0.01, label='depth_strength', interactive=True)
2023-01-15 11:02:11 +00:00
duration = gr.Slider(0.1, 30, self.duration, step=0.1, label='video duration', interactive=True)
2023-01-12 03:11:56 +00:00
guidance_scale_mid_damper = gr.Slider(0.01, 2.0, self.guidance_scale_mid_damper, step=0.01, label='guidance_scale_mid_damper', interactive=True)
2023-01-15 15:52:42 +00:00
2023-01-12 03:11:56 +00:00
with gr.Row():
seed1 = gr.Number(42, label="seed 1", interactive=True)
2023-01-15 15:52:42 +00:00
b_newseed1 = gr.Button("randomize seed 1", variant='secondary')
2023-01-12 03:11:56 +00:00
seed2 = gr.Number(420, label="seed 2", interactive=True)
2023-01-15 15:52:42 +00:00
b_newseed2 = gr.Button("randomize seed 2", variant='secondary')
with gr.Row():
b_compute_transition = gr.Button('compute transition', variant='primary')
2023-01-12 03:11:56 +00:00
with gr.Row():
img1 = gr.Image(label="1/5")
img2 = gr.Image(label="2/5")
img3 = gr.Image(label="3/5")
img4 = gr.Image(label="4/5")
img5 = gr.Image(label="5/5")
with gr.Row():
2023-01-15 15:52:42 +00:00
vid_transition = gr.Video()
2023-01-14 11:46:34 +00:00
2023-01-12 03:11:56 +00:00
# Bind the on-change methods
depth_strength.change(fn=self.change_depth_strength, inputs=depth_strength)
num_inference_steps.change(fn=self.change_num_inference_steps, inputs=num_inference_steps)
nmb_branches_final.change(fn=self.change_nmb_branches_final, inputs=nmb_branches_final)
guidance_scale.change(fn=self.change_guidance_scale, inputs=guidance_scale)
guidance_scale_mid_damper.change(fn=self.change_guidance_scale_mid_damper, inputs=guidance_scale_mid_damper)
height.change(fn=self.change_height, inputs=height)
width.change(fn=self.change_width, inputs=width)
negative_prompt.change(fn=self.change_negative_prompt, inputs=negative_prompt)
seed1.change(fn=self.change_seed1, inputs=seed1)
seed2.change(fn=self.change_seed2, inputs=seed2)
duration.change(fn=self.change_duration, inputs=duration)
branch1_influence.change(fn=self.change_branch1_influence, inputs=branch1_influence)
2023-01-08 09:33:45 +00:00
2023-01-12 03:11:56 +00:00
b_newseed1.click(self.randomize_seed1, outputs=seed1)
b_newseed2.click(self.randomize_seed2, outputs=seed2)
2023-01-15 15:52:42 +00:00
# b_stackforward.click(self.stack_forward,
# inputs=[prompt2, seed2],
# outputs=[img1, img2, img3, img4, img5, prompt1, seed1, prompt2])
b_compute_transition.click(self.compute_transition,
inputs=[prompt1, prompt2],
outputs=[img1, img2, img3, img4, img5, vid_transition])
2023-01-14 11:46:34 +00:00
demo.launch(share=self.share, inbrowser=True, inline=False)