animate/webGl/my-threejs-test/node_modules/three/examples/jsm/utils/BufferGeometryUtils.js

1372 lines
31 KiB
JavaScript

import {
BufferAttribute,
BufferGeometry,
Float32BufferAttribute,
InstancedBufferAttribute,
InterleavedBuffer,
InterleavedBufferAttribute,
TriangleFanDrawMode,
TriangleStripDrawMode,
TrianglesDrawMode,
Vector3,
} from 'three';
function computeMikkTSpaceTangents( geometry, MikkTSpace, negateSign = true ) {
if ( ! MikkTSpace || ! MikkTSpace.isReady ) {
throw new Error( 'BufferGeometryUtils: Initialized MikkTSpace library required.' );
}
if ( ! geometry.hasAttribute( 'position' ) || ! geometry.hasAttribute( 'normal' ) || ! geometry.hasAttribute( 'uv' ) ) {
throw new Error( 'BufferGeometryUtils: Tangents require "position", "normal", and "uv" attributes.' );
}
function getAttributeArray( attribute ) {
if ( attribute.normalized || attribute.isInterleavedBufferAttribute ) {
const dstArray = new Float32Array( attribute.count * attribute.itemSize );
for ( let i = 0, j = 0; i < attribute.count; i ++ ) {
dstArray[ j ++ ] = attribute.getX( i );
dstArray[ j ++ ] = attribute.getY( i );
if ( attribute.itemSize > 2 ) {
dstArray[ j ++ ] = attribute.getZ( i );
}
}
return dstArray;
}
if ( attribute.array instanceof Float32Array ) {
return attribute.array;
}
return new Float32Array( attribute.array );
}
// MikkTSpace algorithm requires non-indexed input.
const _geometry = geometry.index ? geometry.toNonIndexed() : geometry;
// Compute vertex tangents.
const tangents = MikkTSpace.generateTangents(
getAttributeArray( _geometry.attributes.position ),
getAttributeArray( _geometry.attributes.normal ),
getAttributeArray( _geometry.attributes.uv )
);
// Texture coordinate convention of glTF differs from the apparent
// default of the MikkTSpace library; .w component must be flipped.
if ( negateSign ) {
for ( let i = 3; i < tangents.length; i += 4 ) {
tangents[ i ] *= - 1;
}
}
//
_geometry.setAttribute( 'tangent', new BufferAttribute( tangents, 4 ) );
if ( geometry !== _geometry ) {
geometry.copy( _geometry );
}
return geometry;
}
/**
* @param {Array<BufferGeometry>} geometries
* @param {Boolean} useGroups
* @return {BufferGeometry}
*/
function mergeGeometries( geometries, useGroups = false ) {
const isIndexed = geometries[ 0 ].index !== null;
const attributesUsed = new Set( Object.keys( geometries[ 0 ].attributes ) );
const morphAttributesUsed = new Set( Object.keys( geometries[ 0 ].morphAttributes ) );
const attributes = {};
const morphAttributes = {};
const morphTargetsRelative = geometries[ 0 ].morphTargetsRelative;
const mergedGeometry = new BufferGeometry();
let offset = 0;
for ( let i = 0; i < geometries.length; ++ i ) {
const geometry = geometries[ i ];
let attributesCount = 0;
// ensure that all geometries are indexed, or none
if ( isIndexed !== ( geometry.index !== null ) ) {
console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index ' + i + '. All geometries must have compatible attributes; make sure index attribute exists among all geometries, or in none of them.' );
return null;
}
// gather attributes, exit early if they're different
for ( const name in geometry.attributes ) {
if ( ! attributesUsed.has( name ) ) {
console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index ' + i + '. All geometries must have compatible attributes; make sure "' + name + '" attribute exists among all geometries, or in none of them.' );
return null;
}
if ( attributes[ name ] === undefined ) attributes[ name ] = [];
attributes[ name ].push( geometry.attributes[ name ] );
attributesCount ++;
}
// ensure geometries have the same number of attributes
if ( attributesCount !== attributesUsed.size ) {
console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index ' + i + '. Make sure all geometries have the same number of attributes.' );
return null;
}
// gather morph attributes, exit early if they're different
if ( morphTargetsRelative !== geometry.morphTargetsRelative ) {
console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index ' + i + '. .morphTargetsRelative must be consistent throughout all geometries.' );
return null;
}
for ( const name in geometry.morphAttributes ) {
if ( ! morphAttributesUsed.has( name ) ) {
console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index ' + i + '. .morphAttributes must be consistent throughout all geometries.' );
return null;
}
if ( morphAttributes[ name ] === undefined ) morphAttributes[ name ] = [];
morphAttributes[ name ].push( geometry.morphAttributes[ name ] );
}
if ( useGroups ) {
let count;
if ( isIndexed ) {
count = geometry.index.count;
} else if ( geometry.attributes.position !== undefined ) {
count = geometry.attributes.position.count;
} else {
console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed with geometry at index ' + i + '. The geometry must have either an index or a position attribute' );
return null;
}
mergedGeometry.addGroup( offset, count, i );
offset += count;
}
}
// merge indices
if ( isIndexed ) {
let indexOffset = 0;
const mergedIndex = [];
for ( let i = 0; i < geometries.length; ++ i ) {
const index = geometries[ i ].index;
for ( let j = 0; j < index.count; ++ j ) {
mergedIndex.push( index.getX( j ) + indexOffset );
}
indexOffset += geometries[ i ].attributes.position.count;
}
mergedGeometry.setIndex( mergedIndex );
}
// merge attributes
for ( const name in attributes ) {
const mergedAttribute = mergeAttributes( attributes[ name ] );
if ( ! mergedAttribute ) {
console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed while trying to merge the ' + name + ' attribute.' );
return null;
}
mergedGeometry.setAttribute( name, mergedAttribute );
}
// merge morph attributes
for ( const name in morphAttributes ) {
const numMorphTargets = morphAttributes[ name ][ 0 ].length;
if ( numMorphTargets === 0 ) break;
mergedGeometry.morphAttributes = mergedGeometry.morphAttributes || {};
mergedGeometry.morphAttributes[ name ] = [];
for ( let i = 0; i < numMorphTargets; ++ i ) {
const morphAttributesToMerge = [];
for ( let j = 0; j < morphAttributes[ name ].length; ++ j ) {
morphAttributesToMerge.push( morphAttributes[ name ][ j ][ i ] );
}
const mergedMorphAttribute = mergeAttributes( morphAttributesToMerge );
if ( ! mergedMorphAttribute ) {
console.error( 'THREE.BufferGeometryUtils: .mergeGeometries() failed while trying to merge the ' + name + ' morphAttribute.' );
return null;
}
mergedGeometry.morphAttributes[ name ].push( mergedMorphAttribute );
}
}
return mergedGeometry;
}
/**
* @param {Array<BufferAttribute>} attributes
* @return {BufferAttribute}
*/
function mergeAttributes( attributes ) {
let TypedArray;
let itemSize;
let normalized;
let gpuType = - 1;
let arrayLength = 0;
for ( let i = 0; i < attributes.length; ++ i ) {
const attribute = attributes[ i ];
if ( TypedArray === undefined ) TypedArray = attribute.array.constructor;
if ( TypedArray !== attribute.array.constructor ) {
console.error( 'THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.array must be of consistent array types across matching attributes.' );
return null;
}
if ( itemSize === undefined ) itemSize = attribute.itemSize;
if ( itemSize !== attribute.itemSize ) {
console.error( 'THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.itemSize must be consistent across matching attributes.' );
return null;
}
if ( normalized === undefined ) normalized = attribute.normalized;
if ( normalized !== attribute.normalized ) {
console.error( 'THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.normalized must be consistent across matching attributes.' );
return null;
}
if ( gpuType === - 1 ) gpuType = attribute.gpuType;
if ( gpuType !== attribute.gpuType ) {
console.error( 'THREE.BufferGeometryUtils: .mergeAttributes() failed. BufferAttribute.gpuType must be consistent across matching attributes.' );
return null;
}
arrayLength += attribute.count * itemSize;
}
const array = new TypedArray( arrayLength );
const result = new BufferAttribute( array, itemSize, normalized );
let offset = 0;
for ( let i = 0; i < attributes.length; ++ i ) {
const attribute = attributes[ i ];
if ( attribute.isInterleavedBufferAttribute ) {
const tupleOffset = offset / itemSize;
for ( let j = 0, l = attribute.count; j < l; j ++ ) {
for ( let c = 0; c < itemSize; c ++ ) {
const value = attribute.getComponent( j, c );
result.setComponent( j + tupleOffset, c, value );
}
}
} else {
array.set( attribute.array, offset );
}
offset += attribute.count * itemSize;
}
if ( gpuType !== undefined ) {
result.gpuType = gpuType;
}
return result;
}
/**
* @param {BufferAttribute}
* @return {BufferAttribute}
*/
export function deepCloneAttribute( attribute ) {
if ( attribute.isInstancedInterleavedBufferAttribute || attribute.isInterleavedBufferAttribute ) {
return deinterleaveAttribute( attribute );
}
if ( attribute.isInstancedBufferAttribute ) {
return new InstancedBufferAttribute().copy( attribute );
}
return new BufferAttribute().copy( attribute );
}
/**
* @param {Array<BufferAttribute>} attributes
* @return {Array<InterleavedBufferAttribute>}
*/
function interleaveAttributes( attributes ) {
// Interleaves the provided attributes into an InterleavedBuffer and returns
// a set of InterleavedBufferAttributes for each attribute
let TypedArray;
let arrayLength = 0;
let stride = 0;
// calculate the length and type of the interleavedBuffer
for ( let i = 0, l = attributes.length; i < l; ++ i ) {
const attribute = attributes[ i ];
if ( TypedArray === undefined ) TypedArray = attribute.array.constructor;
if ( TypedArray !== attribute.array.constructor ) {
console.error( 'AttributeBuffers of different types cannot be interleaved' );
return null;
}
arrayLength += attribute.array.length;
stride += attribute.itemSize;
}
// Create the set of buffer attributes
const interleavedBuffer = new InterleavedBuffer( new TypedArray( arrayLength ), stride );
let offset = 0;
const res = [];
const getters = [ 'getX', 'getY', 'getZ', 'getW' ];
const setters = [ 'setX', 'setY', 'setZ', 'setW' ];
for ( let j = 0, l = attributes.length; j < l; j ++ ) {
const attribute = attributes[ j ];
const itemSize = attribute.itemSize;
const count = attribute.count;
const iba = new InterleavedBufferAttribute( interleavedBuffer, itemSize, offset, attribute.normalized );
res.push( iba );
offset += itemSize;
// Move the data for each attribute into the new interleavedBuffer
// at the appropriate offset
for ( let c = 0; c < count; c ++ ) {
for ( let k = 0; k < itemSize; k ++ ) {
iba[ setters[ k ] ]( c, attribute[ getters[ k ] ]( c ) );
}
}
}
return res;
}
// returns a new, non-interleaved version of the provided attribute
export function deinterleaveAttribute( attribute ) {
const cons = attribute.data.array.constructor;
const count = attribute.count;
const itemSize = attribute.itemSize;
const normalized = attribute.normalized;
const array = new cons( count * itemSize );
let newAttribute;
if ( attribute.isInstancedInterleavedBufferAttribute ) {
newAttribute = new InstancedBufferAttribute( array, itemSize, normalized, attribute.meshPerAttribute );
} else {
newAttribute = new BufferAttribute( array, itemSize, normalized );
}
for ( let i = 0; i < count; i ++ ) {
newAttribute.setX( i, attribute.getX( i ) );
if ( itemSize >= 2 ) {
newAttribute.setY( i, attribute.getY( i ) );
}
if ( itemSize >= 3 ) {
newAttribute.setZ( i, attribute.getZ( i ) );
}
if ( itemSize >= 4 ) {
newAttribute.setW( i, attribute.getW( i ) );
}
}
return newAttribute;
}
// deinterleaves all attributes on the geometry
export function deinterleaveGeometry( geometry ) {
const attributes = geometry.attributes;
const morphTargets = geometry.morphTargets;
const attrMap = new Map();
for ( const key in attributes ) {
const attr = attributes[ key ];
if ( attr.isInterleavedBufferAttribute ) {
if ( ! attrMap.has( attr ) ) {
attrMap.set( attr, deinterleaveAttribute( attr ) );
}
attributes[ key ] = attrMap.get( attr );
}
}
for ( const key in morphTargets ) {
const attr = morphTargets[ key ];
if ( attr.isInterleavedBufferAttribute ) {
if ( ! attrMap.has( attr ) ) {
attrMap.set( attr, deinterleaveAttribute( attr ) );
}
morphTargets[ key ] = attrMap.get( attr );
}
}
}
/**
* @param {BufferGeometry} geometry
* @return {number}
*/
function estimateBytesUsed( geometry ) {
// Return the estimated memory used by this geometry in bytes
// Calculate using itemSize, count, and BYTES_PER_ELEMENT to account
// for InterleavedBufferAttributes.
let mem = 0;
for ( const name in geometry.attributes ) {
const attr = geometry.getAttribute( name );
mem += attr.count * attr.itemSize * attr.array.BYTES_PER_ELEMENT;
}
const indices = geometry.getIndex();
mem += indices ? indices.count * indices.itemSize * indices.array.BYTES_PER_ELEMENT : 0;
return mem;
}
/**
* @param {BufferGeometry} geometry
* @param {number} tolerance
* @return {BufferGeometry}
*/
function mergeVertices( geometry, tolerance = 1e-4 ) {
tolerance = Math.max( tolerance, Number.EPSILON );
// Generate an index buffer if the geometry doesn't have one, or optimize it
// if it's already available.
const hashToIndex = {};
const indices = geometry.getIndex();
const positions = geometry.getAttribute( 'position' );
const vertexCount = indices ? indices.count : positions.count;
// next value for triangle indices
let nextIndex = 0;
// attributes and new attribute arrays
const attributeNames = Object.keys( geometry.attributes );
const tmpAttributes = {};
const tmpMorphAttributes = {};
const newIndices = [];
const getters = [ 'getX', 'getY', 'getZ', 'getW' ];
const setters = [ 'setX', 'setY', 'setZ', 'setW' ];
// Initialize the arrays, allocating space conservatively. Extra
// space will be trimmed in the last step.
for ( let i = 0, l = attributeNames.length; i < l; i ++ ) {
const name = attributeNames[ i ];
const attr = geometry.attributes[ name ];
tmpAttributes[ name ] = new BufferAttribute(
new attr.array.constructor( attr.count * attr.itemSize ),
attr.itemSize,
attr.normalized
);
const morphAttr = geometry.morphAttributes[ name ];
if ( morphAttr ) {
tmpMorphAttributes[ name ] = new BufferAttribute(
new morphAttr.array.constructor( morphAttr.count * morphAttr.itemSize ),
morphAttr.itemSize,
morphAttr.normalized
);
}
}
// convert the error tolerance to an amount of decimal places to truncate to
const halfTolerance = tolerance * 0.5;
const exponent = Math.log10( 1 / tolerance );
const hashMultiplier = Math.pow( 10, exponent );
const hashAdditive = halfTolerance * hashMultiplier;
for ( let i = 0; i < vertexCount; i ++ ) {
const index = indices ? indices.getX( i ) : i;
// Generate a hash for the vertex attributes at the current index 'i'
let hash = '';
for ( let j = 0, l = attributeNames.length; j < l; j ++ ) {
const name = attributeNames[ j ];
const attribute = geometry.getAttribute( name );
const itemSize = attribute.itemSize;
for ( let k = 0; k < itemSize; k ++ ) {
// double tilde truncates the decimal value
hash += `${ ~ ~ ( attribute[ getters[ k ] ]( index ) * hashMultiplier + hashAdditive ) },`;
}
}
// Add another reference to the vertex if it's already
// used by another index
if ( hash in hashToIndex ) {
newIndices.push( hashToIndex[ hash ] );
} else {
// copy data to the new index in the temporary attributes
for ( let j = 0, l = attributeNames.length; j < l; j ++ ) {
const name = attributeNames[ j ];
const attribute = geometry.getAttribute( name );
const morphAttr = geometry.morphAttributes[ name ];
const itemSize = attribute.itemSize;
const newarray = tmpAttributes[ name ];
const newMorphArrays = tmpMorphAttributes[ name ];
for ( let k = 0; k < itemSize; k ++ ) {
const getterFunc = getters[ k ];
const setterFunc = setters[ k ];
newarray[ setterFunc ]( nextIndex, attribute[ getterFunc ]( index ) );
if ( morphAttr ) {
for ( let m = 0, ml = morphAttr.length; m < ml; m ++ ) {
newMorphArrays[ m ][ setterFunc ]( nextIndex, morphAttr[ m ][ getterFunc ]( index ) );
}
}
}
}
hashToIndex[ hash ] = nextIndex;
newIndices.push( nextIndex );
nextIndex ++;
}
}
// generate result BufferGeometry
const result = geometry.clone();
for ( const name in geometry.attributes ) {
const tmpAttribute = tmpAttributes[ name ];
result.setAttribute( name, new BufferAttribute(
tmpAttribute.array.slice( 0, nextIndex * tmpAttribute.itemSize ),
tmpAttribute.itemSize,
tmpAttribute.normalized,
) );
if ( ! ( name in tmpMorphAttributes ) ) continue;
for ( let j = 0; j < tmpMorphAttributes[ name ].length; j ++ ) {
const tmpMorphAttribute = tmpMorphAttributes[ name ][ j ];
result.morphAttributes[ name ][ j ] = new BufferAttribute(
tmpMorphAttribute.array.slice( 0, nextIndex * tmpMorphAttribute.itemSize ),
tmpMorphAttribute.itemSize,
tmpMorphAttribute.normalized,
);
}
}
// indices
result.setIndex( newIndices );
return result;
}
/**
* @param {BufferGeometry} geometry
* @param {number} drawMode
* @return {BufferGeometry}
*/
function toTrianglesDrawMode( geometry, drawMode ) {
if ( drawMode === TrianglesDrawMode ) {
console.warn( 'THREE.BufferGeometryUtils.toTrianglesDrawMode(): Geometry already defined as triangles.' );
return geometry;
}
if ( drawMode === TriangleFanDrawMode || drawMode === TriangleStripDrawMode ) {
let index = geometry.getIndex();
// generate index if not present
if ( index === null ) {
const indices = [];
const position = geometry.getAttribute( 'position' );
if ( position !== undefined ) {
for ( let i = 0; i < position.count; i ++ ) {
indices.push( i );
}
geometry.setIndex( indices );
index = geometry.getIndex();
} else {
console.error( 'THREE.BufferGeometryUtils.toTrianglesDrawMode(): Undefined position attribute. Processing not possible.' );
return geometry;
}
}
//
const numberOfTriangles = index.count - 2;
const newIndices = [];
if ( drawMode === TriangleFanDrawMode ) {
// gl.TRIANGLE_FAN
for ( let i = 1; i <= numberOfTriangles; i ++ ) {
newIndices.push( index.getX( 0 ) );
newIndices.push( index.getX( i ) );
newIndices.push( index.getX( i + 1 ) );
}
} else {
// gl.TRIANGLE_STRIP
for ( let i = 0; i < numberOfTriangles; i ++ ) {
if ( i % 2 === 0 ) {
newIndices.push( index.getX( i ) );
newIndices.push( index.getX( i + 1 ) );
newIndices.push( index.getX( i + 2 ) );
} else {
newIndices.push( index.getX( i + 2 ) );
newIndices.push( index.getX( i + 1 ) );
newIndices.push( index.getX( i ) );
}
}
}
if ( ( newIndices.length / 3 ) !== numberOfTriangles ) {
console.error( 'THREE.BufferGeometryUtils.toTrianglesDrawMode(): Unable to generate correct amount of triangles.' );
}
// build final geometry
const newGeometry = geometry.clone();
newGeometry.setIndex( newIndices );
newGeometry.clearGroups();
return newGeometry;
} else {
console.error( 'THREE.BufferGeometryUtils.toTrianglesDrawMode(): Unknown draw mode:', drawMode );
return geometry;
}
}
/**
* Calculates the morphed attributes of a morphed/skinned BufferGeometry.
* Helpful for Raytracing or Decals.
* @param {Mesh | Line | Points} object An instance of Mesh, Line or Points.
* @return {Object} An Object with original position/normal attributes and morphed ones.
*/
function computeMorphedAttributes( object ) {
const _vA = new Vector3();
const _vB = new Vector3();
const _vC = new Vector3();
const _tempA = new Vector3();
const _tempB = new Vector3();
const _tempC = new Vector3();
const _morphA = new Vector3();
const _morphB = new Vector3();
const _morphC = new Vector3();
function _calculateMorphedAttributeData(
object,
attribute,
morphAttribute,
morphTargetsRelative,
a,
b,
c,
modifiedAttributeArray
) {
_vA.fromBufferAttribute( attribute, a );
_vB.fromBufferAttribute( attribute, b );
_vC.fromBufferAttribute( attribute, c );
const morphInfluences = object.morphTargetInfluences;
if ( morphAttribute && morphInfluences ) {
_morphA.set( 0, 0, 0 );
_morphB.set( 0, 0, 0 );
_morphC.set( 0, 0, 0 );
for ( let i = 0, il = morphAttribute.length; i < il; i ++ ) {
const influence = morphInfluences[ i ];
const morph = morphAttribute[ i ];
if ( influence === 0 ) continue;
_tempA.fromBufferAttribute( morph, a );
_tempB.fromBufferAttribute( morph, b );
_tempC.fromBufferAttribute( morph, c );
if ( morphTargetsRelative ) {
_morphA.addScaledVector( _tempA, influence );
_morphB.addScaledVector( _tempB, influence );
_morphC.addScaledVector( _tempC, influence );
} else {
_morphA.addScaledVector( _tempA.sub( _vA ), influence );
_morphB.addScaledVector( _tempB.sub( _vB ), influence );
_morphC.addScaledVector( _tempC.sub( _vC ), influence );
}
}
_vA.add( _morphA );
_vB.add( _morphB );
_vC.add( _morphC );
}
if ( object.isSkinnedMesh ) {
object.applyBoneTransform( a, _vA );
object.applyBoneTransform( b, _vB );
object.applyBoneTransform( c, _vC );
}
modifiedAttributeArray[ a * 3 + 0 ] = _vA.x;
modifiedAttributeArray[ a * 3 + 1 ] = _vA.y;
modifiedAttributeArray[ a * 3 + 2 ] = _vA.z;
modifiedAttributeArray[ b * 3 + 0 ] = _vB.x;
modifiedAttributeArray[ b * 3 + 1 ] = _vB.y;
modifiedAttributeArray[ b * 3 + 2 ] = _vB.z;
modifiedAttributeArray[ c * 3 + 0 ] = _vC.x;
modifiedAttributeArray[ c * 3 + 1 ] = _vC.y;
modifiedAttributeArray[ c * 3 + 2 ] = _vC.z;
}
const geometry = object.geometry;
const material = object.material;
let a, b, c;
const index = geometry.index;
const positionAttribute = geometry.attributes.position;
const morphPosition = geometry.morphAttributes.position;
const morphTargetsRelative = geometry.morphTargetsRelative;
const normalAttribute = geometry.attributes.normal;
const morphNormal = geometry.morphAttributes.position;
const groups = geometry.groups;
const drawRange = geometry.drawRange;
let i, j, il, jl;
let group;
let start, end;
const modifiedPosition = new Float32Array( positionAttribute.count * positionAttribute.itemSize );
const modifiedNormal = new Float32Array( normalAttribute.count * normalAttribute.itemSize );
if ( index !== null ) {
// indexed buffer geometry
if ( Array.isArray( material ) ) {
for ( i = 0, il = groups.length; i < il; i ++ ) {
group = groups[ i ];
start = Math.max( group.start, drawRange.start );
end = Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) );
for ( j = start, jl = end; j < jl; j += 3 ) {
a = index.getX( j );
b = index.getX( j + 1 );
c = index.getX( j + 2 );
_calculateMorphedAttributeData(
object,
positionAttribute,
morphPosition,
morphTargetsRelative,
a, b, c,
modifiedPosition
);
_calculateMorphedAttributeData(
object,
normalAttribute,
morphNormal,
morphTargetsRelative,
a, b, c,
modifiedNormal
);
}
}
} else {
start = Math.max( 0, drawRange.start );
end = Math.min( index.count, ( drawRange.start + drawRange.count ) );
for ( i = start, il = end; i < il; i += 3 ) {
a = index.getX( i );
b = index.getX( i + 1 );
c = index.getX( i + 2 );
_calculateMorphedAttributeData(
object,
positionAttribute,
morphPosition,
morphTargetsRelative,
a, b, c,
modifiedPosition
);
_calculateMorphedAttributeData(
object,
normalAttribute,
morphNormal,
morphTargetsRelative,
a, b, c,
modifiedNormal
);
}
}
} else {
// non-indexed buffer geometry
if ( Array.isArray( material ) ) {
for ( i = 0, il = groups.length; i < il; i ++ ) {
group = groups[ i ];
start = Math.max( group.start, drawRange.start );
end = Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) );
for ( j = start, jl = end; j < jl; j += 3 ) {
a = j;
b = j + 1;
c = j + 2;
_calculateMorphedAttributeData(
object,
positionAttribute,
morphPosition,
morphTargetsRelative,
a, b, c,
modifiedPosition
);
_calculateMorphedAttributeData(
object,
normalAttribute,
morphNormal,
morphTargetsRelative,
a, b, c,
modifiedNormal
);
}
}
} else {
start = Math.max( 0, drawRange.start );
end = Math.min( positionAttribute.count, ( drawRange.start + drawRange.count ) );
for ( i = start, il = end; i < il; i += 3 ) {
a = i;
b = i + 1;
c = i + 2;
_calculateMorphedAttributeData(
object,
positionAttribute,
morphPosition,
morphTargetsRelative,
a, b, c,
modifiedPosition
);
_calculateMorphedAttributeData(
object,
normalAttribute,
morphNormal,
morphTargetsRelative,
a, b, c,
modifiedNormal
);
}
}
}
const morphedPositionAttribute = new Float32BufferAttribute( modifiedPosition, 3 );
const morphedNormalAttribute = new Float32BufferAttribute( modifiedNormal, 3 );
return {
positionAttribute: positionAttribute,
normalAttribute: normalAttribute,
morphedPositionAttribute: morphedPositionAttribute,
morphedNormalAttribute: morphedNormalAttribute
};
}
function mergeGroups( geometry ) {
if ( geometry.groups.length === 0 ) {
console.warn( 'THREE.BufferGeometryUtils.mergeGroups(): No groups are defined. Nothing to merge.' );
return geometry;
}
let groups = geometry.groups;
// sort groups by material index
groups = groups.sort( ( a, b ) => {
if ( a.materialIndex !== b.materialIndex ) return a.materialIndex - b.materialIndex;
return a.start - b.start;
} );
// create index for non-indexed geometries
if ( geometry.getIndex() === null ) {
const positionAttribute = geometry.getAttribute( 'position' );
const indices = [];
for ( let i = 0; i < positionAttribute.count; i += 3 ) {
indices.push( i, i + 1, i + 2 );
}
geometry.setIndex( indices );
}
// sort index
const index = geometry.getIndex();
const newIndices = [];
for ( let i = 0; i < groups.length; i ++ ) {
const group = groups[ i ];
const groupStart = group.start;
const groupLength = groupStart + group.count;
for ( let j = groupStart; j < groupLength; j ++ ) {
newIndices.push( index.getX( j ) );
}
}
geometry.dispose(); // Required to force buffer recreation
geometry.setIndex( newIndices );
// update groups indices
let start = 0;
for ( let i = 0; i < groups.length; i ++ ) {
const group = groups[ i ];
group.start = start;
start += group.count;
}
// merge groups
let currentGroup = groups[ 0 ];
geometry.groups = [ currentGroup ];
for ( let i = 1; i < groups.length; i ++ ) {
const group = groups[ i ];
if ( currentGroup.materialIndex === group.materialIndex ) {
currentGroup.count += group.count;
} else {
currentGroup = group;
geometry.groups.push( currentGroup );
}
}
return geometry;
}
/**
* Modifies the supplied geometry if it is non-indexed, otherwise creates a new,
* non-indexed geometry. Returns the geometry with smooth normals everywhere except
* faces that meet at an angle greater than the crease angle.
*
* @param {BufferGeometry} geometry
* @param {number} [creaseAngle]
* @return {BufferGeometry}
*/
function toCreasedNormals( geometry, creaseAngle = Math.PI / 3 /* 60 degrees */ ) {
const creaseDot = Math.cos( creaseAngle );
const hashMultiplier = ( 1 + 1e-10 ) * 1e2;
// reusable vectors
const verts = [ new Vector3(), new Vector3(), new Vector3() ];
const tempVec1 = new Vector3();
const tempVec2 = new Vector3();
const tempNorm = new Vector3();
const tempNorm2 = new Vector3();
// hashes a vector
function hashVertex( v ) {
const x = ~ ~ ( v.x * hashMultiplier );
const y = ~ ~ ( v.y * hashMultiplier );
const z = ~ ~ ( v.z * hashMultiplier );
return `${x},${y},${z}`;
}
// BufferGeometry.toNonIndexed() warns if the geometry is non-indexed
// and returns the original geometry
const resultGeometry = geometry.index ? geometry.toNonIndexed() : geometry;
const posAttr = resultGeometry.attributes.position;
const vertexMap = {};
// find all the normals shared by commonly located vertices
for ( let i = 0, l = posAttr.count / 3; i < l; i ++ ) {
const i3 = 3 * i;
const a = verts[ 0 ].fromBufferAttribute( posAttr, i3 + 0 );
const b = verts[ 1 ].fromBufferAttribute( posAttr, i3 + 1 );
const c = verts[ 2 ].fromBufferAttribute( posAttr, i3 + 2 );
tempVec1.subVectors( c, b );
tempVec2.subVectors( a, b );
// add the normal to the map for all vertices
const normal = new Vector3().crossVectors( tempVec1, tempVec2 ).normalize();
for ( let n = 0; n < 3; n ++ ) {
const vert = verts[ n ];
const hash = hashVertex( vert );
if ( ! ( hash in vertexMap ) ) {
vertexMap[ hash ] = [];
}
vertexMap[ hash ].push( normal );
}
}
// average normals from all vertices that share a common location if they are within the
// provided crease threshold
const normalArray = new Float32Array( posAttr.count * 3 );
const normAttr = new BufferAttribute( normalArray, 3, false );
for ( let i = 0, l = posAttr.count / 3; i < l; i ++ ) {
// get the face normal for this vertex
const i3 = 3 * i;
const a = verts[ 0 ].fromBufferAttribute( posAttr, i3 + 0 );
const b = verts[ 1 ].fromBufferAttribute( posAttr, i3 + 1 );
const c = verts[ 2 ].fromBufferAttribute( posAttr, i3 + 2 );
tempVec1.subVectors( c, b );
tempVec2.subVectors( a, b );
tempNorm.crossVectors( tempVec1, tempVec2 ).normalize();
// average all normals that meet the threshold and set the normal value
for ( let n = 0; n < 3; n ++ ) {
const vert = verts[ n ];
const hash = hashVertex( vert );
const otherNormals = vertexMap[ hash ];
tempNorm2.set( 0, 0, 0 );
for ( let k = 0, lk = otherNormals.length; k < lk; k ++ ) {
const otherNorm = otherNormals[ k ];
if ( tempNorm.dot( otherNorm ) > creaseDot ) {
tempNorm2.add( otherNorm );
}
}
tempNorm2.normalize();
normAttr.setXYZ( i3 + n, tempNorm2.x, tempNorm2.y, tempNorm2.z );
}
}
resultGeometry.setAttribute( 'normal', normAttr );
return resultGeometry;
}
export {
computeMikkTSpaceTangents,
mergeGeometries,
mergeAttributes,
interleaveAttributes,
estimateBytesUsed,
mergeVertices,
toTrianglesDrawMode,
computeMorphedAttributes,
mergeGroups,
toCreasedNormals
};