animate/webGl/my-threejs-test/node_modules/three/examples/jsm/postprocessing/OutlinePass.js

655 lines
20 KiB
JavaScript

import {
AdditiveBlending,
Color,
DoubleSide,
HalfFloatType,
Matrix4,
MeshDepthMaterial,
NoBlending,
RGBADepthPacking,
ShaderMaterial,
UniformsUtils,
Vector2,
Vector3,
WebGLRenderTarget
} from 'three';
import { Pass, FullScreenQuad } from './Pass.js';
import { CopyShader } from '../shaders/CopyShader.js';
class OutlinePass extends Pass {
constructor( resolution, scene, camera, selectedObjects ) {
super();
this.renderScene = scene;
this.renderCamera = camera;
this.selectedObjects = selectedObjects !== undefined ? selectedObjects : [];
this.visibleEdgeColor = new Color( 1, 1, 1 );
this.hiddenEdgeColor = new Color( 0.1, 0.04, 0.02 );
this.edgeGlow = 0.0;
this.usePatternTexture = false;
this.edgeThickness = 1.0;
this.edgeStrength = 3.0;
this.downSampleRatio = 2;
this.pulsePeriod = 0;
this._visibilityCache = new Map();
this.resolution = ( resolution !== undefined ) ? new Vector2( resolution.x, resolution.y ) : new Vector2( 256, 256 );
const resx = Math.round( this.resolution.x / this.downSampleRatio );
const resy = Math.round( this.resolution.y / this.downSampleRatio );
this.renderTargetMaskBuffer = new WebGLRenderTarget( this.resolution.x, this.resolution.y );
this.renderTargetMaskBuffer.texture.name = 'OutlinePass.mask';
this.renderTargetMaskBuffer.texture.generateMipmaps = false;
this.depthMaterial = new MeshDepthMaterial();
this.depthMaterial.side = DoubleSide;
this.depthMaterial.depthPacking = RGBADepthPacking;
this.depthMaterial.blending = NoBlending;
this.prepareMaskMaterial = this.getPrepareMaskMaterial();
this.prepareMaskMaterial.side = DoubleSide;
this.prepareMaskMaterial.fragmentShader = replaceDepthToViewZ( this.prepareMaskMaterial.fragmentShader, this.renderCamera );
this.renderTargetDepthBuffer = new WebGLRenderTarget( this.resolution.x, this.resolution.y, { type: HalfFloatType } );
this.renderTargetDepthBuffer.texture.name = 'OutlinePass.depth';
this.renderTargetDepthBuffer.texture.generateMipmaps = false;
this.renderTargetMaskDownSampleBuffer = new WebGLRenderTarget( resx, resy, { type: HalfFloatType } );
this.renderTargetMaskDownSampleBuffer.texture.name = 'OutlinePass.depthDownSample';
this.renderTargetMaskDownSampleBuffer.texture.generateMipmaps = false;
this.renderTargetBlurBuffer1 = new WebGLRenderTarget( resx, resy, { type: HalfFloatType } );
this.renderTargetBlurBuffer1.texture.name = 'OutlinePass.blur1';
this.renderTargetBlurBuffer1.texture.generateMipmaps = false;
this.renderTargetBlurBuffer2 = new WebGLRenderTarget( Math.round( resx / 2 ), Math.round( resy / 2 ), { type: HalfFloatType } );
this.renderTargetBlurBuffer2.texture.name = 'OutlinePass.blur2';
this.renderTargetBlurBuffer2.texture.generateMipmaps = false;
this.edgeDetectionMaterial = this.getEdgeDetectionMaterial();
this.renderTargetEdgeBuffer1 = new WebGLRenderTarget( resx, resy, { type: HalfFloatType } );
this.renderTargetEdgeBuffer1.texture.name = 'OutlinePass.edge1';
this.renderTargetEdgeBuffer1.texture.generateMipmaps = false;
this.renderTargetEdgeBuffer2 = new WebGLRenderTarget( Math.round( resx / 2 ), Math.round( resy / 2 ), { type: HalfFloatType } );
this.renderTargetEdgeBuffer2.texture.name = 'OutlinePass.edge2';
this.renderTargetEdgeBuffer2.texture.generateMipmaps = false;
const MAX_EDGE_THICKNESS = 4;
const MAX_EDGE_GLOW = 4;
this.separableBlurMaterial1 = this.getSeperableBlurMaterial( MAX_EDGE_THICKNESS );
this.separableBlurMaterial1.uniforms[ 'texSize' ].value.set( resx, resy );
this.separableBlurMaterial1.uniforms[ 'kernelRadius' ].value = 1;
this.separableBlurMaterial2 = this.getSeperableBlurMaterial( MAX_EDGE_GLOW );
this.separableBlurMaterial2.uniforms[ 'texSize' ].value.set( Math.round( resx / 2 ), Math.round( resy / 2 ) );
this.separableBlurMaterial2.uniforms[ 'kernelRadius' ].value = MAX_EDGE_GLOW;
// Overlay material
this.overlayMaterial = this.getOverlayMaterial();
// copy material
const copyShader = CopyShader;
this.copyUniforms = UniformsUtils.clone( copyShader.uniforms );
this.materialCopy = new ShaderMaterial( {
uniforms: this.copyUniforms,
vertexShader: copyShader.vertexShader,
fragmentShader: copyShader.fragmentShader,
blending: NoBlending,
depthTest: false,
depthWrite: false
} );
this.enabled = true;
this.needsSwap = false;
this._oldClearColor = new Color();
this.oldClearAlpha = 1;
this.fsQuad = new FullScreenQuad( null );
this.tempPulseColor1 = new Color();
this.tempPulseColor2 = new Color();
this.textureMatrix = new Matrix4();
function replaceDepthToViewZ( string, camera ) {
const type = camera.isPerspectiveCamera ? 'perspective' : 'orthographic';
return string.replace( /DEPTH_TO_VIEW_Z/g, type + 'DepthToViewZ' );
}
}
dispose() {
this.renderTargetMaskBuffer.dispose();
this.renderTargetDepthBuffer.dispose();
this.renderTargetMaskDownSampleBuffer.dispose();
this.renderTargetBlurBuffer1.dispose();
this.renderTargetBlurBuffer2.dispose();
this.renderTargetEdgeBuffer1.dispose();
this.renderTargetEdgeBuffer2.dispose();
this.depthMaterial.dispose();
this.prepareMaskMaterial.dispose();
this.edgeDetectionMaterial.dispose();
this.separableBlurMaterial1.dispose();
this.separableBlurMaterial2.dispose();
this.overlayMaterial.dispose();
this.materialCopy.dispose();
this.fsQuad.dispose();
}
setSize( width, height ) {
this.renderTargetMaskBuffer.setSize( width, height );
this.renderTargetDepthBuffer.setSize( width, height );
let resx = Math.round( width / this.downSampleRatio );
let resy = Math.round( height / this.downSampleRatio );
this.renderTargetMaskDownSampleBuffer.setSize( resx, resy );
this.renderTargetBlurBuffer1.setSize( resx, resy );
this.renderTargetEdgeBuffer1.setSize( resx, resy );
this.separableBlurMaterial1.uniforms[ 'texSize' ].value.set( resx, resy );
resx = Math.round( resx / 2 );
resy = Math.round( resy / 2 );
this.renderTargetBlurBuffer2.setSize( resx, resy );
this.renderTargetEdgeBuffer2.setSize( resx, resy );
this.separableBlurMaterial2.uniforms[ 'texSize' ].value.set( resx, resy );
}
changeVisibilityOfSelectedObjects( bVisible ) {
const cache = this._visibilityCache;
function gatherSelectedMeshesCallBack( object ) {
if ( object.isMesh ) {
if ( bVisible === true ) {
object.visible = cache.get( object );
} else {
cache.set( object, object.visible );
object.visible = bVisible;
}
}
}
for ( let i = 0; i < this.selectedObjects.length; i ++ ) {
const selectedObject = this.selectedObjects[ i ];
selectedObject.traverse( gatherSelectedMeshesCallBack );
}
}
changeVisibilityOfNonSelectedObjects( bVisible ) {
const cache = this._visibilityCache;
const selectedMeshes = [];
function gatherSelectedMeshesCallBack( object ) {
if ( object.isMesh ) selectedMeshes.push( object );
}
for ( let i = 0; i < this.selectedObjects.length; i ++ ) {
const selectedObject = this.selectedObjects[ i ];
selectedObject.traverse( gatherSelectedMeshesCallBack );
}
function VisibilityChangeCallBack( object ) {
if ( object.isMesh || object.isSprite ) {
// only meshes and sprites are supported by OutlinePass
let bFound = false;
for ( let i = 0; i < selectedMeshes.length; i ++ ) {
const selectedObjectId = selectedMeshes[ i ].id;
if ( selectedObjectId === object.id ) {
bFound = true;
break;
}
}
if ( bFound === false ) {
const visibility = object.visible;
if ( bVisible === false || cache.get( object ) === true ) {
object.visible = bVisible;
}
cache.set( object, visibility );
}
} else if ( object.isPoints || object.isLine ) {
// the visibilty of points and lines is always set to false in order to
// not affect the outline computation
if ( bVisible === true ) {
object.visible = cache.get( object ); // restore
} else {
cache.set( object, object.visible );
object.visible = bVisible;
}
}
}
this.renderScene.traverse( VisibilityChangeCallBack );
}
updateTextureMatrix() {
this.textureMatrix.set( 0.5, 0.0, 0.0, 0.5,
0.0, 0.5, 0.0, 0.5,
0.0, 0.0, 0.5, 0.5,
0.0, 0.0, 0.0, 1.0 );
this.textureMatrix.multiply( this.renderCamera.projectionMatrix );
this.textureMatrix.multiply( this.renderCamera.matrixWorldInverse );
}
render( renderer, writeBuffer, readBuffer, deltaTime, maskActive ) {
if ( this.selectedObjects.length > 0 ) {
renderer.getClearColor( this._oldClearColor );
this.oldClearAlpha = renderer.getClearAlpha();
const oldAutoClear = renderer.autoClear;
renderer.autoClear = false;
if ( maskActive ) renderer.state.buffers.stencil.setTest( false );
renderer.setClearColor( 0xffffff, 1 );
// Make selected objects invisible
this.changeVisibilityOfSelectedObjects( false );
const currentBackground = this.renderScene.background;
this.renderScene.background = null;
// 1. Draw Non Selected objects in the depth buffer
this.renderScene.overrideMaterial = this.depthMaterial;
renderer.setRenderTarget( this.renderTargetDepthBuffer );
renderer.clear();
renderer.render( this.renderScene, this.renderCamera );
// Make selected objects visible
this.changeVisibilityOfSelectedObjects( true );
this._visibilityCache.clear();
// Update Texture Matrix for Depth compare
this.updateTextureMatrix();
// Make non selected objects invisible, and draw only the selected objects, by comparing the depth buffer of non selected objects
this.changeVisibilityOfNonSelectedObjects( false );
this.renderScene.overrideMaterial = this.prepareMaskMaterial;
this.prepareMaskMaterial.uniforms[ 'cameraNearFar' ].value.set( this.renderCamera.near, this.renderCamera.far );
this.prepareMaskMaterial.uniforms[ 'depthTexture' ].value = this.renderTargetDepthBuffer.texture;
this.prepareMaskMaterial.uniforms[ 'textureMatrix' ].value = this.textureMatrix;
renderer.setRenderTarget( this.renderTargetMaskBuffer );
renderer.clear();
renderer.render( this.renderScene, this.renderCamera );
this.renderScene.overrideMaterial = null;
this.changeVisibilityOfNonSelectedObjects( true );
this._visibilityCache.clear();
this.renderScene.background = currentBackground;
// 2. Downsample to Half resolution
this.fsQuad.material = this.materialCopy;
this.copyUniforms[ 'tDiffuse' ].value = this.renderTargetMaskBuffer.texture;
renderer.setRenderTarget( this.renderTargetMaskDownSampleBuffer );
renderer.clear();
this.fsQuad.render( renderer );
this.tempPulseColor1.copy( this.visibleEdgeColor );
this.tempPulseColor2.copy( this.hiddenEdgeColor );
if ( this.pulsePeriod > 0 ) {
const scalar = ( 1 + 0.25 ) / 2 + Math.cos( performance.now() * 0.01 / this.pulsePeriod ) * ( 1.0 - 0.25 ) / 2;
this.tempPulseColor1.multiplyScalar( scalar );
this.tempPulseColor2.multiplyScalar( scalar );
}
// 3. Apply Edge Detection Pass
this.fsQuad.material = this.edgeDetectionMaterial;
this.edgeDetectionMaterial.uniforms[ 'maskTexture' ].value = this.renderTargetMaskDownSampleBuffer.texture;
this.edgeDetectionMaterial.uniforms[ 'texSize' ].value.set( this.renderTargetMaskDownSampleBuffer.width, this.renderTargetMaskDownSampleBuffer.height );
this.edgeDetectionMaterial.uniforms[ 'visibleEdgeColor' ].value = this.tempPulseColor1;
this.edgeDetectionMaterial.uniforms[ 'hiddenEdgeColor' ].value = this.tempPulseColor2;
renderer.setRenderTarget( this.renderTargetEdgeBuffer1 );
renderer.clear();
this.fsQuad.render( renderer );
// 4. Apply Blur on Half res
this.fsQuad.material = this.separableBlurMaterial1;
this.separableBlurMaterial1.uniforms[ 'colorTexture' ].value = this.renderTargetEdgeBuffer1.texture;
this.separableBlurMaterial1.uniforms[ 'direction' ].value = OutlinePass.BlurDirectionX;
this.separableBlurMaterial1.uniforms[ 'kernelRadius' ].value = this.edgeThickness;
renderer.setRenderTarget( this.renderTargetBlurBuffer1 );
renderer.clear();
this.fsQuad.render( renderer );
this.separableBlurMaterial1.uniforms[ 'colorTexture' ].value = this.renderTargetBlurBuffer1.texture;
this.separableBlurMaterial1.uniforms[ 'direction' ].value = OutlinePass.BlurDirectionY;
renderer.setRenderTarget( this.renderTargetEdgeBuffer1 );
renderer.clear();
this.fsQuad.render( renderer );
// Apply Blur on quarter res
this.fsQuad.material = this.separableBlurMaterial2;
this.separableBlurMaterial2.uniforms[ 'colorTexture' ].value = this.renderTargetEdgeBuffer1.texture;
this.separableBlurMaterial2.uniforms[ 'direction' ].value = OutlinePass.BlurDirectionX;
renderer.setRenderTarget( this.renderTargetBlurBuffer2 );
renderer.clear();
this.fsQuad.render( renderer );
this.separableBlurMaterial2.uniforms[ 'colorTexture' ].value = this.renderTargetBlurBuffer2.texture;
this.separableBlurMaterial2.uniforms[ 'direction' ].value = OutlinePass.BlurDirectionY;
renderer.setRenderTarget( this.renderTargetEdgeBuffer2 );
renderer.clear();
this.fsQuad.render( renderer );
// Blend it additively over the input texture
this.fsQuad.material = this.overlayMaterial;
this.overlayMaterial.uniforms[ 'maskTexture' ].value = this.renderTargetMaskBuffer.texture;
this.overlayMaterial.uniforms[ 'edgeTexture1' ].value = this.renderTargetEdgeBuffer1.texture;
this.overlayMaterial.uniforms[ 'edgeTexture2' ].value = this.renderTargetEdgeBuffer2.texture;
this.overlayMaterial.uniforms[ 'patternTexture' ].value = this.patternTexture;
this.overlayMaterial.uniforms[ 'edgeStrength' ].value = this.edgeStrength;
this.overlayMaterial.uniforms[ 'edgeGlow' ].value = this.edgeGlow;
this.overlayMaterial.uniforms[ 'usePatternTexture' ].value = this.usePatternTexture;
if ( maskActive ) renderer.state.buffers.stencil.setTest( true );
renderer.setRenderTarget( readBuffer );
this.fsQuad.render( renderer );
renderer.setClearColor( this._oldClearColor, this.oldClearAlpha );
renderer.autoClear = oldAutoClear;
}
if ( this.renderToScreen ) {
this.fsQuad.material = this.materialCopy;
this.copyUniforms[ 'tDiffuse' ].value = readBuffer.texture;
renderer.setRenderTarget( null );
this.fsQuad.render( renderer );
}
}
getPrepareMaskMaterial() {
return new ShaderMaterial( {
uniforms: {
'depthTexture': { value: null },
'cameraNearFar': { value: new Vector2( 0.5, 0.5 ) },
'textureMatrix': { value: null }
},
vertexShader:
`#include <morphtarget_pars_vertex>
#include <skinning_pars_vertex>
varying vec4 projTexCoord;
varying vec4 vPosition;
uniform mat4 textureMatrix;
void main() {
#include <skinbase_vertex>
#include <begin_vertex>
#include <morphtarget_vertex>
#include <skinning_vertex>
#include <project_vertex>
vPosition = mvPosition;
vec4 worldPosition = vec4( transformed, 1.0 );
#ifdef USE_INSTANCING
worldPosition = instanceMatrix * worldPosition;
#endif
worldPosition = modelMatrix * worldPosition;
projTexCoord = textureMatrix * worldPosition;
}`,
fragmentShader:
`#include <packing>
varying vec4 vPosition;
varying vec4 projTexCoord;
uniform sampler2D depthTexture;
uniform vec2 cameraNearFar;
void main() {
float depth = unpackRGBAToDepth(texture2DProj( depthTexture, projTexCoord ));
float viewZ = - DEPTH_TO_VIEW_Z( depth, cameraNearFar.x, cameraNearFar.y );
float depthTest = (-vPosition.z > viewZ) ? 1.0 : 0.0;
gl_FragColor = vec4(0.0, depthTest, 1.0, 1.0);
}`
} );
}
getEdgeDetectionMaterial() {
return new ShaderMaterial( {
uniforms: {
'maskTexture': { value: null },
'texSize': { value: new Vector2( 0.5, 0.5 ) },
'visibleEdgeColor': { value: new Vector3( 1.0, 1.0, 1.0 ) },
'hiddenEdgeColor': { value: new Vector3( 1.0, 1.0, 1.0 ) },
},
vertexShader:
`varying vec2 vUv;
void main() {
vUv = uv;
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}`,
fragmentShader:
`varying vec2 vUv;
uniform sampler2D maskTexture;
uniform vec2 texSize;
uniform vec3 visibleEdgeColor;
uniform vec3 hiddenEdgeColor;
void main() {
vec2 invSize = 1.0 / texSize;
vec4 uvOffset = vec4(1.0, 0.0, 0.0, 1.0) * vec4(invSize, invSize);
vec4 c1 = texture2D( maskTexture, vUv + uvOffset.xy);
vec4 c2 = texture2D( maskTexture, vUv - uvOffset.xy);
vec4 c3 = texture2D( maskTexture, vUv + uvOffset.yw);
vec4 c4 = texture2D( maskTexture, vUv - uvOffset.yw);
float diff1 = (c1.r - c2.r)*0.5;
float diff2 = (c3.r - c4.r)*0.5;
float d = length( vec2(diff1, diff2) );
float a1 = min(c1.g, c2.g);
float a2 = min(c3.g, c4.g);
float visibilityFactor = min(a1, a2);
vec3 edgeColor = 1.0 - visibilityFactor > 0.001 ? visibleEdgeColor : hiddenEdgeColor;
gl_FragColor = vec4(edgeColor, 1.0) * vec4(d);
}`
} );
}
getSeperableBlurMaterial( maxRadius ) {
return new ShaderMaterial( {
defines: {
'MAX_RADIUS': maxRadius,
},
uniforms: {
'colorTexture': { value: null },
'texSize': { value: new Vector2( 0.5, 0.5 ) },
'direction': { value: new Vector2( 0.5, 0.5 ) },
'kernelRadius': { value: 1.0 }
},
vertexShader:
`varying vec2 vUv;
void main() {
vUv = uv;
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}`,
fragmentShader:
`#include <common>
varying vec2 vUv;
uniform sampler2D colorTexture;
uniform vec2 texSize;
uniform vec2 direction;
uniform float kernelRadius;
float gaussianPdf(in float x, in float sigma) {
return 0.39894 * exp( -0.5 * x * x/( sigma * sigma))/sigma;
}
void main() {
vec2 invSize = 1.0 / texSize;
float sigma = kernelRadius/2.0;
float weightSum = gaussianPdf(0.0, sigma);
vec4 diffuseSum = texture2D( colorTexture, vUv) * weightSum;
vec2 delta = direction * invSize * kernelRadius/float(MAX_RADIUS);
vec2 uvOffset = delta;
for( int i = 1; i <= MAX_RADIUS; i ++ ) {
float x = kernelRadius * float(i) / float(MAX_RADIUS);
float w = gaussianPdf(x, sigma);
vec4 sample1 = texture2D( colorTexture, vUv + uvOffset);
vec4 sample2 = texture2D( colorTexture, vUv - uvOffset);
diffuseSum += ((sample1 + sample2) * w);
weightSum += (2.0 * w);
uvOffset += delta;
}
gl_FragColor = diffuseSum/weightSum;
}`
} );
}
getOverlayMaterial() {
return new ShaderMaterial( {
uniforms: {
'maskTexture': { value: null },
'edgeTexture1': { value: null },
'edgeTexture2': { value: null },
'patternTexture': { value: null },
'edgeStrength': { value: 1.0 },
'edgeGlow': { value: 1.0 },
'usePatternTexture': { value: 0.0 }
},
vertexShader:
`varying vec2 vUv;
void main() {
vUv = uv;
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}`,
fragmentShader:
`varying vec2 vUv;
uniform sampler2D maskTexture;
uniform sampler2D edgeTexture1;
uniform sampler2D edgeTexture2;
uniform sampler2D patternTexture;
uniform float edgeStrength;
uniform float edgeGlow;
uniform bool usePatternTexture;
void main() {
vec4 edgeValue1 = texture2D(edgeTexture1, vUv);
vec4 edgeValue2 = texture2D(edgeTexture2, vUv);
vec4 maskColor = texture2D(maskTexture, vUv);
vec4 patternColor = texture2D(patternTexture, 6.0 * vUv);
float visibilityFactor = 1.0 - maskColor.g > 0.0 ? 1.0 : 0.5;
vec4 edgeValue = edgeValue1 + edgeValue2 * edgeGlow;
vec4 finalColor = edgeStrength * maskColor.r * edgeValue;
if(usePatternTexture)
finalColor += + visibilityFactor * (1.0 - maskColor.r) * (1.0 - patternColor.r);
gl_FragColor = finalColor;
}`,
blending: AdditiveBlending,
depthTest: false,
depthWrite: false,
transparent: true
} );
}
}
OutlinePass.BlurDirectionX = new Vector2( 1.0, 0.0 );
OutlinePass.BlurDirectionY = new Vector2( 0.0, 1.0 );
export { OutlinePass };