1272 lines
21 KiB
JavaScript
1272 lines
21 KiB
JavaScript
import {
|
||
Line3,
|
||
Plane,
|
||
Triangle,
|
||
Vector3
|
||
} from 'three';
|
||
|
||
/**
|
||
* Ported from: https://github.com/maurizzzio/quickhull3d/ by Mauricio Poppe (https://github.com/maurizzzio)
|
||
*/
|
||
|
||
const Visible = 0;
|
||
const Deleted = 1;
|
||
|
||
const _v1 = new Vector3();
|
||
const _line3 = new Line3();
|
||
const _plane = new Plane();
|
||
const _closestPoint = new Vector3();
|
||
const _triangle = new Triangle();
|
||
|
||
class ConvexHull {
|
||
|
||
constructor() {
|
||
|
||
this.tolerance = - 1;
|
||
|
||
this.faces = []; // the generated faces of the convex hull
|
||
this.newFaces = []; // this array holds the faces that are generated within a single iteration
|
||
|
||
// the vertex lists work as follows:
|
||
//
|
||
// let 'a' and 'b' be 'Face' instances
|
||
// let 'v' be points wrapped as instance of 'Vertex'
|
||
//
|
||
// [v, v, ..., v, v, v, ...]
|
||
// ^ ^
|
||
// | |
|
||
// a.outside b.outside
|
||
//
|
||
this.assigned = new VertexList();
|
||
this.unassigned = new VertexList();
|
||
|
||
this.vertices = []; // vertices of the hull (internal representation of given geometry data)
|
||
|
||
}
|
||
|
||
setFromPoints( points ) {
|
||
|
||
// The algorithm needs at least four points.
|
||
|
||
if ( points.length >= 4 ) {
|
||
|
||
this.makeEmpty();
|
||
|
||
for ( let i = 0, l = points.length; i < l; i ++ ) {
|
||
|
||
this.vertices.push( new VertexNode( points[ i ] ) );
|
||
|
||
}
|
||
|
||
this.compute();
|
||
|
||
}
|
||
|
||
return this;
|
||
|
||
}
|
||
|
||
setFromObject( object ) {
|
||
|
||
const points = [];
|
||
|
||
object.updateMatrixWorld( true );
|
||
|
||
object.traverse( function ( node ) {
|
||
|
||
const geometry = node.geometry;
|
||
|
||
if ( geometry !== undefined ) {
|
||
|
||
const attribute = geometry.attributes.position;
|
||
|
||
if ( attribute !== undefined ) {
|
||
|
||
for ( let i = 0, l = attribute.count; i < l; i ++ ) {
|
||
|
||
const point = new Vector3();
|
||
|
||
point.fromBufferAttribute( attribute, i ).applyMatrix4( node.matrixWorld );
|
||
|
||
points.push( point );
|
||
|
||
}
|
||
|
||
}
|
||
|
||
}
|
||
|
||
} );
|
||
|
||
return this.setFromPoints( points );
|
||
|
||
}
|
||
|
||
containsPoint( point ) {
|
||
|
||
const faces = this.faces;
|
||
|
||
for ( let i = 0, l = faces.length; i < l; i ++ ) {
|
||
|
||
const face = faces[ i ];
|
||
|
||
// compute signed distance and check on what half space the point lies
|
||
|
||
if ( face.distanceToPoint( point ) > this.tolerance ) return false;
|
||
|
||
}
|
||
|
||
return true;
|
||
|
||
}
|
||
|
||
intersectRay( ray, target ) {
|
||
|
||
// based on "Fast Ray-Convex Polyhedron Intersection" by Eric Haines, GRAPHICS GEMS II
|
||
|
||
const faces = this.faces;
|
||
|
||
let tNear = - Infinity;
|
||
let tFar = Infinity;
|
||
|
||
for ( let i = 0, l = faces.length; i < l; i ++ ) {
|
||
|
||
const face = faces[ i ];
|
||
|
||
// interpret faces as planes for the further computation
|
||
|
||
const vN = face.distanceToPoint( ray.origin );
|
||
const vD = face.normal.dot( ray.direction );
|
||
|
||
// if the origin is on the positive side of a plane (so the plane can "see" the origin) and
|
||
// the ray is turned away or parallel to the plane, there is no intersection
|
||
|
||
if ( vN > 0 && vD >= 0 ) return null;
|
||
|
||
// compute the distance from the ray’s origin to the intersection with the plane
|
||
|
||
const t = ( vD !== 0 ) ? ( - vN / vD ) : 0;
|
||
|
||
// only proceed if the distance is positive. a negative distance means the intersection point
|
||
// lies "behind" the origin
|
||
|
||
if ( t <= 0 ) continue;
|
||
|
||
// now categorized plane as front-facing or back-facing
|
||
|
||
if ( vD > 0 ) {
|
||
|
||
// plane faces away from the ray, so this plane is a back-face
|
||
|
||
tFar = Math.min( t, tFar );
|
||
|
||
} else {
|
||
|
||
// front-face
|
||
|
||
tNear = Math.max( t, tNear );
|
||
|
||
}
|
||
|
||
if ( tNear > tFar ) {
|
||
|
||
// if tNear ever is greater than tFar, the ray must miss the convex hull
|
||
|
||
return null;
|
||
|
||
}
|
||
|
||
}
|
||
|
||
// evaluate intersection point
|
||
|
||
// always try tNear first since its the closer intersection point
|
||
|
||
if ( tNear !== - Infinity ) {
|
||
|
||
ray.at( tNear, target );
|
||
|
||
} else {
|
||
|
||
ray.at( tFar, target );
|
||
|
||
}
|
||
|
||
return target;
|
||
|
||
}
|
||
|
||
intersectsRay( ray ) {
|
||
|
||
return this.intersectRay( ray, _v1 ) !== null;
|
||
|
||
}
|
||
|
||
makeEmpty() {
|
||
|
||
this.faces = [];
|
||
this.vertices = [];
|
||
|
||
return this;
|
||
|
||
}
|
||
|
||
// Adds a vertex to the 'assigned' list of vertices and assigns it to the given face
|
||
|
||
addVertexToFace( vertex, face ) {
|
||
|
||
vertex.face = face;
|
||
|
||
if ( face.outside === null ) {
|
||
|
||
this.assigned.append( vertex );
|
||
|
||
} else {
|
||
|
||
this.assigned.insertBefore( face.outside, vertex );
|
||
|
||
}
|
||
|
||
face.outside = vertex;
|
||
|
||
return this;
|
||
|
||
}
|
||
|
||
// Removes a vertex from the 'assigned' list of vertices and from the given face
|
||
|
||
removeVertexFromFace( vertex, face ) {
|
||
|
||
if ( vertex === face.outside ) {
|
||
|
||
// fix face.outside link
|
||
|
||
if ( vertex.next !== null && vertex.next.face === face ) {
|
||
|
||
// face has at least 2 outside vertices, move the 'outside' reference
|
||
|
||
face.outside = vertex.next;
|
||
|
||
} else {
|
||
|
||
// vertex was the only outside vertex that face had
|
||
|
||
face.outside = null;
|
||
|
||
}
|
||
|
||
}
|
||
|
||
this.assigned.remove( vertex );
|
||
|
||
return this;
|
||
|
||
}
|
||
|
||
// Removes all the visible vertices that a given face is able to see which are stored in the 'assigned' vertex list
|
||
|
||
removeAllVerticesFromFace( face ) {
|
||
|
||
if ( face.outside !== null ) {
|
||
|
||
// reference to the first and last vertex of this face
|
||
|
||
const start = face.outside;
|
||
let end = face.outside;
|
||
|
||
while ( end.next !== null && end.next.face === face ) {
|
||
|
||
end = end.next;
|
||
|
||
}
|
||
|
||
this.assigned.removeSubList( start, end );
|
||
|
||
// fix references
|
||
|
||
start.prev = end.next = null;
|
||
face.outside = null;
|
||
|
||
return start;
|
||
|
||
}
|
||
|
||
}
|
||
|
||
// Removes all the visible vertices that 'face' is able to see
|
||
|
||
deleteFaceVertices( face, absorbingFace ) {
|
||
|
||
const faceVertices = this.removeAllVerticesFromFace( face );
|
||
|
||
if ( faceVertices !== undefined ) {
|
||
|
||
if ( absorbingFace === undefined ) {
|
||
|
||
// mark the vertices to be reassigned to some other face
|
||
|
||
this.unassigned.appendChain( faceVertices );
|
||
|
||
|
||
} else {
|
||
|
||
// if there's an absorbing face try to assign as many vertices as possible to it
|
||
|
||
let vertex = faceVertices;
|
||
|
||
do {
|
||
|
||
// we need to buffer the subsequent vertex at this point because the 'vertex.next' reference
|
||
// will be changed by upcoming method calls
|
||
|
||
const nextVertex = vertex.next;
|
||
|
||
const distance = absorbingFace.distanceToPoint( vertex.point );
|
||
|
||
// check if 'vertex' is able to see 'absorbingFace'
|
||
|
||
if ( distance > this.tolerance ) {
|
||
|
||
this.addVertexToFace( vertex, absorbingFace );
|
||
|
||
} else {
|
||
|
||
this.unassigned.append( vertex );
|
||
|
||
}
|
||
|
||
// now assign next vertex
|
||
|
||
vertex = nextVertex;
|
||
|
||
} while ( vertex !== null );
|
||
|
||
}
|
||
|
||
}
|
||
|
||
return this;
|
||
|
||
}
|
||
|
||
// Reassigns as many vertices as possible from the unassigned list to the new faces
|
||
|
||
resolveUnassignedPoints( newFaces ) {
|
||
|
||
if ( this.unassigned.isEmpty() === false ) {
|
||
|
||
let vertex = this.unassigned.first();
|
||
|
||
do {
|
||
|
||
// buffer 'next' reference, see .deleteFaceVertices()
|
||
|
||
const nextVertex = vertex.next;
|
||
|
||
let maxDistance = this.tolerance;
|
||
|
||
let maxFace = null;
|
||
|
||
for ( let i = 0; i < newFaces.length; i ++ ) {
|
||
|
||
const face = newFaces[ i ];
|
||
|
||
if ( face.mark === Visible ) {
|
||
|
||
const distance = face.distanceToPoint( vertex.point );
|
||
|
||
if ( distance > maxDistance ) {
|
||
|
||
maxDistance = distance;
|
||
maxFace = face;
|
||
|
||
}
|
||
|
||
if ( maxDistance > 1000 * this.tolerance ) break;
|
||
|
||
}
|
||
|
||
}
|
||
|
||
// 'maxFace' can be null e.g. if there are identical vertices
|
||
|
||
if ( maxFace !== null ) {
|
||
|
||
this.addVertexToFace( vertex, maxFace );
|
||
|
||
}
|
||
|
||
vertex = nextVertex;
|
||
|
||
} while ( vertex !== null );
|
||
|
||
}
|
||
|
||
return this;
|
||
|
||
}
|
||
|
||
// Computes the extremes of a simplex which will be the initial hull
|
||
|
||
computeExtremes() {
|
||
|
||
const min = new Vector3();
|
||
const max = new Vector3();
|
||
|
||
const minVertices = [];
|
||
const maxVertices = [];
|
||
|
||
// initially assume that the first vertex is the min/max
|
||
|
||
for ( let i = 0; i < 3; i ++ ) {
|
||
|
||
minVertices[ i ] = maxVertices[ i ] = this.vertices[ 0 ];
|
||
|
||
}
|
||
|
||
min.copy( this.vertices[ 0 ].point );
|
||
max.copy( this.vertices[ 0 ].point );
|
||
|
||
// compute the min/max vertex on all six directions
|
||
|
||
for ( let i = 0, l = this.vertices.length; i < l; i ++ ) {
|
||
|
||
const vertex = this.vertices[ i ];
|
||
const point = vertex.point;
|
||
|
||
// update the min coordinates
|
||
|
||
for ( let j = 0; j < 3; j ++ ) {
|
||
|
||
if ( point.getComponent( j ) < min.getComponent( j ) ) {
|
||
|
||
min.setComponent( j, point.getComponent( j ) );
|
||
minVertices[ j ] = vertex;
|
||
|
||
}
|
||
|
||
}
|
||
|
||
// update the max coordinates
|
||
|
||
for ( let j = 0; j < 3; j ++ ) {
|
||
|
||
if ( point.getComponent( j ) > max.getComponent( j ) ) {
|
||
|
||
max.setComponent( j, point.getComponent( j ) );
|
||
maxVertices[ j ] = vertex;
|
||
|
||
}
|
||
|
||
}
|
||
|
||
}
|
||
|
||
// use min/max vectors to compute an optimal epsilon
|
||
|
||
this.tolerance = 3 * Number.EPSILON * (
|
||
Math.max( Math.abs( min.x ), Math.abs( max.x ) ) +
|
||
Math.max( Math.abs( min.y ), Math.abs( max.y ) ) +
|
||
Math.max( Math.abs( min.z ), Math.abs( max.z ) )
|
||
);
|
||
|
||
return { min: minVertices, max: maxVertices };
|
||
|
||
}
|
||
|
||
// Computes the initial simplex assigning to its faces all the points
|
||
// that are candidates to form part of the hull
|
||
|
||
computeInitialHull() {
|
||
|
||
const vertices = this.vertices;
|
||
const extremes = this.computeExtremes();
|
||
const min = extremes.min;
|
||
const max = extremes.max;
|
||
|
||
// 1. Find the two vertices 'v0' and 'v1' with the greatest 1d separation
|
||
// (max.x - min.x)
|
||
// (max.y - min.y)
|
||
// (max.z - min.z)
|
||
|
||
let maxDistance = 0;
|
||
let index = 0;
|
||
|
||
for ( let i = 0; i < 3; i ++ ) {
|
||
|
||
const distance = max[ i ].point.getComponent( i ) - min[ i ].point.getComponent( i );
|
||
|
||
if ( distance > maxDistance ) {
|
||
|
||
maxDistance = distance;
|
||
index = i;
|
||
|
||
}
|
||
|
||
}
|
||
|
||
const v0 = min[ index ];
|
||
const v1 = max[ index ];
|
||
let v2;
|
||
let v3;
|
||
|
||
// 2. The next vertex 'v2' is the one farthest to the line formed by 'v0' and 'v1'
|
||
|
||
maxDistance = 0;
|
||
_line3.set( v0.point, v1.point );
|
||
|
||
for ( let i = 0, l = this.vertices.length; i < l; i ++ ) {
|
||
|
||
const vertex = vertices[ i ];
|
||
|
||
if ( vertex !== v0 && vertex !== v1 ) {
|
||
|
||
_line3.closestPointToPoint( vertex.point, true, _closestPoint );
|
||
|
||
const distance = _closestPoint.distanceToSquared( vertex.point );
|
||
|
||
if ( distance > maxDistance ) {
|
||
|
||
maxDistance = distance;
|
||
v2 = vertex;
|
||
|
||
}
|
||
|
||
}
|
||
|
||
}
|
||
|
||
// 3. The next vertex 'v3' is the one farthest to the plane 'v0', 'v1', 'v2'
|
||
|
||
maxDistance = - 1;
|
||
_plane.setFromCoplanarPoints( v0.point, v1.point, v2.point );
|
||
|
||
for ( let i = 0, l = this.vertices.length; i < l; i ++ ) {
|
||
|
||
const vertex = vertices[ i ];
|
||
|
||
if ( vertex !== v0 && vertex !== v1 && vertex !== v2 ) {
|
||
|
||
const distance = Math.abs( _plane.distanceToPoint( vertex.point ) );
|
||
|
||
if ( distance > maxDistance ) {
|
||
|
||
maxDistance = distance;
|
||
v3 = vertex;
|
||
|
||
}
|
||
|
||
}
|
||
|
||
}
|
||
|
||
const faces = [];
|
||
|
||
if ( _plane.distanceToPoint( v3.point ) < 0 ) {
|
||
|
||
// the face is not able to see the point so 'plane.normal' is pointing outside the tetrahedron
|
||
|
||
faces.push(
|
||
Face.create( v0, v1, v2 ),
|
||
Face.create( v3, v1, v0 ),
|
||
Face.create( v3, v2, v1 ),
|
||
Face.create( v3, v0, v2 )
|
||
);
|
||
|
||
// set the twin edge
|
||
|
||
for ( let i = 0; i < 3; i ++ ) {
|
||
|
||
const j = ( i + 1 ) % 3;
|
||
|
||
// join face[ i ] i > 0, with the first face
|
||
|
||
faces[ i + 1 ].getEdge( 2 ).setTwin( faces[ 0 ].getEdge( j ) );
|
||
|
||
// join face[ i ] with face[ i + 1 ], 1 <= i <= 3
|
||
|
||
faces[ i + 1 ].getEdge( 1 ).setTwin( faces[ j + 1 ].getEdge( 0 ) );
|
||
|
||
}
|
||
|
||
} else {
|
||
|
||
// the face is able to see the point so 'plane.normal' is pointing inside the tetrahedron
|
||
|
||
faces.push(
|
||
Face.create( v0, v2, v1 ),
|
||
Face.create( v3, v0, v1 ),
|
||
Face.create( v3, v1, v2 ),
|
||
Face.create( v3, v2, v0 )
|
||
);
|
||
|
||
// set the twin edge
|
||
|
||
for ( let i = 0; i < 3; i ++ ) {
|
||
|
||
const j = ( i + 1 ) % 3;
|
||
|
||
// join face[ i ] i > 0, with the first face
|
||
|
||
faces[ i + 1 ].getEdge( 2 ).setTwin( faces[ 0 ].getEdge( ( 3 - i ) % 3 ) );
|
||
|
||
// join face[ i ] with face[ i + 1 ]
|
||
|
||
faces[ i + 1 ].getEdge( 0 ).setTwin( faces[ j + 1 ].getEdge( 1 ) );
|
||
|
||
}
|
||
|
||
}
|
||
|
||
// the initial hull is the tetrahedron
|
||
|
||
for ( let i = 0; i < 4; i ++ ) {
|
||
|
||
this.faces.push( faces[ i ] );
|
||
|
||
}
|
||
|
||
// initial assignment of vertices to the faces of the tetrahedron
|
||
|
||
for ( let i = 0, l = vertices.length; i < l; i ++ ) {
|
||
|
||
const vertex = vertices[ i ];
|
||
|
||
if ( vertex !== v0 && vertex !== v1 && vertex !== v2 && vertex !== v3 ) {
|
||
|
||
maxDistance = this.tolerance;
|
||
let maxFace = null;
|
||
|
||
for ( let j = 0; j < 4; j ++ ) {
|
||
|
||
const distance = this.faces[ j ].distanceToPoint( vertex.point );
|
||
|
||
if ( distance > maxDistance ) {
|
||
|
||
maxDistance = distance;
|
||
maxFace = this.faces[ j ];
|
||
|
||
}
|
||
|
||
}
|
||
|
||
if ( maxFace !== null ) {
|
||
|
||
this.addVertexToFace( vertex, maxFace );
|
||
|
||
}
|
||
|
||
}
|
||
|
||
}
|
||
|
||
return this;
|
||
|
||
}
|
||
|
||
// Removes inactive faces
|
||
|
||
reindexFaces() {
|
||
|
||
const activeFaces = [];
|
||
|
||
for ( let i = 0; i < this.faces.length; i ++ ) {
|
||
|
||
const face = this.faces[ i ];
|
||
|
||
if ( face.mark === Visible ) {
|
||
|
||
activeFaces.push( face );
|
||
|
||
}
|
||
|
||
}
|
||
|
||
this.faces = activeFaces;
|
||
|
||
return this;
|
||
|
||
}
|
||
|
||
// Finds the next vertex to create faces with the current hull
|
||
|
||
nextVertexToAdd() {
|
||
|
||
// if the 'assigned' list of vertices is empty, no vertices are left. return with 'undefined'
|
||
|
||
if ( this.assigned.isEmpty() === false ) {
|
||
|
||
let eyeVertex, maxDistance = 0;
|
||
|
||
// grap the first available face and start with the first visible vertex of that face
|
||
|
||
const eyeFace = this.assigned.first().face;
|
||
let vertex = eyeFace.outside;
|
||
|
||
// now calculate the farthest vertex that face can see
|
||
|
||
do {
|
||
|
||
const distance = eyeFace.distanceToPoint( vertex.point );
|
||
|
||
if ( distance > maxDistance ) {
|
||
|
||
maxDistance = distance;
|
||
eyeVertex = vertex;
|
||
|
||
}
|
||
|
||
vertex = vertex.next;
|
||
|
||
} while ( vertex !== null && vertex.face === eyeFace );
|
||
|
||
return eyeVertex;
|
||
|
||
}
|
||
|
||
}
|
||
|
||
// Computes a chain of half edges in CCW order called the 'horizon'.
|
||
// For an edge to be part of the horizon it must join a face that can see
|
||
// 'eyePoint' and a face that cannot see 'eyePoint'.
|
||
|
||
computeHorizon( eyePoint, crossEdge, face, horizon ) {
|
||
|
||
// moves face's vertices to the 'unassigned' vertex list
|
||
|
||
this.deleteFaceVertices( face );
|
||
|
||
face.mark = Deleted;
|
||
|
||
let edge;
|
||
|
||
if ( crossEdge === null ) {
|
||
|
||
edge = crossEdge = face.getEdge( 0 );
|
||
|
||
} else {
|
||
|
||
// start from the next edge since 'crossEdge' was already analyzed
|
||
// (actually 'crossEdge.twin' was the edge who called this method recursively)
|
||
|
||
edge = crossEdge.next;
|
||
|
||
}
|
||
|
||
do {
|
||
|
||
const twinEdge = edge.twin;
|
||
const oppositeFace = twinEdge.face;
|
||
|
||
if ( oppositeFace.mark === Visible ) {
|
||
|
||
if ( oppositeFace.distanceToPoint( eyePoint ) > this.tolerance ) {
|
||
|
||
// the opposite face can see the vertex, so proceed with next edge
|
||
|
||
this.computeHorizon( eyePoint, twinEdge, oppositeFace, horizon );
|
||
|
||
} else {
|
||
|
||
// the opposite face can't see the vertex, so this edge is part of the horizon
|
||
|
||
horizon.push( edge );
|
||
|
||
}
|
||
|
||
}
|
||
|
||
edge = edge.next;
|
||
|
||
} while ( edge !== crossEdge );
|
||
|
||
return this;
|
||
|
||
}
|
||
|
||
// Creates a face with the vertices 'eyeVertex.point', 'horizonEdge.tail' and 'horizonEdge.head' in CCW order
|
||
|
||
addAdjoiningFace( eyeVertex, horizonEdge ) {
|
||
|
||
// all the half edges are created in ccw order thus the face is always pointing outside the hull
|
||
|
||
const face = Face.create( eyeVertex, horizonEdge.tail(), horizonEdge.head() );
|
||
|
||
this.faces.push( face );
|
||
|
||
// join face.getEdge( - 1 ) with the horizon's opposite edge face.getEdge( - 1 ) = face.getEdge( 2 )
|
||
|
||
face.getEdge( - 1 ).setTwin( horizonEdge.twin );
|
||
|
||
return face.getEdge( 0 ); // the half edge whose vertex is the eyeVertex
|
||
|
||
|
||
}
|
||
|
||
// Adds 'horizon.length' faces to the hull, each face will be linked with the
|
||
// horizon opposite face and the face on the left/right
|
||
|
||
addNewFaces( eyeVertex, horizon ) {
|
||
|
||
this.newFaces = [];
|
||
|
||
let firstSideEdge = null;
|
||
let previousSideEdge = null;
|
||
|
||
for ( let i = 0; i < horizon.length; i ++ ) {
|
||
|
||
const horizonEdge = horizon[ i ];
|
||
|
||
// returns the right side edge
|
||
|
||
const sideEdge = this.addAdjoiningFace( eyeVertex, horizonEdge );
|
||
|
||
if ( firstSideEdge === null ) {
|
||
|
||
firstSideEdge = sideEdge;
|
||
|
||
} else {
|
||
|
||
// joins face.getEdge( 1 ) with previousFace.getEdge( 0 )
|
||
|
||
sideEdge.next.setTwin( previousSideEdge );
|
||
|
||
}
|
||
|
||
this.newFaces.push( sideEdge.face );
|
||
previousSideEdge = sideEdge;
|
||
|
||
}
|
||
|
||
// perform final join of new faces
|
||
|
||
firstSideEdge.next.setTwin( previousSideEdge );
|
||
|
||
return this;
|
||
|
||
}
|
||
|
||
// Adds a vertex to the hull
|
||
|
||
addVertexToHull( eyeVertex ) {
|
||
|
||
const horizon = [];
|
||
|
||
this.unassigned.clear();
|
||
|
||
// remove 'eyeVertex' from 'eyeVertex.face' so that it can't be added to the 'unassigned' vertex list
|
||
|
||
this.removeVertexFromFace( eyeVertex, eyeVertex.face );
|
||
|
||
this.computeHorizon( eyeVertex.point, null, eyeVertex.face, horizon );
|
||
|
||
this.addNewFaces( eyeVertex, horizon );
|
||
|
||
// reassign 'unassigned' vertices to the new faces
|
||
|
||
this.resolveUnassignedPoints( this.newFaces );
|
||
|
||
return this;
|
||
|
||
}
|
||
|
||
cleanup() {
|
||
|
||
this.assigned.clear();
|
||
this.unassigned.clear();
|
||
this.newFaces = [];
|
||
|
||
return this;
|
||
|
||
}
|
||
|
||
compute() {
|
||
|
||
let vertex;
|
||
|
||
this.computeInitialHull();
|
||
|
||
// add all available vertices gradually to the hull
|
||
|
||
while ( ( vertex = this.nextVertexToAdd() ) !== undefined ) {
|
||
|
||
this.addVertexToHull( vertex );
|
||
|
||
}
|
||
|
||
this.reindexFaces();
|
||
|
||
this.cleanup();
|
||
|
||
return this;
|
||
|
||
}
|
||
|
||
}
|
||
|
||
//
|
||
|
||
class Face {
|
||
|
||
constructor() {
|
||
|
||
this.normal = new Vector3();
|
||
this.midpoint = new Vector3();
|
||
this.area = 0;
|
||
|
||
this.constant = 0; // signed distance from face to the origin
|
||
this.outside = null; // reference to a vertex in a vertex list this face can see
|
||
this.mark = Visible;
|
||
this.edge = null;
|
||
|
||
}
|
||
|
||
static create( a, b, c ) {
|
||
|
||
const face = new Face();
|
||
|
||
const e0 = new HalfEdge( a, face );
|
||
const e1 = new HalfEdge( b, face );
|
||
const e2 = new HalfEdge( c, face );
|
||
|
||
// join edges
|
||
|
||
e0.next = e2.prev = e1;
|
||
e1.next = e0.prev = e2;
|
||
e2.next = e1.prev = e0;
|
||
|
||
// main half edge reference
|
||
|
||
face.edge = e0;
|
||
|
||
return face.compute();
|
||
|
||
}
|
||
|
||
getEdge( i ) {
|
||
|
||
let edge = this.edge;
|
||
|
||
while ( i > 0 ) {
|
||
|
||
edge = edge.next;
|
||
i --;
|
||
|
||
}
|
||
|
||
while ( i < 0 ) {
|
||
|
||
edge = edge.prev;
|
||
i ++;
|
||
|
||
}
|
||
|
||
return edge;
|
||
|
||
}
|
||
|
||
compute() {
|
||
|
||
const a = this.edge.tail();
|
||
const b = this.edge.head();
|
||
const c = this.edge.next.head();
|
||
|
||
_triangle.set( a.point, b.point, c.point );
|
||
|
||
_triangle.getNormal( this.normal );
|
||
_triangle.getMidpoint( this.midpoint );
|
||
this.area = _triangle.getArea();
|
||
|
||
this.constant = this.normal.dot( this.midpoint );
|
||
|
||
return this;
|
||
|
||
}
|
||
|
||
distanceToPoint( point ) {
|
||
|
||
return this.normal.dot( point ) - this.constant;
|
||
|
||
}
|
||
|
||
}
|
||
|
||
// Entity for a Doubly-Connected Edge List (DCEL).
|
||
|
||
class HalfEdge {
|
||
|
||
|
||
constructor( vertex, face ) {
|
||
|
||
this.vertex = vertex;
|
||
this.prev = null;
|
||
this.next = null;
|
||
this.twin = null;
|
||
this.face = face;
|
||
|
||
}
|
||
|
||
head() {
|
||
|
||
return this.vertex;
|
||
|
||
}
|
||
|
||
tail() {
|
||
|
||
return this.prev ? this.prev.vertex : null;
|
||
|
||
}
|
||
|
||
length() {
|
||
|
||
const head = this.head();
|
||
const tail = this.tail();
|
||
|
||
if ( tail !== null ) {
|
||
|
||
return tail.point.distanceTo( head.point );
|
||
|
||
}
|
||
|
||
return - 1;
|
||
|
||
}
|
||
|
||
lengthSquared() {
|
||
|
||
const head = this.head();
|
||
const tail = this.tail();
|
||
|
||
if ( tail !== null ) {
|
||
|
||
return tail.point.distanceToSquared( head.point );
|
||
|
||
}
|
||
|
||
return - 1;
|
||
|
||
}
|
||
|
||
setTwin( edge ) {
|
||
|
||
this.twin = edge;
|
||
edge.twin = this;
|
||
|
||
return this;
|
||
|
||
}
|
||
|
||
}
|
||
|
||
// A vertex as a double linked list node.
|
||
|
||
class VertexNode {
|
||
|
||
constructor( point ) {
|
||
|
||
this.point = point;
|
||
this.prev = null;
|
||
this.next = null;
|
||
this.face = null; // the face that is able to see this vertex
|
||
|
||
}
|
||
|
||
}
|
||
|
||
// A double linked list that contains vertex nodes.
|
||
|
||
class VertexList {
|
||
|
||
constructor() {
|
||
|
||
this.head = null;
|
||
this.tail = null;
|
||
|
||
}
|
||
|
||
first() {
|
||
|
||
return this.head;
|
||
|
||
}
|
||
|
||
last() {
|
||
|
||
return this.tail;
|
||
|
||
}
|
||
|
||
clear() {
|
||
|
||
this.head = this.tail = null;
|
||
|
||
return this;
|
||
|
||
}
|
||
|
||
// Inserts a vertex before the target vertex
|
||
|
||
insertBefore( target, vertex ) {
|
||
|
||
vertex.prev = target.prev;
|
||
vertex.next = target;
|
||
|
||
if ( vertex.prev === null ) {
|
||
|
||
this.head = vertex;
|
||
|
||
} else {
|
||
|
||
vertex.prev.next = vertex;
|
||
|
||
}
|
||
|
||
target.prev = vertex;
|
||
|
||
return this;
|
||
|
||
}
|
||
|
||
// Inserts a vertex after the target vertex
|
||
|
||
insertAfter( target, vertex ) {
|
||
|
||
vertex.prev = target;
|
||
vertex.next = target.next;
|
||
|
||
if ( vertex.next === null ) {
|
||
|
||
this.tail = vertex;
|
||
|
||
} else {
|
||
|
||
vertex.next.prev = vertex;
|
||
|
||
}
|
||
|
||
target.next = vertex;
|
||
|
||
return this;
|
||
|
||
}
|
||
|
||
// Appends a vertex to the end of the linked list
|
||
|
||
append( vertex ) {
|
||
|
||
if ( this.head === null ) {
|
||
|
||
this.head = vertex;
|
||
|
||
} else {
|
||
|
||
this.tail.next = vertex;
|
||
|
||
}
|
||
|
||
vertex.prev = this.tail;
|
||
vertex.next = null; // the tail has no subsequent vertex
|
||
|
||
this.tail = vertex;
|
||
|
||
return this;
|
||
|
||
}
|
||
|
||
// Appends a chain of vertices where 'vertex' is the head.
|
||
|
||
appendChain( vertex ) {
|
||
|
||
if ( this.head === null ) {
|
||
|
||
this.head = vertex;
|
||
|
||
} else {
|
||
|
||
this.tail.next = vertex;
|
||
|
||
}
|
||
|
||
vertex.prev = this.tail;
|
||
|
||
// ensure that the 'tail' reference points to the last vertex of the chain
|
||
|
||
while ( vertex.next !== null ) {
|
||
|
||
vertex = vertex.next;
|
||
|
||
}
|
||
|
||
this.tail = vertex;
|
||
|
||
return this;
|
||
|
||
}
|
||
|
||
// Removes a vertex from the linked list
|
||
|
||
remove( vertex ) {
|
||
|
||
if ( vertex.prev === null ) {
|
||
|
||
this.head = vertex.next;
|
||
|
||
} else {
|
||
|
||
vertex.prev.next = vertex.next;
|
||
|
||
}
|
||
|
||
if ( vertex.next === null ) {
|
||
|
||
this.tail = vertex.prev;
|
||
|
||
} else {
|
||
|
||
vertex.next.prev = vertex.prev;
|
||
|
||
}
|
||
|
||
return this;
|
||
|
||
}
|
||
|
||
// Removes a list of vertices whose 'head' is 'a' and whose 'tail' is b
|
||
|
||
removeSubList( a, b ) {
|
||
|
||
if ( a.prev === null ) {
|
||
|
||
this.head = b.next;
|
||
|
||
} else {
|
||
|
||
a.prev.next = b.next;
|
||
|
||
}
|
||
|
||
if ( b.next === null ) {
|
||
|
||
this.tail = a.prev;
|
||
|
||
} else {
|
||
|
||
b.next.prev = a.prev;
|
||
|
||
}
|
||
|
||
return this;
|
||
|
||
}
|
||
|
||
isEmpty() {
|
||
|
||
return this.head === null;
|
||
|
||
}
|
||
|
||
}
|
||
|
||
export { ConvexHull, Face, HalfEdge, VertexNode, VertexList };
|