animate/webGl/my-threejs-test/node_modules/three/examples/jsm/loaders/USDZLoader.js

823 lines
17 KiB
JavaScript

import {
BufferAttribute,
BufferGeometry,
ClampToEdgeWrapping,
FileLoader,
Group,
NoColorSpace,
Loader,
Mesh,
MeshPhysicalMaterial,
MirroredRepeatWrapping,
RepeatWrapping,
SRGBColorSpace,
TextureLoader,
Object3D,
Vector2
} from 'three';
import * as fflate from '../libs/fflate.module.js';
class USDAParser {
parse( text ) {
const data = {};
const lines = text.split( '\n' );
let string = null;
let target = data;
const stack = [ data ];
// debugger;
for ( const line of lines ) {
// console.log( line );
if ( line.includes( '=' ) ) {
const assignment = line.split( '=' );
const lhs = assignment[ 0 ].trim();
const rhs = assignment[ 1 ].trim();
if ( rhs.endsWith( '{' ) ) {
const group = {};
stack.push( group );
target[ lhs ] = group;
target = group;
} else {
target[ lhs ] = rhs;
}
} else if ( line.endsWith( '{' ) ) {
const group = target[ string ] || {};
stack.push( group );
target[ string ] = group;
target = group;
} else if ( line.endsWith( '}' ) ) {
stack.pop();
if ( stack.length === 0 ) continue;
target = stack[ stack.length - 1 ];
} else if ( line.endsWith( '(' ) ) {
const meta = {};
stack.push( meta );
string = line.split( '(' )[ 0 ].trim() || string;
target[ string ] = meta;
target = meta;
} else if ( line.endsWith( ')' ) ) {
stack.pop();
target = stack[ stack.length - 1 ];
} else {
string = line.trim();
}
}
return data;
}
}
class USDZLoader extends Loader {
constructor( manager ) {
super( manager );
}
load( url, onLoad, onProgress, onError ) {
const scope = this;
const loader = new FileLoader( scope.manager );
loader.setPath( scope.path );
loader.setResponseType( 'arraybuffer' );
loader.setRequestHeader( scope.requestHeader );
loader.setWithCredentials( scope.withCredentials );
loader.load( url, function ( text ) {
try {
onLoad( scope.parse( text ) );
} catch ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
}
}, onProgress, onError );
}
parse( buffer ) {
const parser = new USDAParser();
function parseAssets( zip ) {
const data = {};
const loader = new FileLoader();
loader.setResponseType( 'arraybuffer' );
for ( const filename in zip ) {
if ( filename.endsWith( 'png' ) ) {
const blob = new Blob( [ zip[ filename ] ], { type: { type: 'image/png' } } );
data[ filename ] = URL.createObjectURL( blob );
}
if ( filename.endsWith( 'usd' ) || filename.endsWith( 'usda' ) ) {
if ( isCrateFile( zip[ filename ] ) ) {
console.warn( 'THREE.USDZLoader: Crate files (.usdc or binary .usd) are not supported.' );
continue;
}
const text = fflate.strFromU8( zip[ filename ] );
data[ filename ] = parser.parse( text );
}
}
return data;
}
function isCrateFile( buffer ) {
// Check if this a crate file. First 7 bytes of a crate file are "PXR-USDC".
const fileHeader = buffer.slice( 0, 7 );
const crateHeader = new Uint8Array( [ 0x50, 0x58, 0x52, 0x2D, 0x55, 0x53, 0x44, 0x43 ] );
// If this is not a crate file, we assume it is a plain USDA file.
return fileHeader.every( ( value, index ) => value === crateHeader[ index ] );
}
function findUSD( zip ) {
if ( zip.length < 1 ) return undefined;
const firstFileName = Object.keys( zip )[ 0 ];
let isCrate = false;
// As per the USD specification, the first entry in the zip archive is used as the main file ("UsdStage").
// ASCII files can end in either .usda or .usd.
// See https://openusd.org/release/spec_usdz.html#layout
if ( firstFileName.endsWith( 'usda' ) ) return zip[ firstFileName ];
if ( firstFileName.endsWith( 'usdc' ) ) {
isCrate = true;
} else if ( firstFileName.endsWith( 'usd' ) ) {
// If this is not a crate file, we assume it is a plain USDA file.
if ( ! isCrateFile( zip[ firstFileName ] ) ) {
return zip[ firstFileName ];
} else {
isCrate = true;
}
}
if ( isCrate ) {
console.warn( 'THREE.USDZLoader: Crate files (.usdc or binary .usd) are not supported.' );
}
return undefined;
}
const zip = fflate.unzipSync( new Uint8Array( buffer ) );
// console.log( zip );
const assets = parseAssets( zip );
// console.log( assets )
const file = findUSD( zip );
if ( file === undefined ) {
console.warn( 'THREE.USDZLoader: No usda file found.' );
return new Group();
}
// Parse file
const text = fflate.strFromU8( file );
const root = parser.parse( text );
// Build scene
function findMeshGeometry( data ) {
if ( ! data ) return undefined;
if ( 'prepend references' in data ) {
const reference = data[ 'prepend references' ];
const parts = reference.split( '@' );
const path = parts[ 1 ].replace( /^.\//, '' );
const id = parts[ 2 ].replace( /^<\//, '' ).replace( />$/, '' );
return findGeometry( assets[ path ], id );
}
return findGeometry( data );
}
function findGeometry( data, id ) {
if ( ! data ) return undefined;
if ( id !== undefined ) {
const def = `def Mesh "${id}"`;
if ( def in data ) {
return data[ def ];
}
}
for ( const name in data ) {
const object = data[ name ];
if ( name.startsWith( 'def Mesh' ) ) {
// Move points to Mesh
if ( 'point3f[] points' in data ) {
object[ 'point3f[] points' ] = data[ 'point3f[] points' ];
}
// Move st to Mesh
if ( 'texCoord2f[] primvars:st' in data ) {
object[ 'texCoord2f[] primvars:st' ] = data[ 'texCoord2f[] primvars:st' ];
}
// Move st indices to Mesh
if ( 'int[] primvars:st:indices' in data ) {
object[ 'int[] primvars:st:indices' ] = data[ 'int[] primvars:st:indices' ];
}
return object;
}
if ( typeof object === 'object' ) {
const geometry = findGeometry( object );
if ( geometry ) return geometry;
}
}
}
function buildGeometry( data ) {
if ( ! data ) return undefined;
let geometry = new BufferGeometry();
if ( 'int[] faceVertexIndices' in data ) {
const indices = JSON.parse( data[ 'int[] faceVertexIndices' ] );
geometry.setIndex( indices );
}
if ( 'point3f[] points' in data ) {
const positions = JSON.parse( data[ 'point3f[] points' ].replace( /[()]*/g, '' ) );
const attribute = new BufferAttribute( new Float32Array( positions ), 3 );
geometry.setAttribute( 'position', attribute );
}
if ( 'normal3f[] normals' in data ) {
const normals = JSON.parse( data[ 'normal3f[] normals' ].replace( /[()]*/g, '' ) );
const attribute = new BufferAttribute( new Float32Array( normals ), 3 );
geometry.setAttribute( 'normal', attribute );
} else {
geometry.computeVertexNormals();
}
if ( 'float2[] primvars:st' in data ) {
data[ 'texCoord2f[] primvars:st' ] = data[ 'float2[] primvars:st' ];
}
if ( 'texCoord2f[] primvars:st' in data ) {
const uvs = JSON.parse( data[ 'texCoord2f[] primvars:st' ].replace( /[()]*/g, '' ) );
const attribute = new BufferAttribute( new Float32Array( uvs ), 2 );
if ( 'int[] primvars:st:indices' in data ) {
geometry = geometry.toNonIndexed();
const indices = JSON.parse( data[ 'int[] primvars:st:indices' ] );
geometry.setAttribute( 'uv', toFlatBufferAttribute( attribute, indices ) );
} else {
geometry.setAttribute( 'uv', attribute );
}
}
return geometry;
}
function toFlatBufferAttribute( attribute, indices ) {
const array = attribute.array;
const itemSize = attribute.itemSize;
const array2 = new array.constructor( indices.length * itemSize );
let index = 0, index2 = 0;
for ( let i = 0, l = indices.length; i < l; i ++ ) {
index = indices[ i ] * itemSize;
for ( let j = 0; j < itemSize; j ++ ) {
array2[ index2 ++ ] = array[ index ++ ];
}
}
return new BufferAttribute( array2, itemSize );
}
function findMeshMaterial( data ) {
if ( ! data ) return undefined;
if ( 'rel material:binding' in data ) {
const reference = data[ 'rel material:binding' ];
const id = reference.replace( /^<\//, '' ).replace( />$/, '' );
const parts = id.split( '/' );
return findMaterial( root, ` "${ parts[ 1 ] }"` );
}
return findMaterial( data );
}
function findMaterial( data, id = '' ) {
for ( const name in data ) {
const object = data[ name ];
if ( name.startsWith( 'def Material' + id ) ) {
return object;
}
if ( typeof object === 'object' ) {
const material = findMaterial( object, id );
if ( material ) return material;
}
}
}
function setTextureParams( map, data_value ) {
// rotation, scale and translation
if ( data_value[ 'float inputs:rotation' ] ) {
map.rotation = parseFloat( data_value[ 'float inputs:rotation' ] );
}
if ( data_value[ 'float2 inputs:scale' ] ) {
map.repeat = new Vector2().fromArray( JSON.parse( '[' + data_value[ 'float2 inputs:scale' ].replace( /[()]*/g, '' ) + ']' ) );
}
if ( data_value[ 'float2 inputs:translation' ] ) {
map.offset = new Vector2().fromArray( JSON.parse( '[' + data_value[ 'float2 inputs:translation' ].replace( /[()]*/g, '' ) + ']' ) );
}
}
function buildMaterial( data ) {
const material = new MeshPhysicalMaterial();
if ( data !== undefined ) {
if ( 'def Shader "PreviewSurface"' in data ) {
const surface = data[ 'def Shader "PreviewSurface"' ];
if ( 'color3f inputs:diffuseColor.connect' in surface ) {
const path = surface[ 'color3f inputs:diffuseColor.connect' ];
const sampler = findTexture( root, /(\w+).output/.exec( path )[ 1 ] );
material.map = buildTexture( sampler );
material.map.colorSpace = SRGBColorSpace;
if ( 'def Shader "Transform2d_diffuse"' in data ) {
setTextureParams( material.map, data[ 'def Shader "Transform2d_diffuse"' ] );
}
} else if ( 'color3f inputs:diffuseColor' in surface ) {
const color = surface[ 'color3f inputs:diffuseColor' ].replace( /[()]*/g, '' );
material.color.fromArray( JSON.parse( '[' + color + ']' ) );
}
if ( 'color3f inputs:emissiveColor.connect' in surface ) {
const path = surface[ 'color3f inputs:emissiveColor.connect' ];
const sampler = findTexture( root, /(\w+).output/.exec( path )[ 1 ] );
material.emissiveMap = buildTexture( sampler );
material.emissiveMap.colorSpace = SRGBColorSpace;
material.emissive.set( 0xffffff );
if ( 'def Shader "Transform2d_emissive"' in data ) {
setTextureParams( material.emissiveMap, data[ 'def Shader "Transform2d_emissive"' ] );
}
} else if ( 'color3f inputs:emissiveColor' in surface ) {
const color = surface[ 'color3f inputs:emissiveColor' ].replace( /[()]*/g, '' );
material.emissive.fromArray( JSON.parse( '[' + color + ']' ) );
}
if ( 'normal3f inputs:normal.connect' in surface ) {
const path = surface[ 'normal3f inputs:normal.connect' ];
const sampler = findTexture( root, /(\w+).output/.exec( path )[ 1 ] );
material.normalMap = buildTexture( sampler );
material.normalMap.colorSpace = NoColorSpace;
if ( 'def Shader "Transform2d_normal"' in data ) {
setTextureParams( material.normalMap, data[ 'def Shader "Transform2d_normal"' ] );
}
}
if ( 'float inputs:roughness.connect' in surface ) {
const path = surface[ 'float inputs:roughness.connect' ];
const sampler = findTexture( root, /(\w+).output/.exec( path )[ 1 ] );
material.roughness = 1.0;
material.roughnessMap = buildTexture( sampler );
material.roughnessMap.colorSpace = NoColorSpace;
if ( 'def Shader "Transform2d_roughness"' in data ) {
setTextureParams( material.roughnessMap, data[ 'def Shader "Transform2d_roughness"' ] );
}
} else if ( 'float inputs:roughness' in surface ) {
material.roughness = parseFloat( surface[ 'float inputs:roughness' ] );
}
if ( 'float inputs:metallic.connect' in surface ) {
const path = surface[ 'float inputs:metallic.connect' ];
const sampler = findTexture( root, /(\w+).output/.exec( path )[ 1 ] );
material.metalness = 1.0;
material.metalnessMap = buildTexture( sampler );
material.metalnessMap.colorSpace = NoColorSpace;
if ( 'def Shader "Transform2d_metallic"' in data ) {
setTextureParams( material.metalnessMap, data[ 'def Shader "Transform2d_metallic"' ] );
}
} else if ( 'float inputs:metallic' in surface ) {
material.metalness = parseFloat( surface[ 'float inputs:metallic' ] );
}
if ( 'float inputs:clearcoat.connect' in surface ) {
const path = surface[ 'float inputs:clearcoat.connect' ];
const sampler = findTexture( root, /(\w+).output/.exec( path )[ 1 ] );
material.clearcoat = 1.0;
material.clearcoatMap = buildTexture( sampler );
material.clearcoatMap.colorSpace = NoColorSpace;
if ( 'def Shader "Transform2d_clearcoat"' in data ) {
setTextureParams( material.clearcoatMap, data[ 'def Shader "Transform2d_clearcoat"' ] );
}
} else if ( 'float inputs:clearcoat' in surface ) {
material.clearcoat = parseFloat( surface[ 'float inputs:clearcoat' ] );
}
if ( 'float inputs:clearcoatRoughness.connect' in surface ) {
const path = surface[ 'float inputs:clearcoatRoughness.connect' ];
const sampler = findTexture( root, /(\w+).output/.exec( path )[ 1 ] );
material.clearcoatRoughness = 1.0;
material.clearcoatRoughnessMap = buildTexture( sampler );
material.clearcoatRoughnessMap.colorSpace = NoColorSpace;
if ( 'def Shader "Transform2d_clearcoatRoughness"' in data ) {
setTextureParams( material.clearcoatRoughnessMap, data[ 'def Shader "Transform2d_clearcoatRoughness"' ] );
}
} else if ( 'float inputs:clearcoatRoughness' in surface ) {
material.clearcoatRoughness = parseFloat( surface[ 'float inputs:clearcoatRoughness' ] );
}
if ( 'float inputs:ior' in surface ) {
material.ior = parseFloat( surface[ 'float inputs:ior' ] );
}
if ( 'float inputs:occlusion.connect' in surface ) {
const path = surface[ 'float inputs:occlusion.connect' ];
const sampler = findTexture( root, /(\w+).output/.exec( path )[ 1 ] );
material.aoMap = buildTexture( sampler );
material.aoMap.colorSpace = NoColorSpace;
if ( 'def Shader "Transform2d_occlusion"' in data ) {
setTextureParams( material.aoMap, data[ 'def Shader "Transform2d_occlusion"' ] );
}
}
}
if ( 'def Shader "diffuseColor_texture"' in data ) {
const sampler = data[ 'def Shader "diffuseColor_texture"' ];
material.map = buildTexture( sampler );
material.map.colorSpace = SRGBColorSpace;
}
if ( 'def Shader "normal_texture"' in data ) {
const sampler = data[ 'def Shader "normal_texture"' ];
material.normalMap = buildTexture( sampler );
material.normalMap.colorSpace = NoColorSpace;
}
}
return material;
}
function findTexture( data, id ) {
for ( const name in data ) {
const object = data[ name ];
if ( name.startsWith( `def Shader "${ id }"` ) ) {
return object;
}
if ( typeof object === 'object' ) {
const texture = findTexture( object, id );
if ( texture ) return texture;
}
}
}
function buildTexture( data ) {
if ( 'asset inputs:file' in data ) {
const path = data[ 'asset inputs:file' ].replace( /@*/g, '' );
const loader = new TextureLoader();
const texture = loader.load( assets[ path ] );
const map = {
'"clamp"': ClampToEdgeWrapping,
'"mirror"': MirroredRepeatWrapping,
'"repeat"': RepeatWrapping
};
if ( 'token inputs:wrapS' in data ) {
texture.wrapS = map[ data[ 'token inputs:wrapS' ] ];
}
if ( 'token inputs:wrapT' in data ) {
texture.wrapT = map[ data[ 'token inputs:wrapT' ] ];
}
return texture;
}
return null;
}
function buildObject( data ) {
const geometry = buildGeometry( findMeshGeometry( data ) );
const material = buildMaterial( findMeshMaterial( data ) );
const mesh = geometry ? new Mesh( geometry, material ) : new Object3D();
if ( 'matrix4d xformOp:transform' in data ) {
const array = JSON.parse( '[' + data[ 'matrix4d xformOp:transform' ].replace( /[()]*/g, '' ) + ']' );
mesh.matrix.fromArray( array );
mesh.matrix.decompose( mesh.position, mesh.quaternion, mesh.scale );
}
return mesh;
}
function buildHierarchy( data, group ) {
for ( const name in data ) {
if ( name.startsWith( 'def Scope' ) ) {
buildHierarchy( data[ name ], group );
} else if ( name.startsWith( 'def Xform' ) ) {
const mesh = buildObject( data[ name ] );
if ( /def Xform "(\w+)"/.test( name ) ) {
mesh.name = /def Xform "(\w+)"/.exec( name )[ 1 ];
}
group.add( mesh );
buildHierarchy( data[ name ], mesh );
}
}
}
const group = new Group();
buildHierarchy( root, group );
return group;
}
}
export { USDZLoader };