3174 lines
68 KiB
JavaScript
3174 lines
68 KiB
JavaScript
import {
|
|
Box2,
|
|
BufferGeometry,
|
|
FileLoader,
|
|
Float32BufferAttribute,
|
|
Loader,
|
|
Matrix3,
|
|
Path,
|
|
Shape,
|
|
ShapePath,
|
|
ShapeUtils,
|
|
SRGBColorSpace,
|
|
Vector2,
|
|
Vector3
|
|
} from 'three';
|
|
|
|
const COLOR_SPACE_SVG = SRGBColorSpace;
|
|
|
|
class SVGLoader extends Loader {
|
|
|
|
constructor( manager ) {
|
|
|
|
super( manager );
|
|
|
|
// Default dots per inch
|
|
this.defaultDPI = 90;
|
|
|
|
// Accepted units: 'mm', 'cm', 'in', 'pt', 'pc', 'px'
|
|
this.defaultUnit = 'px';
|
|
|
|
}
|
|
|
|
load( url, onLoad, onProgress, onError ) {
|
|
|
|
const scope = this;
|
|
|
|
const loader = new FileLoader( scope.manager );
|
|
loader.setPath( scope.path );
|
|
loader.setRequestHeader( scope.requestHeader );
|
|
loader.setWithCredentials( scope.withCredentials );
|
|
loader.load( url, function ( text ) {
|
|
|
|
try {
|
|
|
|
onLoad( scope.parse( text ) );
|
|
|
|
} catch ( e ) {
|
|
|
|
if ( onError ) {
|
|
|
|
onError( e );
|
|
|
|
} else {
|
|
|
|
console.error( e );
|
|
|
|
}
|
|
|
|
scope.manager.itemError( url );
|
|
|
|
}
|
|
|
|
}, onProgress, onError );
|
|
|
|
}
|
|
|
|
parse( text ) {
|
|
|
|
const scope = this;
|
|
|
|
function parseNode( node, style ) {
|
|
|
|
if ( node.nodeType !== 1 ) return;
|
|
|
|
const transform = getNodeTransform( node );
|
|
|
|
let isDefsNode = false;
|
|
|
|
let path = null;
|
|
|
|
switch ( node.nodeName ) {
|
|
|
|
case 'svg':
|
|
style = parseStyle( node, style );
|
|
break;
|
|
|
|
case 'style':
|
|
parseCSSStylesheet( node );
|
|
break;
|
|
|
|
case 'g':
|
|
style = parseStyle( node, style );
|
|
break;
|
|
|
|
case 'path':
|
|
style = parseStyle( node, style );
|
|
if ( node.hasAttribute( 'd' ) ) path = parsePathNode( node );
|
|
break;
|
|
|
|
case 'rect':
|
|
style = parseStyle( node, style );
|
|
path = parseRectNode( node );
|
|
break;
|
|
|
|
case 'polygon':
|
|
style = parseStyle( node, style );
|
|
path = parsePolygonNode( node );
|
|
break;
|
|
|
|
case 'polyline':
|
|
style = parseStyle( node, style );
|
|
path = parsePolylineNode( node );
|
|
break;
|
|
|
|
case 'circle':
|
|
style = parseStyle( node, style );
|
|
path = parseCircleNode( node );
|
|
break;
|
|
|
|
case 'ellipse':
|
|
style = parseStyle( node, style );
|
|
path = parseEllipseNode( node );
|
|
break;
|
|
|
|
case 'line':
|
|
style = parseStyle( node, style );
|
|
path = parseLineNode( node );
|
|
break;
|
|
|
|
case 'defs':
|
|
isDefsNode = true;
|
|
break;
|
|
|
|
case 'use':
|
|
style = parseStyle( node, style );
|
|
|
|
const href = node.getAttributeNS( 'http://www.w3.org/1999/xlink', 'href' ) || '';
|
|
const usedNodeId = href.substring( 1 );
|
|
const usedNode = node.viewportElement.getElementById( usedNodeId );
|
|
if ( usedNode ) {
|
|
|
|
parseNode( usedNode, style );
|
|
|
|
} else {
|
|
|
|
console.warn( 'SVGLoader: \'use node\' references non-existent node id: ' + usedNodeId );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
// console.log( node );
|
|
|
|
}
|
|
|
|
if ( path ) {
|
|
|
|
if ( style.fill !== undefined && style.fill !== 'none' ) {
|
|
|
|
path.color.setStyle( style.fill, COLOR_SPACE_SVG );
|
|
|
|
}
|
|
|
|
transformPath( path, currentTransform );
|
|
|
|
paths.push( path );
|
|
|
|
path.userData = { node: node, style: style };
|
|
|
|
}
|
|
|
|
const childNodes = node.childNodes;
|
|
|
|
for ( let i = 0; i < childNodes.length; i ++ ) {
|
|
|
|
const node = childNodes[ i ];
|
|
|
|
if ( isDefsNode && node.nodeName !== 'style' && node.nodeName !== 'defs' ) {
|
|
|
|
// Ignore everything in defs except CSS style definitions
|
|
// and nested defs, because it is OK by the standard to have
|
|
// <style/> there.
|
|
continue;
|
|
|
|
}
|
|
|
|
parseNode( node, style );
|
|
|
|
}
|
|
|
|
|
|
if ( transform ) {
|
|
|
|
transformStack.pop();
|
|
|
|
if ( transformStack.length > 0 ) {
|
|
|
|
currentTransform.copy( transformStack[ transformStack.length - 1 ] );
|
|
|
|
} else {
|
|
|
|
currentTransform.identity();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
function parsePathNode( node ) {
|
|
|
|
const path = new ShapePath();
|
|
|
|
const point = new Vector2();
|
|
const control = new Vector2();
|
|
|
|
const firstPoint = new Vector2();
|
|
let isFirstPoint = true;
|
|
let doSetFirstPoint = false;
|
|
|
|
const d = node.getAttribute( 'd' );
|
|
|
|
if ( d === '' || d === 'none' ) return null;
|
|
|
|
// console.log( d );
|
|
|
|
const commands = d.match( /[a-df-z][^a-df-z]*/ig );
|
|
|
|
for ( let i = 0, l = commands.length; i < l; i ++ ) {
|
|
|
|
const command = commands[ i ];
|
|
|
|
const type = command.charAt( 0 );
|
|
const data = command.slice( 1 ).trim();
|
|
|
|
if ( isFirstPoint === true ) {
|
|
|
|
doSetFirstPoint = true;
|
|
isFirstPoint = false;
|
|
|
|
}
|
|
|
|
let numbers;
|
|
|
|
switch ( type ) {
|
|
|
|
case 'M':
|
|
numbers = parseFloats( data );
|
|
for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {
|
|
|
|
point.x = numbers[ j + 0 ];
|
|
point.y = numbers[ j + 1 ];
|
|
control.x = point.x;
|
|
control.y = point.y;
|
|
|
|
if ( j === 0 ) {
|
|
|
|
path.moveTo( point.x, point.y );
|
|
|
|
} else {
|
|
|
|
path.lineTo( point.x, point.y );
|
|
|
|
}
|
|
|
|
if ( j === 0 ) firstPoint.copy( point );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'H':
|
|
numbers = parseFloats( data );
|
|
|
|
for ( let j = 0, jl = numbers.length; j < jl; j ++ ) {
|
|
|
|
point.x = numbers[ j ];
|
|
control.x = point.x;
|
|
control.y = point.y;
|
|
path.lineTo( point.x, point.y );
|
|
|
|
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'V':
|
|
numbers = parseFloats( data );
|
|
|
|
for ( let j = 0, jl = numbers.length; j < jl; j ++ ) {
|
|
|
|
point.y = numbers[ j ];
|
|
control.x = point.x;
|
|
control.y = point.y;
|
|
path.lineTo( point.x, point.y );
|
|
|
|
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'L':
|
|
numbers = parseFloats( data );
|
|
|
|
for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {
|
|
|
|
point.x = numbers[ j + 0 ];
|
|
point.y = numbers[ j + 1 ];
|
|
control.x = point.x;
|
|
control.y = point.y;
|
|
path.lineTo( point.x, point.y );
|
|
|
|
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'C':
|
|
numbers = parseFloats( data );
|
|
|
|
for ( let j = 0, jl = numbers.length; j < jl; j += 6 ) {
|
|
|
|
path.bezierCurveTo(
|
|
numbers[ j + 0 ],
|
|
numbers[ j + 1 ],
|
|
numbers[ j + 2 ],
|
|
numbers[ j + 3 ],
|
|
numbers[ j + 4 ],
|
|
numbers[ j + 5 ]
|
|
);
|
|
control.x = numbers[ j + 2 ];
|
|
control.y = numbers[ j + 3 ];
|
|
point.x = numbers[ j + 4 ];
|
|
point.y = numbers[ j + 5 ];
|
|
|
|
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'S':
|
|
numbers = parseFloats( data );
|
|
|
|
for ( let j = 0, jl = numbers.length; j < jl; j += 4 ) {
|
|
|
|
path.bezierCurveTo(
|
|
getReflection( point.x, control.x ),
|
|
getReflection( point.y, control.y ),
|
|
numbers[ j + 0 ],
|
|
numbers[ j + 1 ],
|
|
numbers[ j + 2 ],
|
|
numbers[ j + 3 ]
|
|
);
|
|
control.x = numbers[ j + 0 ];
|
|
control.y = numbers[ j + 1 ];
|
|
point.x = numbers[ j + 2 ];
|
|
point.y = numbers[ j + 3 ];
|
|
|
|
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'Q':
|
|
numbers = parseFloats( data );
|
|
|
|
for ( let j = 0, jl = numbers.length; j < jl; j += 4 ) {
|
|
|
|
path.quadraticCurveTo(
|
|
numbers[ j + 0 ],
|
|
numbers[ j + 1 ],
|
|
numbers[ j + 2 ],
|
|
numbers[ j + 3 ]
|
|
);
|
|
control.x = numbers[ j + 0 ];
|
|
control.y = numbers[ j + 1 ];
|
|
point.x = numbers[ j + 2 ];
|
|
point.y = numbers[ j + 3 ];
|
|
|
|
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'T':
|
|
numbers = parseFloats( data );
|
|
|
|
for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {
|
|
|
|
const rx = getReflection( point.x, control.x );
|
|
const ry = getReflection( point.y, control.y );
|
|
path.quadraticCurveTo(
|
|
rx,
|
|
ry,
|
|
numbers[ j + 0 ],
|
|
numbers[ j + 1 ]
|
|
);
|
|
control.x = rx;
|
|
control.y = ry;
|
|
point.x = numbers[ j + 0 ];
|
|
point.y = numbers[ j + 1 ];
|
|
|
|
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'A':
|
|
numbers = parseFloats( data, [ 3, 4 ], 7 );
|
|
|
|
for ( let j = 0, jl = numbers.length; j < jl; j += 7 ) {
|
|
|
|
// skip command if start point == end point
|
|
if ( numbers[ j + 5 ] == point.x && numbers[ j + 6 ] == point.y ) continue;
|
|
|
|
const start = point.clone();
|
|
point.x = numbers[ j + 5 ];
|
|
point.y = numbers[ j + 6 ];
|
|
control.x = point.x;
|
|
control.y = point.y;
|
|
parseArcCommand(
|
|
path, numbers[ j ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ], numbers[ j + 4 ], start, point
|
|
);
|
|
|
|
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'm':
|
|
numbers = parseFloats( data );
|
|
|
|
for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {
|
|
|
|
point.x += numbers[ j + 0 ];
|
|
point.y += numbers[ j + 1 ];
|
|
control.x = point.x;
|
|
control.y = point.y;
|
|
|
|
if ( j === 0 ) {
|
|
|
|
path.moveTo( point.x, point.y );
|
|
|
|
} else {
|
|
|
|
path.lineTo( point.x, point.y );
|
|
|
|
}
|
|
|
|
if ( j === 0 ) firstPoint.copy( point );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'h':
|
|
numbers = parseFloats( data );
|
|
|
|
for ( let j = 0, jl = numbers.length; j < jl; j ++ ) {
|
|
|
|
point.x += numbers[ j ];
|
|
control.x = point.x;
|
|
control.y = point.y;
|
|
path.lineTo( point.x, point.y );
|
|
|
|
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'v':
|
|
numbers = parseFloats( data );
|
|
|
|
for ( let j = 0, jl = numbers.length; j < jl; j ++ ) {
|
|
|
|
point.y += numbers[ j ];
|
|
control.x = point.x;
|
|
control.y = point.y;
|
|
path.lineTo( point.x, point.y );
|
|
|
|
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'l':
|
|
numbers = parseFloats( data );
|
|
|
|
for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {
|
|
|
|
point.x += numbers[ j + 0 ];
|
|
point.y += numbers[ j + 1 ];
|
|
control.x = point.x;
|
|
control.y = point.y;
|
|
path.lineTo( point.x, point.y );
|
|
|
|
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'c':
|
|
numbers = parseFloats( data );
|
|
|
|
for ( let j = 0, jl = numbers.length; j < jl; j += 6 ) {
|
|
|
|
path.bezierCurveTo(
|
|
point.x + numbers[ j + 0 ],
|
|
point.y + numbers[ j + 1 ],
|
|
point.x + numbers[ j + 2 ],
|
|
point.y + numbers[ j + 3 ],
|
|
point.x + numbers[ j + 4 ],
|
|
point.y + numbers[ j + 5 ]
|
|
);
|
|
control.x = point.x + numbers[ j + 2 ];
|
|
control.y = point.y + numbers[ j + 3 ];
|
|
point.x += numbers[ j + 4 ];
|
|
point.y += numbers[ j + 5 ];
|
|
|
|
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 's':
|
|
numbers = parseFloats( data );
|
|
|
|
for ( let j = 0, jl = numbers.length; j < jl; j += 4 ) {
|
|
|
|
path.bezierCurveTo(
|
|
getReflection( point.x, control.x ),
|
|
getReflection( point.y, control.y ),
|
|
point.x + numbers[ j + 0 ],
|
|
point.y + numbers[ j + 1 ],
|
|
point.x + numbers[ j + 2 ],
|
|
point.y + numbers[ j + 3 ]
|
|
);
|
|
control.x = point.x + numbers[ j + 0 ];
|
|
control.y = point.y + numbers[ j + 1 ];
|
|
point.x += numbers[ j + 2 ];
|
|
point.y += numbers[ j + 3 ];
|
|
|
|
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'q':
|
|
numbers = parseFloats( data );
|
|
|
|
for ( let j = 0, jl = numbers.length; j < jl; j += 4 ) {
|
|
|
|
path.quadraticCurveTo(
|
|
point.x + numbers[ j + 0 ],
|
|
point.y + numbers[ j + 1 ],
|
|
point.x + numbers[ j + 2 ],
|
|
point.y + numbers[ j + 3 ]
|
|
);
|
|
control.x = point.x + numbers[ j + 0 ];
|
|
control.y = point.y + numbers[ j + 1 ];
|
|
point.x += numbers[ j + 2 ];
|
|
point.y += numbers[ j + 3 ];
|
|
|
|
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 't':
|
|
numbers = parseFloats( data );
|
|
|
|
for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {
|
|
|
|
const rx = getReflection( point.x, control.x );
|
|
const ry = getReflection( point.y, control.y );
|
|
path.quadraticCurveTo(
|
|
rx,
|
|
ry,
|
|
point.x + numbers[ j + 0 ],
|
|
point.y + numbers[ j + 1 ]
|
|
);
|
|
control.x = rx;
|
|
control.y = ry;
|
|
point.x = point.x + numbers[ j + 0 ];
|
|
point.y = point.y + numbers[ j + 1 ];
|
|
|
|
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'a':
|
|
numbers = parseFloats( data, [ 3, 4 ], 7 );
|
|
|
|
for ( let j = 0, jl = numbers.length; j < jl; j += 7 ) {
|
|
|
|
// skip command if no displacement
|
|
if ( numbers[ j + 5 ] == 0 && numbers[ j + 6 ] == 0 ) continue;
|
|
|
|
const start = point.clone();
|
|
point.x += numbers[ j + 5 ];
|
|
point.y += numbers[ j + 6 ];
|
|
control.x = point.x;
|
|
control.y = point.y;
|
|
parseArcCommand(
|
|
path, numbers[ j ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ], numbers[ j + 4 ], start, point
|
|
);
|
|
|
|
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'Z':
|
|
case 'z':
|
|
path.currentPath.autoClose = true;
|
|
|
|
if ( path.currentPath.curves.length > 0 ) {
|
|
|
|
// Reset point to beginning of Path
|
|
point.copy( firstPoint );
|
|
path.currentPath.currentPoint.copy( point );
|
|
isFirstPoint = true;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
console.warn( command );
|
|
|
|
}
|
|
|
|
// console.log( type, parseFloats( data ), parseFloats( data ).length )
|
|
|
|
doSetFirstPoint = false;
|
|
|
|
}
|
|
|
|
return path;
|
|
|
|
}
|
|
|
|
function parseCSSStylesheet( node ) {
|
|
|
|
if ( ! node.sheet || ! node.sheet.cssRules || ! node.sheet.cssRules.length ) return;
|
|
|
|
for ( let i = 0; i < node.sheet.cssRules.length; i ++ ) {
|
|
|
|
const stylesheet = node.sheet.cssRules[ i ];
|
|
|
|
if ( stylesheet.type !== 1 ) continue;
|
|
|
|
const selectorList = stylesheet.selectorText
|
|
.split( /,/gm )
|
|
.filter( Boolean )
|
|
.map( i => i.trim() );
|
|
|
|
for ( let j = 0; j < selectorList.length; j ++ ) {
|
|
|
|
// Remove empty rules
|
|
const definitions = Object.fromEntries(
|
|
Object.entries( stylesheet.style ).filter( ( [ , v ] ) => v !== '' )
|
|
);
|
|
|
|
stylesheets[ selectorList[ j ] ] = Object.assign(
|
|
stylesheets[ selectorList[ j ] ] || {},
|
|
definitions
|
|
);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* https://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
|
|
* https://mortoray.com/2017/02/16/rendering-an-svg-elliptical-arc-as-bezier-curves/ Appendix: Endpoint to center arc conversion
|
|
* From
|
|
* rx ry x-axis-rotation large-arc-flag sweep-flag x y
|
|
* To
|
|
* aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation
|
|
*/
|
|
|
|
function parseArcCommand( path, rx, ry, x_axis_rotation, large_arc_flag, sweep_flag, start, end ) {
|
|
|
|
if ( rx == 0 || ry == 0 ) {
|
|
|
|
// draw a line if either of the radii == 0
|
|
path.lineTo( end.x, end.y );
|
|
return;
|
|
|
|
}
|
|
|
|
x_axis_rotation = x_axis_rotation * Math.PI / 180;
|
|
|
|
// Ensure radii are positive
|
|
rx = Math.abs( rx );
|
|
ry = Math.abs( ry );
|
|
|
|
// Compute (x1', y1')
|
|
const dx2 = ( start.x - end.x ) / 2.0;
|
|
const dy2 = ( start.y - end.y ) / 2.0;
|
|
const x1p = Math.cos( x_axis_rotation ) * dx2 + Math.sin( x_axis_rotation ) * dy2;
|
|
const y1p = - Math.sin( x_axis_rotation ) * dx2 + Math.cos( x_axis_rotation ) * dy2;
|
|
|
|
// Compute (cx', cy')
|
|
let rxs = rx * rx;
|
|
let rys = ry * ry;
|
|
const x1ps = x1p * x1p;
|
|
const y1ps = y1p * y1p;
|
|
|
|
// Ensure radii are large enough
|
|
const cr = x1ps / rxs + y1ps / rys;
|
|
|
|
if ( cr > 1 ) {
|
|
|
|
// scale up rx,ry equally so cr == 1
|
|
const s = Math.sqrt( cr );
|
|
rx = s * rx;
|
|
ry = s * ry;
|
|
rxs = rx * rx;
|
|
rys = ry * ry;
|
|
|
|
}
|
|
|
|
const dq = ( rxs * y1ps + rys * x1ps );
|
|
const pq = ( rxs * rys - dq ) / dq;
|
|
let q = Math.sqrt( Math.max( 0, pq ) );
|
|
if ( large_arc_flag === sweep_flag ) q = - q;
|
|
const cxp = q * rx * y1p / ry;
|
|
const cyp = - q * ry * x1p / rx;
|
|
|
|
// Step 3: Compute (cx, cy) from (cx', cy')
|
|
const cx = Math.cos( x_axis_rotation ) * cxp - Math.sin( x_axis_rotation ) * cyp + ( start.x + end.x ) / 2;
|
|
const cy = Math.sin( x_axis_rotation ) * cxp + Math.cos( x_axis_rotation ) * cyp + ( start.y + end.y ) / 2;
|
|
|
|
// Step 4: Compute θ1 and Δθ
|
|
const theta = svgAngle( 1, 0, ( x1p - cxp ) / rx, ( y1p - cyp ) / ry );
|
|
const delta = svgAngle( ( x1p - cxp ) / rx, ( y1p - cyp ) / ry, ( - x1p - cxp ) / rx, ( - y1p - cyp ) / ry ) % ( Math.PI * 2 );
|
|
|
|
path.currentPath.absellipse( cx, cy, rx, ry, theta, theta + delta, sweep_flag === 0, x_axis_rotation );
|
|
|
|
}
|
|
|
|
function svgAngle( ux, uy, vx, vy ) {
|
|
|
|
const dot = ux * vx + uy * vy;
|
|
const len = Math.sqrt( ux * ux + uy * uy ) * Math.sqrt( vx * vx + vy * vy );
|
|
let ang = Math.acos( Math.max( - 1, Math.min( 1, dot / len ) ) ); // floating point precision, slightly over values appear
|
|
if ( ( ux * vy - uy * vx ) < 0 ) ang = - ang;
|
|
return ang;
|
|
|
|
}
|
|
|
|
/*
|
|
* According to https://www.w3.org/TR/SVG/shapes.html#RectElementRXAttribute
|
|
* rounded corner should be rendered to elliptical arc, but bezier curve does the job well enough
|
|
*/
|
|
function parseRectNode( node ) {
|
|
|
|
const x = parseFloatWithUnits( node.getAttribute( 'x' ) || 0 );
|
|
const y = parseFloatWithUnits( node.getAttribute( 'y' ) || 0 );
|
|
const rx = parseFloatWithUnits( node.getAttribute( 'rx' ) || node.getAttribute( 'ry' ) || 0 );
|
|
const ry = parseFloatWithUnits( node.getAttribute( 'ry' ) || node.getAttribute( 'rx' ) || 0 );
|
|
const w = parseFloatWithUnits( node.getAttribute( 'width' ) );
|
|
const h = parseFloatWithUnits( node.getAttribute( 'height' ) );
|
|
|
|
// Ellipse arc to Bezier approximation Coefficient (Inversed). See:
|
|
// https://spencermortensen.com/articles/bezier-circle/
|
|
const bci = 1 - 0.551915024494;
|
|
|
|
const path = new ShapePath();
|
|
|
|
// top left
|
|
path.moveTo( x + rx, y );
|
|
|
|
// top right
|
|
path.lineTo( x + w - rx, y );
|
|
if ( rx !== 0 || ry !== 0 ) {
|
|
|
|
path.bezierCurveTo(
|
|
x + w - rx * bci,
|
|
y,
|
|
x + w,
|
|
y + ry * bci,
|
|
x + w,
|
|
y + ry
|
|
);
|
|
|
|
}
|
|
|
|
// bottom right
|
|
path.lineTo( x + w, y + h - ry );
|
|
if ( rx !== 0 || ry !== 0 ) {
|
|
|
|
path.bezierCurveTo(
|
|
x + w,
|
|
y + h - ry * bci,
|
|
x + w - rx * bci,
|
|
y + h,
|
|
x + w - rx,
|
|
y + h
|
|
);
|
|
|
|
}
|
|
|
|
// bottom left
|
|
path.lineTo( x + rx, y + h );
|
|
if ( rx !== 0 || ry !== 0 ) {
|
|
|
|
path.bezierCurveTo(
|
|
x + rx * bci,
|
|
y + h,
|
|
x,
|
|
y + h - ry * bci,
|
|
x,
|
|
y + h - ry
|
|
);
|
|
|
|
}
|
|
|
|
// back to top left
|
|
path.lineTo( x, y + ry );
|
|
if ( rx !== 0 || ry !== 0 ) {
|
|
|
|
path.bezierCurveTo( x, y + ry * bci, x + rx * bci, y, x + rx, y );
|
|
|
|
}
|
|
|
|
return path;
|
|
|
|
}
|
|
|
|
function parsePolygonNode( node ) {
|
|
|
|
function iterator( match, a, b ) {
|
|
|
|
const x = parseFloatWithUnits( a );
|
|
const y = parseFloatWithUnits( b );
|
|
|
|
if ( index === 0 ) {
|
|
|
|
path.moveTo( x, y );
|
|
|
|
} else {
|
|
|
|
path.lineTo( x, y );
|
|
|
|
}
|
|
|
|
index ++;
|
|
|
|
}
|
|
|
|
const regex = /([+-]?\d*\.?\d+(?:e[+-]?\d+)?)(?:,|\s)([+-]?\d*\.?\d+(?:e[+-]?\d+)?)/g;
|
|
|
|
const path = new ShapePath();
|
|
|
|
let index = 0;
|
|
|
|
node.getAttribute( 'points' ).replace( regex, iterator );
|
|
|
|
path.currentPath.autoClose = true;
|
|
|
|
return path;
|
|
|
|
}
|
|
|
|
function parsePolylineNode( node ) {
|
|
|
|
function iterator( match, a, b ) {
|
|
|
|
const x = parseFloatWithUnits( a );
|
|
const y = parseFloatWithUnits( b );
|
|
|
|
if ( index === 0 ) {
|
|
|
|
path.moveTo( x, y );
|
|
|
|
} else {
|
|
|
|
path.lineTo( x, y );
|
|
|
|
}
|
|
|
|
index ++;
|
|
|
|
}
|
|
|
|
const regex = /([+-]?\d*\.?\d+(?:e[+-]?\d+)?)(?:,|\s)([+-]?\d*\.?\d+(?:e[+-]?\d+)?)/g;
|
|
|
|
const path = new ShapePath();
|
|
|
|
let index = 0;
|
|
|
|
node.getAttribute( 'points' ).replace( regex, iterator );
|
|
|
|
path.currentPath.autoClose = false;
|
|
|
|
return path;
|
|
|
|
}
|
|
|
|
function parseCircleNode( node ) {
|
|
|
|
const x = parseFloatWithUnits( node.getAttribute( 'cx' ) || 0 );
|
|
const y = parseFloatWithUnits( node.getAttribute( 'cy' ) || 0 );
|
|
const r = parseFloatWithUnits( node.getAttribute( 'r' ) || 0 );
|
|
|
|
const subpath = new Path();
|
|
subpath.absarc( x, y, r, 0, Math.PI * 2 );
|
|
|
|
const path = new ShapePath();
|
|
path.subPaths.push( subpath );
|
|
|
|
return path;
|
|
|
|
}
|
|
|
|
function parseEllipseNode( node ) {
|
|
|
|
const x = parseFloatWithUnits( node.getAttribute( 'cx' ) || 0 );
|
|
const y = parseFloatWithUnits( node.getAttribute( 'cy' ) || 0 );
|
|
const rx = parseFloatWithUnits( node.getAttribute( 'rx' ) || 0 );
|
|
const ry = parseFloatWithUnits( node.getAttribute( 'ry' ) || 0 );
|
|
|
|
const subpath = new Path();
|
|
subpath.absellipse( x, y, rx, ry, 0, Math.PI * 2 );
|
|
|
|
const path = new ShapePath();
|
|
path.subPaths.push( subpath );
|
|
|
|
return path;
|
|
|
|
}
|
|
|
|
function parseLineNode( node ) {
|
|
|
|
const x1 = parseFloatWithUnits( node.getAttribute( 'x1' ) || 0 );
|
|
const y1 = parseFloatWithUnits( node.getAttribute( 'y1' ) || 0 );
|
|
const x2 = parseFloatWithUnits( node.getAttribute( 'x2' ) || 0 );
|
|
const y2 = parseFloatWithUnits( node.getAttribute( 'y2' ) || 0 );
|
|
|
|
const path = new ShapePath();
|
|
path.moveTo( x1, y1 );
|
|
path.lineTo( x2, y2 );
|
|
path.currentPath.autoClose = false;
|
|
|
|
return path;
|
|
|
|
}
|
|
|
|
//
|
|
|
|
function parseStyle( node, style ) {
|
|
|
|
style = Object.assign( {}, style ); // clone style
|
|
|
|
let stylesheetStyles = {};
|
|
|
|
if ( node.hasAttribute( 'class' ) ) {
|
|
|
|
const classSelectors = node.getAttribute( 'class' )
|
|
.split( /\s/ )
|
|
.filter( Boolean )
|
|
.map( i => i.trim() );
|
|
|
|
for ( let i = 0; i < classSelectors.length; i ++ ) {
|
|
|
|
stylesheetStyles = Object.assign( stylesheetStyles, stylesheets[ '.' + classSelectors[ i ] ] );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( node.hasAttribute( 'id' ) ) {
|
|
|
|
stylesheetStyles = Object.assign( stylesheetStyles, stylesheets[ '#' + node.getAttribute( 'id' ) ] );
|
|
|
|
}
|
|
|
|
function addStyle( svgName, jsName, adjustFunction ) {
|
|
|
|
if ( adjustFunction === undefined ) adjustFunction = function copy( v ) {
|
|
|
|
if ( v.startsWith( 'url' ) ) console.warn( 'SVGLoader: url access in attributes is not implemented.' );
|
|
|
|
return v;
|
|
|
|
};
|
|
|
|
if ( node.hasAttribute( svgName ) ) style[ jsName ] = adjustFunction( node.getAttribute( svgName ) );
|
|
if ( stylesheetStyles[ svgName ] ) style[ jsName ] = adjustFunction( stylesheetStyles[ svgName ] );
|
|
if ( node.style && node.style[ svgName ] !== '' ) style[ jsName ] = adjustFunction( node.style[ svgName ] );
|
|
|
|
}
|
|
|
|
function clamp( v ) {
|
|
|
|
return Math.max( 0, Math.min( 1, parseFloatWithUnits( v ) ) );
|
|
|
|
}
|
|
|
|
function positive( v ) {
|
|
|
|
return Math.max( 0, parseFloatWithUnits( v ) );
|
|
|
|
}
|
|
|
|
addStyle( 'fill', 'fill' );
|
|
addStyle( 'fill-opacity', 'fillOpacity', clamp );
|
|
addStyle( 'fill-rule', 'fillRule' );
|
|
addStyle( 'opacity', 'opacity', clamp );
|
|
addStyle( 'stroke', 'stroke' );
|
|
addStyle( 'stroke-opacity', 'strokeOpacity', clamp );
|
|
addStyle( 'stroke-width', 'strokeWidth', positive );
|
|
addStyle( 'stroke-linejoin', 'strokeLineJoin' );
|
|
addStyle( 'stroke-linecap', 'strokeLineCap' );
|
|
addStyle( 'stroke-miterlimit', 'strokeMiterLimit', positive );
|
|
addStyle( 'visibility', 'visibility' );
|
|
|
|
return style;
|
|
|
|
}
|
|
|
|
// http://www.w3.org/TR/SVG11/implnote.html#PathElementImplementationNotes
|
|
|
|
function getReflection( a, b ) {
|
|
|
|
return a - ( b - a );
|
|
|
|
}
|
|
|
|
// from https://github.com/ppvg/svg-numbers (MIT License)
|
|
|
|
function parseFloats( input, flags, stride ) {
|
|
|
|
if ( typeof input !== 'string' ) {
|
|
|
|
throw new TypeError( 'Invalid input: ' + typeof input );
|
|
|
|
}
|
|
|
|
// Character groups
|
|
const RE = {
|
|
SEPARATOR: /[ \t\r\n\,.\-+]/,
|
|
WHITESPACE: /[ \t\r\n]/,
|
|
DIGIT: /[\d]/,
|
|
SIGN: /[-+]/,
|
|
POINT: /\./,
|
|
COMMA: /,/,
|
|
EXP: /e/i,
|
|
FLAGS: /[01]/
|
|
};
|
|
|
|
// States
|
|
const SEP = 0;
|
|
const INT = 1;
|
|
const FLOAT = 2;
|
|
const EXP = 3;
|
|
|
|
let state = SEP;
|
|
let seenComma = true;
|
|
let number = '', exponent = '';
|
|
const result = [];
|
|
|
|
function throwSyntaxError( current, i, partial ) {
|
|
|
|
const error = new SyntaxError( 'Unexpected character "' + current + '" at index ' + i + '.' );
|
|
error.partial = partial;
|
|
throw error;
|
|
|
|
}
|
|
|
|
function newNumber() {
|
|
|
|
if ( number !== '' ) {
|
|
|
|
if ( exponent === '' ) result.push( Number( number ) );
|
|
else result.push( Number( number ) * Math.pow( 10, Number( exponent ) ) );
|
|
|
|
}
|
|
|
|
number = '';
|
|
exponent = '';
|
|
|
|
}
|
|
|
|
let current;
|
|
const length = input.length;
|
|
|
|
for ( let i = 0; i < length; i ++ ) {
|
|
|
|
current = input[ i ];
|
|
|
|
// check for flags
|
|
if ( Array.isArray( flags ) && flags.includes( result.length % stride ) && RE.FLAGS.test( current ) ) {
|
|
|
|
state = INT;
|
|
number = current;
|
|
newNumber();
|
|
continue;
|
|
|
|
}
|
|
|
|
// parse until next number
|
|
if ( state === SEP ) {
|
|
|
|
// eat whitespace
|
|
if ( RE.WHITESPACE.test( current ) ) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
// start new number
|
|
if ( RE.DIGIT.test( current ) || RE.SIGN.test( current ) ) {
|
|
|
|
state = INT;
|
|
number = current;
|
|
continue;
|
|
|
|
}
|
|
|
|
if ( RE.POINT.test( current ) ) {
|
|
|
|
state = FLOAT;
|
|
number = current;
|
|
continue;
|
|
|
|
}
|
|
|
|
// throw on double commas (e.g. "1, , 2")
|
|
if ( RE.COMMA.test( current ) ) {
|
|
|
|
if ( seenComma ) {
|
|
|
|
throwSyntaxError( current, i, result );
|
|
|
|
}
|
|
|
|
seenComma = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// parse integer part
|
|
if ( state === INT ) {
|
|
|
|
if ( RE.DIGIT.test( current ) ) {
|
|
|
|
number += current;
|
|
continue;
|
|
|
|
}
|
|
|
|
if ( RE.POINT.test( current ) ) {
|
|
|
|
number += current;
|
|
state = FLOAT;
|
|
continue;
|
|
|
|
}
|
|
|
|
if ( RE.EXP.test( current ) ) {
|
|
|
|
state = EXP;
|
|
continue;
|
|
|
|
}
|
|
|
|
// throw on double signs ("-+1"), but not on sign as separator ("-1-2")
|
|
if ( RE.SIGN.test( current )
|
|
&& number.length === 1
|
|
&& RE.SIGN.test( number[ 0 ] ) ) {
|
|
|
|
throwSyntaxError( current, i, result );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// parse decimal part
|
|
if ( state === FLOAT ) {
|
|
|
|
if ( RE.DIGIT.test( current ) ) {
|
|
|
|
number += current;
|
|
continue;
|
|
|
|
}
|
|
|
|
if ( RE.EXP.test( current ) ) {
|
|
|
|
state = EXP;
|
|
continue;
|
|
|
|
}
|
|
|
|
// throw on double decimal points (e.g. "1..2")
|
|
if ( RE.POINT.test( current ) && number[ number.length - 1 ] === '.' ) {
|
|
|
|
throwSyntaxError( current, i, result );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// parse exponent part
|
|
if ( state === EXP ) {
|
|
|
|
if ( RE.DIGIT.test( current ) ) {
|
|
|
|
exponent += current;
|
|
continue;
|
|
|
|
}
|
|
|
|
if ( RE.SIGN.test( current ) ) {
|
|
|
|
if ( exponent === '' ) {
|
|
|
|
exponent += current;
|
|
continue;
|
|
|
|
}
|
|
|
|
if ( exponent.length === 1 && RE.SIGN.test( exponent ) ) {
|
|
|
|
throwSyntaxError( current, i, result );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
// end of number
|
|
if ( RE.WHITESPACE.test( current ) ) {
|
|
|
|
newNumber();
|
|
state = SEP;
|
|
seenComma = false;
|
|
|
|
} else if ( RE.COMMA.test( current ) ) {
|
|
|
|
newNumber();
|
|
state = SEP;
|
|
seenComma = true;
|
|
|
|
} else if ( RE.SIGN.test( current ) ) {
|
|
|
|
newNumber();
|
|
state = INT;
|
|
number = current;
|
|
|
|
} else if ( RE.POINT.test( current ) ) {
|
|
|
|
newNumber();
|
|
state = FLOAT;
|
|
number = current;
|
|
|
|
} else {
|
|
|
|
throwSyntaxError( current, i, result );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// add the last number found (if any)
|
|
newNumber();
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
// Units
|
|
|
|
const units = [ 'mm', 'cm', 'in', 'pt', 'pc', 'px' ];
|
|
|
|
// Conversion: [ fromUnit ][ toUnit ] (-1 means dpi dependent)
|
|
const unitConversion = {
|
|
|
|
'mm': {
|
|
'mm': 1,
|
|
'cm': 0.1,
|
|
'in': 1 / 25.4,
|
|
'pt': 72 / 25.4,
|
|
'pc': 6 / 25.4,
|
|
'px': - 1
|
|
},
|
|
'cm': {
|
|
'mm': 10,
|
|
'cm': 1,
|
|
'in': 1 / 2.54,
|
|
'pt': 72 / 2.54,
|
|
'pc': 6 / 2.54,
|
|
'px': - 1
|
|
},
|
|
'in': {
|
|
'mm': 25.4,
|
|
'cm': 2.54,
|
|
'in': 1,
|
|
'pt': 72,
|
|
'pc': 6,
|
|
'px': - 1
|
|
},
|
|
'pt': {
|
|
'mm': 25.4 / 72,
|
|
'cm': 2.54 / 72,
|
|
'in': 1 / 72,
|
|
'pt': 1,
|
|
'pc': 6 / 72,
|
|
'px': - 1
|
|
},
|
|
'pc': {
|
|
'mm': 25.4 / 6,
|
|
'cm': 2.54 / 6,
|
|
'in': 1 / 6,
|
|
'pt': 72 / 6,
|
|
'pc': 1,
|
|
'px': - 1
|
|
},
|
|
'px': {
|
|
'px': 1
|
|
}
|
|
|
|
};
|
|
|
|
function parseFloatWithUnits( string ) {
|
|
|
|
let theUnit = 'px';
|
|
|
|
if ( typeof string === 'string' || string instanceof String ) {
|
|
|
|
for ( let i = 0, n = units.length; i < n; i ++ ) {
|
|
|
|
const u = units[ i ];
|
|
|
|
if ( string.endsWith( u ) ) {
|
|
|
|
theUnit = u;
|
|
string = string.substring( 0, string.length - u.length );
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
let scale = undefined;
|
|
|
|
if ( theUnit === 'px' && scope.defaultUnit !== 'px' ) {
|
|
|
|
// Conversion scale from pixels to inches, then to default units
|
|
|
|
scale = unitConversion[ 'in' ][ scope.defaultUnit ] / scope.defaultDPI;
|
|
|
|
} else {
|
|
|
|
scale = unitConversion[ theUnit ][ scope.defaultUnit ];
|
|
|
|
if ( scale < 0 ) {
|
|
|
|
// Conversion scale to pixels
|
|
|
|
scale = unitConversion[ theUnit ][ 'in' ] * scope.defaultDPI;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return scale * parseFloat( string );
|
|
|
|
}
|
|
|
|
// Transforms
|
|
|
|
function getNodeTransform( node ) {
|
|
|
|
if ( ! ( node.hasAttribute( 'transform' ) || ( node.nodeName === 'use' && ( node.hasAttribute( 'x' ) || node.hasAttribute( 'y' ) ) ) ) ) {
|
|
|
|
return null;
|
|
|
|
}
|
|
|
|
const transform = parseNodeTransform( node );
|
|
|
|
if ( transformStack.length > 0 ) {
|
|
|
|
transform.premultiply( transformStack[ transformStack.length - 1 ] );
|
|
|
|
}
|
|
|
|
currentTransform.copy( transform );
|
|
transformStack.push( transform );
|
|
|
|
return transform;
|
|
|
|
}
|
|
|
|
function parseNodeTransform( node ) {
|
|
|
|
const transform = new Matrix3();
|
|
const currentTransform = tempTransform0;
|
|
|
|
if ( node.nodeName === 'use' && ( node.hasAttribute( 'x' ) || node.hasAttribute( 'y' ) ) ) {
|
|
|
|
const tx = parseFloatWithUnits( node.getAttribute( 'x' ) );
|
|
const ty = parseFloatWithUnits( node.getAttribute( 'y' ) );
|
|
|
|
transform.translate( tx, ty );
|
|
|
|
}
|
|
|
|
if ( node.hasAttribute( 'transform' ) ) {
|
|
|
|
const transformsTexts = node.getAttribute( 'transform' ).split( ')' );
|
|
|
|
for ( let tIndex = transformsTexts.length - 1; tIndex >= 0; tIndex -- ) {
|
|
|
|
const transformText = transformsTexts[ tIndex ].trim();
|
|
|
|
if ( transformText === '' ) continue;
|
|
|
|
const openParPos = transformText.indexOf( '(' );
|
|
const closeParPos = transformText.length;
|
|
|
|
if ( openParPos > 0 && openParPos < closeParPos ) {
|
|
|
|
const transformType = transformText.slice( 0, openParPos );
|
|
|
|
const array = parseFloats( transformText.slice( openParPos + 1 ) );
|
|
|
|
currentTransform.identity();
|
|
|
|
switch ( transformType ) {
|
|
|
|
case 'translate':
|
|
|
|
if ( array.length >= 1 ) {
|
|
|
|
const tx = array[ 0 ];
|
|
let ty = 0;
|
|
|
|
if ( array.length >= 2 ) {
|
|
|
|
ty = array[ 1 ];
|
|
|
|
}
|
|
|
|
currentTransform.translate( tx, ty );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'rotate':
|
|
|
|
if ( array.length >= 1 ) {
|
|
|
|
let angle = 0;
|
|
let cx = 0;
|
|
let cy = 0;
|
|
|
|
// Angle
|
|
angle = array[ 0 ] * Math.PI / 180;
|
|
|
|
if ( array.length >= 3 ) {
|
|
|
|
// Center x, y
|
|
cx = array[ 1 ];
|
|
cy = array[ 2 ];
|
|
|
|
}
|
|
|
|
// Rotate around center (cx, cy)
|
|
tempTransform1.makeTranslation( - cx, - cy );
|
|
tempTransform2.makeRotation( angle );
|
|
tempTransform3.multiplyMatrices( tempTransform2, tempTransform1 );
|
|
tempTransform1.makeTranslation( cx, cy );
|
|
currentTransform.multiplyMatrices( tempTransform1, tempTransform3 );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'scale':
|
|
|
|
if ( array.length >= 1 ) {
|
|
|
|
const scaleX = array[ 0 ];
|
|
let scaleY = scaleX;
|
|
|
|
if ( array.length >= 2 ) {
|
|
|
|
scaleY = array[ 1 ];
|
|
|
|
}
|
|
|
|
currentTransform.scale( scaleX, scaleY );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'skewX':
|
|
|
|
if ( array.length === 1 ) {
|
|
|
|
currentTransform.set(
|
|
1, Math.tan( array[ 0 ] * Math.PI / 180 ), 0,
|
|
0, 1, 0,
|
|
0, 0, 1
|
|
);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'skewY':
|
|
|
|
if ( array.length === 1 ) {
|
|
|
|
currentTransform.set(
|
|
1, 0, 0,
|
|
Math.tan( array[ 0 ] * Math.PI / 180 ), 1, 0,
|
|
0, 0, 1
|
|
);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'matrix':
|
|
|
|
if ( array.length === 6 ) {
|
|
|
|
currentTransform.set(
|
|
array[ 0 ], array[ 2 ], array[ 4 ],
|
|
array[ 1 ], array[ 3 ], array[ 5 ],
|
|
0, 0, 1
|
|
);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
transform.premultiply( currentTransform );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return transform;
|
|
|
|
}
|
|
|
|
function transformPath( path, m ) {
|
|
|
|
function transfVec2( v2 ) {
|
|
|
|
tempV3.set( v2.x, v2.y, 1 ).applyMatrix3( m );
|
|
|
|
v2.set( tempV3.x, tempV3.y );
|
|
|
|
}
|
|
|
|
function transfEllipseGeneric( curve ) {
|
|
|
|
// For math description see:
|
|
// https://math.stackexchange.com/questions/4544164
|
|
|
|
const a = curve.xRadius;
|
|
const b = curve.yRadius;
|
|
|
|
const cosTheta = Math.cos( curve.aRotation );
|
|
const sinTheta = Math.sin( curve.aRotation );
|
|
|
|
const v1 = new Vector3( a * cosTheta, a * sinTheta, 0 );
|
|
const v2 = new Vector3( - b * sinTheta, b * cosTheta, 0 );
|
|
|
|
const f1 = v1.applyMatrix3( m );
|
|
const f2 = v2.applyMatrix3( m );
|
|
|
|
const mF = tempTransform0.set(
|
|
f1.x, f2.x, 0,
|
|
f1.y, f2.y, 0,
|
|
0, 0, 1,
|
|
);
|
|
|
|
const mFInv = tempTransform1.copy( mF ).invert();
|
|
const mFInvT = tempTransform2.copy( mFInv ).transpose();
|
|
const mQ = mFInvT.multiply( mFInv );
|
|
const mQe = mQ.elements;
|
|
|
|
const ed = eigenDecomposition( mQe[ 0 ], mQe[ 1 ], mQe[ 4 ] );
|
|
const rt1sqrt = Math.sqrt( ed.rt1 );
|
|
const rt2sqrt = Math.sqrt( ed.rt2 );
|
|
|
|
curve.xRadius = 1 / rt1sqrt;
|
|
curve.yRadius = 1 / rt2sqrt;
|
|
curve.aRotation = Math.atan2( ed.sn, ed.cs );
|
|
|
|
const isFullEllipse =
|
|
( curve.aEndAngle - curve.aStartAngle ) % ( 2 * Math.PI ) < Number.EPSILON;
|
|
|
|
// Do not touch angles of a full ellipse because after transformation they
|
|
// would converge to a sinle value effectively removing the whole curve
|
|
|
|
if ( ! isFullEllipse ) {
|
|
|
|
const mDsqrt = tempTransform1.set(
|
|
rt1sqrt, 0, 0,
|
|
0, rt2sqrt, 0,
|
|
0, 0, 1,
|
|
);
|
|
|
|
const mRT = tempTransform2.set(
|
|
ed.cs, ed.sn, 0,
|
|
- ed.sn, ed.cs, 0,
|
|
0, 0, 1,
|
|
);
|
|
|
|
const mDRF = mDsqrt.multiply( mRT ).multiply( mF );
|
|
|
|
const transformAngle = phi => {
|
|
|
|
const { x: cosR, y: sinR } =
|
|
new Vector3( Math.cos( phi ), Math.sin( phi ), 0 ).applyMatrix3( mDRF );
|
|
|
|
return Math.atan2( sinR, cosR );
|
|
|
|
};
|
|
|
|
curve.aStartAngle = transformAngle( curve.aStartAngle );
|
|
curve.aEndAngle = transformAngle( curve.aEndAngle );
|
|
|
|
if ( isTransformFlipped( m ) ) {
|
|
|
|
curve.aClockwise = ! curve.aClockwise;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
function transfEllipseNoSkew( curve ) {
|
|
|
|
// Faster shortcut if no skew is applied
|
|
// (e.g, a euclidean transform of a group containing the ellipse)
|
|
|
|
const sx = getTransformScaleX( m );
|
|
const sy = getTransformScaleY( m );
|
|
|
|
curve.xRadius *= sx;
|
|
curve.yRadius *= sy;
|
|
|
|
// Extract rotation angle from the matrix of form:
|
|
//
|
|
// | cosθ sx -sinθ sy |
|
|
// | sinθ sx cosθ sy |
|
|
//
|
|
// Remembering that tanθ = sinθ / cosθ; and that
|
|
// `sx`, `sy`, or both might be zero.
|
|
const theta =
|
|
sx > Number.EPSILON
|
|
? Math.atan2( m.elements[ 1 ], m.elements[ 0 ] )
|
|
: Math.atan2( - m.elements[ 3 ], m.elements[ 4 ] );
|
|
|
|
curve.aRotation += theta;
|
|
|
|
if ( isTransformFlipped( m ) ) {
|
|
|
|
curve.aStartAngle *= - 1;
|
|
curve.aEndAngle *= - 1;
|
|
curve.aClockwise = ! curve.aClockwise;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const subPaths = path.subPaths;
|
|
|
|
for ( let i = 0, n = subPaths.length; i < n; i ++ ) {
|
|
|
|
const subPath = subPaths[ i ];
|
|
const curves = subPath.curves;
|
|
|
|
for ( let j = 0; j < curves.length; j ++ ) {
|
|
|
|
const curve = curves[ j ];
|
|
|
|
if ( curve.isLineCurve ) {
|
|
|
|
transfVec2( curve.v1 );
|
|
transfVec2( curve.v2 );
|
|
|
|
} else if ( curve.isCubicBezierCurve ) {
|
|
|
|
transfVec2( curve.v0 );
|
|
transfVec2( curve.v1 );
|
|
transfVec2( curve.v2 );
|
|
transfVec2( curve.v3 );
|
|
|
|
} else if ( curve.isQuadraticBezierCurve ) {
|
|
|
|
transfVec2( curve.v0 );
|
|
transfVec2( curve.v1 );
|
|
transfVec2( curve.v2 );
|
|
|
|
} else if ( curve.isEllipseCurve ) {
|
|
|
|
// Transform ellipse center point
|
|
|
|
tempV2.set( curve.aX, curve.aY );
|
|
transfVec2( tempV2 );
|
|
curve.aX = tempV2.x;
|
|
curve.aY = tempV2.y;
|
|
|
|
// Transform ellipse shape parameters
|
|
|
|
if ( isTransformSkewed( m ) ) {
|
|
|
|
transfEllipseGeneric( curve );
|
|
|
|
} else {
|
|
|
|
transfEllipseNoSkew( curve );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
function isTransformFlipped( m ) {
|
|
|
|
const te = m.elements;
|
|
return te[ 0 ] * te[ 4 ] - te[ 1 ] * te[ 3 ] < 0;
|
|
|
|
}
|
|
|
|
function isTransformSkewed( m ) {
|
|
|
|
const te = m.elements;
|
|
const basisDot = te[ 0 ] * te[ 3 ] + te[ 1 ] * te[ 4 ];
|
|
|
|
// Shortcut for trivial rotations and transformations
|
|
if ( basisDot === 0 ) return false;
|
|
|
|
const sx = getTransformScaleX( m );
|
|
const sy = getTransformScaleY( m );
|
|
|
|
return Math.abs( basisDot / ( sx * sy ) ) > Number.EPSILON;
|
|
|
|
}
|
|
|
|
function getTransformScaleX( m ) {
|
|
|
|
const te = m.elements;
|
|
return Math.sqrt( te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] );
|
|
|
|
}
|
|
|
|
function getTransformScaleY( m ) {
|
|
|
|
const te = m.elements;
|
|
return Math.sqrt( te[ 3 ] * te[ 3 ] + te[ 4 ] * te[ 4 ] );
|
|
|
|
}
|
|
|
|
// Calculates the eigensystem of a real symmetric 2x2 matrix
|
|
// [ A B ]
|
|
// [ B C ]
|
|
// in the form
|
|
// [ A B ] = [ cs -sn ] [ rt1 0 ] [ cs sn ]
|
|
// [ B C ] [ sn cs ] [ 0 rt2 ] [ -sn cs ]
|
|
// where rt1 >= rt2.
|
|
//
|
|
// Adapted from: https://www.mpi-hd.mpg.de/personalhomes/globes/3x3/index.html
|
|
// -> Algorithms for real symmetric matrices -> Analytical (2x2 symmetric)
|
|
function eigenDecomposition( A, B, C ) {
|
|
|
|
let rt1, rt2, cs, sn, t;
|
|
const sm = A + C;
|
|
const df = A - C;
|
|
const rt = Math.sqrt( df * df + 4 * B * B );
|
|
|
|
if ( sm > 0 ) {
|
|
|
|
rt1 = 0.5 * ( sm + rt );
|
|
t = 1 / rt1;
|
|
rt2 = A * t * C - B * t * B;
|
|
|
|
} else if ( sm < 0 ) {
|
|
|
|
rt2 = 0.5 * ( sm - rt );
|
|
|
|
} else {
|
|
|
|
// This case needs to be treated separately to avoid div by 0
|
|
|
|
rt1 = 0.5 * rt;
|
|
rt2 = - 0.5 * rt;
|
|
|
|
}
|
|
|
|
// Calculate eigenvectors
|
|
|
|
if ( df > 0 ) {
|
|
|
|
cs = df + rt;
|
|
|
|
} else {
|
|
|
|
cs = df - rt;
|
|
|
|
}
|
|
|
|
if ( Math.abs( cs ) > 2 * Math.abs( B ) ) {
|
|
|
|
t = - 2 * B / cs;
|
|
sn = 1 / Math.sqrt( 1 + t * t );
|
|
cs = t * sn;
|
|
|
|
} else if ( Math.abs( B ) === 0 ) {
|
|
|
|
cs = 1;
|
|
sn = 0;
|
|
|
|
} else {
|
|
|
|
t = - 0.5 * cs / B;
|
|
cs = 1 / Math.sqrt( 1 + t * t );
|
|
sn = t * cs;
|
|
|
|
}
|
|
|
|
if ( df > 0 ) {
|
|
|
|
t = cs;
|
|
cs = - sn;
|
|
sn = t;
|
|
|
|
}
|
|
|
|
return { rt1, rt2, cs, sn };
|
|
|
|
}
|
|
|
|
//
|
|
|
|
const paths = [];
|
|
const stylesheets = {};
|
|
|
|
const transformStack = [];
|
|
|
|
const tempTransform0 = new Matrix3();
|
|
const tempTransform1 = new Matrix3();
|
|
const tempTransform2 = new Matrix3();
|
|
const tempTransform3 = new Matrix3();
|
|
const tempV2 = new Vector2();
|
|
const tempV3 = new Vector3();
|
|
|
|
const currentTransform = new Matrix3();
|
|
|
|
const xml = new DOMParser().parseFromString( text, 'image/svg+xml' ); // application/xml
|
|
|
|
parseNode( xml.documentElement, {
|
|
fill: '#000',
|
|
fillOpacity: 1,
|
|
strokeOpacity: 1,
|
|
strokeWidth: 1,
|
|
strokeLineJoin: 'miter',
|
|
strokeLineCap: 'butt',
|
|
strokeMiterLimit: 4
|
|
} );
|
|
|
|
const data = { paths: paths, xml: xml.documentElement };
|
|
|
|
// console.log( paths );
|
|
return data;
|
|
|
|
}
|
|
|
|
static createShapes( shapePath ) {
|
|
|
|
// Param shapePath: a shapepath as returned by the parse function of this class
|
|
// Returns Shape object
|
|
|
|
const BIGNUMBER = 999999999;
|
|
|
|
const IntersectionLocationType = {
|
|
ORIGIN: 0,
|
|
DESTINATION: 1,
|
|
BETWEEN: 2,
|
|
LEFT: 3,
|
|
RIGHT: 4,
|
|
BEHIND: 5,
|
|
BEYOND: 6
|
|
};
|
|
|
|
const classifyResult = {
|
|
loc: IntersectionLocationType.ORIGIN,
|
|
t: 0
|
|
};
|
|
|
|
function findEdgeIntersection( a0, a1, b0, b1 ) {
|
|
|
|
const x1 = a0.x;
|
|
const x2 = a1.x;
|
|
const x3 = b0.x;
|
|
const x4 = b1.x;
|
|
const y1 = a0.y;
|
|
const y2 = a1.y;
|
|
const y3 = b0.y;
|
|
const y4 = b1.y;
|
|
const nom1 = ( x4 - x3 ) * ( y1 - y3 ) - ( y4 - y3 ) * ( x1 - x3 );
|
|
const nom2 = ( x2 - x1 ) * ( y1 - y3 ) - ( y2 - y1 ) * ( x1 - x3 );
|
|
const denom = ( y4 - y3 ) * ( x2 - x1 ) - ( x4 - x3 ) * ( y2 - y1 );
|
|
const t1 = nom1 / denom;
|
|
const t2 = nom2 / denom;
|
|
|
|
if ( ( ( denom === 0 ) && ( nom1 !== 0 ) ) || ( t1 <= 0 ) || ( t1 >= 1 ) || ( t2 < 0 ) || ( t2 > 1 ) ) {
|
|
|
|
//1. lines are parallel or edges don't intersect
|
|
|
|
return null;
|
|
|
|
} else if ( ( nom1 === 0 ) && ( denom === 0 ) ) {
|
|
|
|
//2. lines are colinear
|
|
|
|
//check if endpoints of edge2 (b0-b1) lies on edge1 (a0-a1)
|
|
for ( let i = 0; i < 2; i ++ ) {
|
|
|
|
classifyPoint( i === 0 ? b0 : b1, a0, a1 );
|
|
//find position of this endpoints relatively to edge1
|
|
if ( classifyResult.loc == IntersectionLocationType.ORIGIN ) {
|
|
|
|
const point = ( i === 0 ? b0 : b1 );
|
|
return { x: point.x, y: point.y, t: classifyResult.t };
|
|
|
|
} else if ( classifyResult.loc == IntersectionLocationType.BETWEEN ) {
|
|
|
|
const x = + ( ( x1 + classifyResult.t * ( x2 - x1 ) ).toPrecision( 10 ) );
|
|
const y = + ( ( y1 + classifyResult.t * ( y2 - y1 ) ).toPrecision( 10 ) );
|
|
return { x: x, y: y, t: classifyResult.t, };
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return null;
|
|
|
|
} else {
|
|
|
|
//3. edges intersect
|
|
|
|
for ( let i = 0; i < 2; i ++ ) {
|
|
|
|
classifyPoint( i === 0 ? b0 : b1, a0, a1 );
|
|
|
|
if ( classifyResult.loc == IntersectionLocationType.ORIGIN ) {
|
|
|
|
const point = ( i === 0 ? b0 : b1 );
|
|
return { x: point.x, y: point.y, t: classifyResult.t };
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const x = + ( ( x1 + t1 * ( x2 - x1 ) ).toPrecision( 10 ) );
|
|
const y = + ( ( y1 + t1 * ( y2 - y1 ) ).toPrecision( 10 ) );
|
|
return { x: x, y: y, t: t1 };
|
|
|
|
}
|
|
|
|
}
|
|
|
|
function classifyPoint( p, edgeStart, edgeEnd ) {
|
|
|
|
const ax = edgeEnd.x - edgeStart.x;
|
|
const ay = edgeEnd.y - edgeStart.y;
|
|
const bx = p.x - edgeStart.x;
|
|
const by = p.y - edgeStart.y;
|
|
const sa = ax * by - bx * ay;
|
|
|
|
if ( ( p.x === edgeStart.x ) && ( p.y === edgeStart.y ) ) {
|
|
|
|
classifyResult.loc = IntersectionLocationType.ORIGIN;
|
|
classifyResult.t = 0;
|
|
return;
|
|
|
|
}
|
|
|
|
if ( ( p.x === edgeEnd.x ) && ( p.y === edgeEnd.y ) ) {
|
|
|
|
classifyResult.loc = IntersectionLocationType.DESTINATION;
|
|
classifyResult.t = 1;
|
|
return;
|
|
|
|
}
|
|
|
|
if ( sa < - Number.EPSILON ) {
|
|
|
|
classifyResult.loc = IntersectionLocationType.LEFT;
|
|
return;
|
|
|
|
}
|
|
|
|
if ( sa > Number.EPSILON ) {
|
|
|
|
classifyResult.loc = IntersectionLocationType.RIGHT;
|
|
return;
|
|
|
|
|
|
}
|
|
|
|
if ( ( ( ax * bx ) < 0 ) || ( ( ay * by ) < 0 ) ) {
|
|
|
|
classifyResult.loc = IntersectionLocationType.BEHIND;
|
|
return;
|
|
|
|
}
|
|
|
|
if ( ( Math.sqrt( ax * ax + ay * ay ) ) < ( Math.sqrt( bx * bx + by * by ) ) ) {
|
|
|
|
classifyResult.loc = IntersectionLocationType.BEYOND;
|
|
return;
|
|
|
|
}
|
|
|
|
let t;
|
|
|
|
if ( ax !== 0 ) {
|
|
|
|
t = bx / ax;
|
|
|
|
} else {
|
|
|
|
t = by / ay;
|
|
|
|
}
|
|
|
|
classifyResult.loc = IntersectionLocationType.BETWEEN;
|
|
classifyResult.t = t;
|
|
|
|
}
|
|
|
|
function getIntersections( path1, path2 ) {
|
|
|
|
const intersectionsRaw = [];
|
|
const intersections = [];
|
|
|
|
for ( let index = 1; index < path1.length; index ++ ) {
|
|
|
|
const path1EdgeStart = path1[ index - 1 ];
|
|
const path1EdgeEnd = path1[ index ];
|
|
|
|
for ( let index2 = 1; index2 < path2.length; index2 ++ ) {
|
|
|
|
const path2EdgeStart = path2[ index2 - 1 ];
|
|
const path2EdgeEnd = path2[ index2 ];
|
|
|
|
const intersection = findEdgeIntersection( path1EdgeStart, path1EdgeEnd, path2EdgeStart, path2EdgeEnd );
|
|
|
|
if ( intersection !== null && intersectionsRaw.find( i => i.t <= intersection.t + Number.EPSILON && i.t >= intersection.t - Number.EPSILON ) === undefined ) {
|
|
|
|
intersectionsRaw.push( intersection );
|
|
intersections.push( new Vector2( intersection.x, intersection.y ) );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return intersections;
|
|
|
|
}
|
|
|
|
function getScanlineIntersections( scanline, boundingBox, paths ) {
|
|
|
|
const center = new Vector2();
|
|
boundingBox.getCenter( center );
|
|
|
|
const allIntersections = [];
|
|
|
|
paths.forEach( path => {
|
|
|
|
// check if the center of the bounding box is in the bounding box of the paths.
|
|
// this is a pruning method to limit the search of intersections in paths that can't envelop of the current path.
|
|
// if a path envelops another path. The center of that oter path, has to be inside the bounding box of the enveloping path.
|
|
if ( path.boundingBox.containsPoint( center ) ) {
|
|
|
|
const intersections = getIntersections( scanline, path.points );
|
|
|
|
intersections.forEach( p => {
|
|
|
|
allIntersections.push( { identifier: path.identifier, isCW: path.isCW, point: p } );
|
|
|
|
} );
|
|
|
|
}
|
|
|
|
} );
|
|
|
|
allIntersections.sort( ( i1, i2 ) => {
|
|
|
|
return i1.point.x - i2.point.x;
|
|
|
|
} );
|
|
|
|
return allIntersections;
|
|
|
|
}
|
|
|
|
function isHoleTo( simplePath, allPaths, scanlineMinX, scanlineMaxX, _fillRule ) {
|
|
|
|
if ( _fillRule === null || _fillRule === undefined || _fillRule === '' ) {
|
|
|
|
_fillRule = 'nonzero';
|
|
|
|
}
|
|
|
|
const centerBoundingBox = new Vector2();
|
|
simplePath.boundingBox.getCenter( centerBoundingBox );
|
|
|
|
const scanline = [ new Vector2( scanlineMinX, centerBoundingBox.y ), new Vector2( scanlineMaxX, centerBoundingBox.y ) ];
|
|
|
|
const scanlineIntersections = getScanlineIntersections( scanline, simplePath.boundingBox, allPaths );
|
|
|
|
scanlineIntersections.sort( ( i1, i2 ) => {
|
|
|
|
return i1.point.x - i2.point.x;
|
|
|
|
} );
|
|
|
|
const baseIntersections = [];
|
|
const otherIntersections = [];
|
|
|
|
scanlineIntersections.forEach( i => {
|
|
|
|
if ( i.identifier === simplePath.identifier ) {
|
|
|
|
baseIntersections.push( i );
|
|
|
|
} else {
|
|
|
|
otherIntersections.push( i );
|
|
|
|
}
|
|
|
|
} );
|
|
|
|
const firstXOfPath = baseIntersections[ 0 ].point.x;
|
|
|
|
// build up the path hierarchy
|
|
const stack = [];
|
|
let i = 0;
|
|
|
|
while ( i < otherIntersections.length && otherIntersections[ i ].point.x < firstXOfPath ) {
|
|
|
|
if ( stack.length > 0 && stack[ stack.length - 1 ] === otherIntersections[ i ].identifier ) {
|
|
|
|
stack.pop();
|
|
|
|
} else {
|
|
|
|
stack.push( otherIntersections[ i ].identifier );
|
|
|
|
}
|
|
|
|
i ++;
|
|
|
|
}
|
|
|
|
stack.push( simplePath.identifier );
|
|
|
|
if ( _fillRule === 'evenodd' ) {
|
|
|
|
const isHole = stack.length % 2 === 0 ? true : false;
|
|
const isHoleFor = stack[ stack.length - 2 ];
|
|
|
|
return { identifier: simplePath.identifier, isHole: isHole, for: isHoleFor };
|
|
|
|
} else if ( _fillRule === 'nonzero' ) {
|
|
|
|
// check if path is a hole by counting the amount of paths with alternating rotations it has to cross.
|
|
let isHole = true;
|
|
let isHoleFor = null;
|
|
let lastCWValue = null;
|
|
|
|
for ( let i = 0; i < stack.length; i ++ ) {
|
|
|
|
const identifier = stack[ i ];
|
|
if ( isHole ) {
|
|
|
|
lastCWValue = allPaths[ identifier ].isCW;
|
|
isHole = false;
|
|
isHoleFor = identifier;
|
|
|
|
} else if ( lastCWValue !== allPaths[ identifier ].isCW ) {
|
|
|
|
lastCWValue = allPaths[ identifier ].isCW;
|
|
isHole = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return { identifier: simplePath.identifier, isHole: isHole, for: isHoleFor };
|
|
|
|
} else {
|
|
|
|
console.warn( 'fill-rule: "' + _fillRule + '" is currently not implemented.' );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// check for self intersecting paths
|
|
// TODO
|
|
|
|
// check intersecting paths
|
|
// TODO
|
|
|
|
// prepare paths for hole detection
|
|
let scanlineMinX = BIGNUMBER;
|
|
let scanlineMaxX = - BIGNUMBER;
|
|
|
|
let simplePaths = shapePath.subPaths.map( p => {
|
|
|
|
const points = p.getPoints();
|
|
let maxY = - BIGNUMBER;
|
|
let minY = BIGNUMBER;
|
|
let maxX = - BIGNUMBER;
|
|
let minX = BIGNUMBER;
|
|
|
|
//points.forEach(p => p.y *= -1);
|
|
|
|
for ( let i = 0; i < points.length; i ++ ) {
|
|
|
|
const p = points[ i ];
|
|
|
|
if ( p.y > maxY ) {
|
|
|
|
maxY = p.y;
|
|
|
|
}
|
|
|
|
if ( p.y < minY ) {
|
|
|
|
minY = p.y;
|
|
|
|
}
|
|
|
|
if ( p.x > maxX ) {
|
|
|
|
maxX = p.x;
|
|
|
|
}
|
|
|
|
if ( p.x < minX ) {
|
|
|
|
minX = p.x;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
//
|
|
if ( scanlineMaxX <= maxX ) {
|
|
|
|
scanlineMaxX = maxX + 1;
|
|
|
|
}
|
|
|
|
if ( scanlineMinX >= minX ) {
|
|
|
|
scanlineMinX = minX - 1;
|
|
|
|
}
|
|
|
|
return { curves: p.curves, points: points, isCW: ShapeUtils.isClockWise( points ), identifier: - 1, boundingBox: new Box2( new Vector2( minX, minY ), new Vector2( maxX, maxY ) ) };
|
|
|
|
} );
|
|
|
|
simplePaths = simplePaths.filter( sp => sp.points.length > 1 );
|
|
|
|
for ( let identifier = 0; identifier < simplePaths.length; identifier ++ ) {
|
|
|
|
simplePaths[ identifier ].identifier = identifier;
|
|
|
|
}
|
|
|
|
// check if path is solid or a hole
|
|
const isAHole = simplePaths.map( p => isHoleTo( p, simplePaths, scanlineMinX, scanlineMaxX, ( shapePath.userData ? shapePath.userData.style.fillRule : undefined ) ) );
|
|
|
|
|
|
const shapesToReturn = [];
|
|
simplePaths.forEach( p => {
|
|
|
|
const amIAHole = isAHole[ p.identifier ];
|
|
|
|
if ( ! amIAHole.isHole ) {
|
|
|
|
const shape = new Shape();
|
|
shape.curves = p.curves;
|
|
const holes = isAHole.filter( h => h.isHole && h.for === p.identifier );
|
|
holes.forEach( h => {
|
|
|
|
const hole = simplePaths[ h.identifier ];
|
|
const path = new Path();
|
|
path.curves = hole.curves;
|
|
shape.holes.push( path );
|
|
|
|
} );
|
|
shapesToReturn.push( shape );
|
|
|
|
}
|
|
|
|
} );
|
|
|
|
return shapesToReturn;
|
|
|
|
}
|
|
|
|
static getStrokeStyle( width, color, lineJoin, lineCap, miterLimit ) {
|
|
|
|
// Param width: Stroke width
|
|
// Param color: As returned by THREE.Color.getStyle()
|
|
// Param lineJoin: One of "round", "bevel", "miter" or "miter-limit"
|
|
// Param lineCap: One of "round", "square" or "butt"
|
|
// Param miterLimit: Maximum join length, in multiples of the "width" parameter (join is truncated if it exceeds that distance)
|
|
// Returns style object
|
|
|
|
width = width !== undefined ? width : 1;
|
|
color = color !== undefined ? color : '#000';
|
|
lineJoin = lineJoin !== undefined ? lineJoin : 'miter';
|
|
lineCap = lineCap !== undefined ? lineCap : 'butt';
|
|
miterLimit = miterLimit !== undefined ? miterLimit : 4;
|
|
|
|
return {
|
|
strokeColor: color,
|
|
strokeWidth: width,
|
|
strokeLineJoin: lineJoin,
|
|
strokeLineCap: lineCap,
|
|
strokeMiterLimit: miterLimit
|
|
};
|
|
|
|
}
|
|
|
|
static pointsToStroke( points, style, arcDivisions, minDistance ) {
|
|
|
|
// Generates a stroke with some width around the given path.
|
|
// The path can be open or closed (last point equals to first point)
|
|
// Param points: Array of Vector2D (the path). Minimum 2 points.
|
|
// Param style: Object with SVG properties as returned by SVGLoader.getStrokeStyle(), or SVGLoader.parse() in the path.userData.style object
|
|
// Params arcDivisions: Arc divisions for round joins and endcaps. (Optional)
|
|
// Param minDistance: Points closer to this distance will be merged. (Optional)
|
|
// Returns BufferGeometry with stroke triangles (In plane z = 0). UV coordinates are generated ('u' along path. 'v' across it, from left to right)
|
|
|
|
const vertices = [];
|
|
const normals = [];
|
|
const uvs = [];
|
|
|
|
if ( SVGLoader.pointsToStrokeWithBuffers( points, style, arcDivisions, minDistance, vertices, normals, uvs ) === 0 ) {
|
|
|
|
return null;
|
|
|
|
}
|
|
|
|
const geometry = new BufferGeometry();
|
|
geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
|
|
geometry.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
|
|
geometry.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
|
|
|
|
return geometry;
|
|
|
|
}
|
|
|
|
static pointsToStrokeWithBuffers( points, style, arcDivisions, minDistance, vertices, normals, uvs, vertexOffset ) {
|
|
|
|
// This function can be called to update existing arrays or buffers.
|
|
// Accepts same parameters as pointsToStroke, plus the buffers and optional offset.
|
|
// Param vertexOffset: Offset vertices to start writing in the buffers (3 elements/vertex for vertices and normals, and 2 elements/vertex for uvs)
|
|
// Returns number of written vertices / normals / uvs pairs
|
|
// if 'vertices' parameter is undefined no triangles will be generated, but the returned vertices count will still be valid (useful to preallocate the buffers)
|
|
// 'normals' and 'uvs' buffers are optional
|
|
|
|
const tempV2_1 = new Vector2();
|
|
const tempV2_2 = new Vector2();
|
|
const tempV2_3 = new Vector2();
|
|
const tempV2_4 = new Vector2();
|
|
const tempV2_5 = new Vector2();
|
|
const tempV2_6 = new Vector2();
|
|
const tempV2_7 = new Vector2();
|
|
const lastPointL = new Vector2();
|
|
const lastPointR = new Vector2();
|
|
const point0L = new Vector2();
|
|
const point0R = new Vector2();
|
|
const currentPointL = new Vector2();
|
|
const currentPointR = new Vector2();
|
|
const nextPointL = new Vector2();
|
|
const nextPointR = new Vector2();
|
|
const innerPoint = new Vector2();
|
|
const outerPoint = new Vector2();
|
|
|
|
arcDivisions = arcDivisions !== undefined ? arcDivisions : 12;
|
|
minDistance = minDistance !== undefined ? minDistance : 0.001;
|
|
vertexOffset = vertexOffset !== undefined ? vertexOffset : 0;
|
|
|
|
// First ensure there are no duplicated points
|
|
points = removeDuplicatedPoints( points );
|
|
|
|
const numPoints = points.length;
|
|
|
|
if ( numPoints < 2 ) return 0;
|
|
|
|
const isClosed = points[ 0 ].equals( points[ numPoints - 1 ] );
|
|
|
|
let currentPoint;
|
|
let previousPoint = points[ 0 ];
|
|
let nextPoint;
|
|
|
|
const strokeWidth2 = style.strokeWidth / 2;
|
|
|
|
const deltaU = 1 / ( numPoints - 1 );
|
|
let u0 = 0, u1;
|
|
|
|
let innerSideModified;
|
|
let joinIsOnLeftSide;
|
|
let isMiter;
|
|
let initialJoinIsOnLeftSide = false;
|
|
|
|
let numVertices = 0;
|
|
let currentCoordinate = vertexOffset * 3;
|
|
let currentCoordinateUV = vertexOffset * 2;
|
|
|
|
// Get initial left and right stroke points
|
|
getNormal( points[ 0 ], points[ 1 ], tempV2_1 ).multiplyScalar( strokeWidth2 );
|
|
lastPointL.copy( points[ 0 ] ).sub( tempV2_1 );
|
|
lastPointR.copy( points[ 0 ] ).add( tempV2_1 );
|
|
point0L.copy( lastPointL );
|
|
point0R.copy( lastPointR );
|
|
|
|
for ( let iPoint = 1; iPoint < numPoints; iPoint ++ ) {
|
|
|
|
currentPoint = points[ iPoint ];
|
|
|
|
// Get next point
|
|
if ( iPoint === numPoints - 1 ) {
|
|
|
|
if ( isClosed ) {
|
|
|
|
// Skip duplicated initial point
|
|
nextPoint = points[ 1 ];
|
|
|
|
} else nextPoint = undefined;
|
|
|
|
} else {
|
|
|
|
nextPoint = points[ iPoint + 1 ];
|
|
|
|
}
|
|
|
|
// Normal of previous segment in tempV2_1
|
|
const normal1 = tempV2_1;
|
|
getNormal( previousPoint, currentPoint, normal1 );
|
|
|
|
tempV2_3.copy( normal1 ).multiplyScalar( strokeWidth2 );
|
|
currentPointL.copy( currentPoint ).sub( tempV2_3 );
|
|
currentPointR.copy( currentPoint ).add( tempV2_3 );
|
|
|
|
u1 = u0 + deltaU;
|
|
|
|
innerSideModified = false;
|
|
|
|
if ( nextPoint !== undefined ) {
|
|
|
|
// Normal of next segment in tempV2_2
|
|
getNormal( currentPoint, nextPoint, tempV2_2 );
|
|
|
|
tempV2_3.copy( tempV2_2 ).multiplyScalar( strokeWidth2 );
|
|
nextPointL.copy( currentPoint ).sub( tempV2_3 );
|
|
nextPointR.copy( currentPoint ).add( tempV2_3 );
|
|
|
|
joinIsOnLeftSide = true;
|
|
tempV2_3.subVectors( nextPoint, previousPoint );
|
|
if ( normal1.dot( tempV2_3 ) < 0 ) {
|
|
|
|
joinIsOnLeftSide = false;
|
|
|
|
}
|
|
|
|
if ( iPoint === 1 ) initialJoinIsOnLeftSide = joinIsOnLeftSide;
|
|
|
|
tempV2_3.subVectors( nextPoint, currentPoint );
|
|
tempV2_3.normalize();
|
|
const dot = Math.abs( normal1.dot( tempV2_3 ) );
|
|
|
|
// If path is straight, don't create join
|
|
if ( dot > Number.EPSILON ) {
|
|
|
|
// Compute inner and outer segment intersections
|
|
const miterSide = strokeWidth2 / dot;
|
|
tempV2_3.multiplyScalar( - miterSide );
|
|
tempV2_4.subVectors( currentPoint, previousPoint );
|
|
tempV2_5.copy( tempV2_4 ).setLength( miterSide ).add( tempV2_3 );
|
|
innerPoint.copy( tempV2_5 ).negate();
|
|
const miterLength2 = tempV2_5.length();
|
|
const segmentLengthPrev = tempV2_4.length();
|
|
tempV2_4.divideScalar( segmentLengthPrev );
|
|
tempV2_6.subVectors( nextPoint, currentPoint );
|
|
const segmentLengthNext = tempV2_6.length();
|
|
tempV2_6.divideScalar( segmentLengthNext );
|
|
// Check that previous and next segments doesn't overlap with the innerPoint of intersection
|
|
if ( tempV2_4.dot( innerPoint ) < segmentLengthPrev && tempV2_6.dot( innerPoint ) < segmentLengthNext ) {
|
|
|
|
innerSideModified = true;
|
|
|
|
}
|
|
|
|
outerPoint.copy( tempV2_5 ).add( currentPoint );
|
|
innerPoint.add( currentPoint );
|
|
|
|
isMiter = false;
|
|
|
|
if ( innerSideModified ) {
|
|
|
|
if ( joinIsOnLeftSide ) {
|
|
|
|
nextPointR.copy( innerPoint );
|
|
currentPointR.copy( innerPoint );
|
|
|
|
} else {
|
|
|
|
nextPointL.copy( innerPoint );
|
|
currentPointL.copy( innerPoint );
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// The segment triangles are generated here if there was overlapping
|
|
|
|
makeSegmentTriangles();
|
|
|
|
}
|
|
|
|
switch ( style.strokeLineJoin ) {
|
|
|
|
case 'bevel':
|
|
|
|
makeSegmentWithBevelJoin( joinIsOnLeftSide, innerSideModified, u1 );
|
|
|
|
break;
|
|
|
|
case 'round':
|
|
|
|
// Segment triangles
|
|
|
|
createSegmentTrianglesWithMiddleSection( joinIsOnLeftSide, innerSideModified );
|
|
|
|
// Join triangles
|
|
|
|
if ( joinIsOnLeftSide ) {
|
|
|
|
makeCircularSector( currentPoint, currentPointL, nextPointL, u1, 0 );
|
|
|
|
} else {
|
|
|
|
makeCircularSector( currentPoint, nextPointR, currentPointR, u1, 1 );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'miter':
|
|
case 'miter-clip':
|
|
default:
|
|
|
|
const miterFraction = ( strokeWidth2 * style.strokeMiterLimit ) / miterLength2;
|
|
|
|
if ( miterFraction < 1 ) {
|
|
|
|
// The join miter length exceeds the miter limit
|
|
|
|
if ( style.strokeLineJoin !== 'miter-clip' ) {
|
|
|
|
makeSegmentWithBevelJoin( joinIsOnLeftSide, innerSideModified, u1 );
|
|
break;
|
|
|
|
} else {
|
|
|
|
// Segment triangles
|
|
|
|
createSegmentTrianglesWithMiddleSection( joinIsOnLeftSide, innerSideModified );
|
|
|
|
// Miter-clip join triangles
|
|
|
|
if ( joinIsOnLeftSide ) {
|
|
|
|
tempV2_6.subVectors( outerPoint, currentPointL ).multiplyScalar( miterFraction ).add( currentPointL );
|
|
tempV2_7.subVectors( outerPoint, nextPointL ).multiplyScalar( miterFraction ).add( nextPointL );
|
|
|
|
addVertex( currentPointL, u1, 0 );
|
|
addVertex( tempV2_6, u1, 0 );
|
|
addVertex( currentPoint, u1, 0.5 );
|
|
|
|
addVertex( currentPoint, u1, 0.5 );
|
|
addVertex( tempV2_6, u1, 0 );
|
|
addVertex( tempV2_7, u1, 0 );
|
|
|
|
addVertex( currentPoint, u1, 0.5 );
|
|
addVertex( tempV2_7, u1, 0 );
|
|
addVertex( nextPointL, u1, 0 );
|
|
|
|
} else {
|
|
|
|
tempV2_6.subVectors( outerPoint, currentPointR ).multiplyScalar( miterFraction ).add( currentPointR );
|
|
tempV2_7.subVectors( outerPoint, nextPointR ).multiplyScalar( miterFraction ).add( nextPointR );
|
|
|
|
addVertex( currentPointR, u1, 1 );
|
|
addVertex( tempV2_6, u1, 1 );
|
|
addVertex( currentPoint, u1, 0.5 );
|
|
|
|
addVertex( currentPoint, u1, 0.5 );
|
|
addVertex( tempV2_6, u1, 1 );
|
|
addVertex( tempV2_7, u1, 1 );
|
|
|
|
addVertex( currentPoint, u1, 0.5 );
|
|
addVertex( tempV2_7, u1, 1 );
|
|
addVertex( nextPointR, u1, 1 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Miter join segment triangles
|
|
|
|
if ( innerSideModified ) {
|
|
|
|
// Optimized segment + join triangles
|
|
|
|
if ( joinIsOnLeftSide ) {
|
|
|
|
addVertex( lastPointR, u0, 1 );
|
|
addVertex( lastPointL, u0, 0 );
|
|
addVertex( outerPoint, u1, 0 );
|
|
|
|
addVertex( lastPointR, u0, 1 );
|
|
addVertex( outerPoint, u1, 0 );
|
|
addVertex( innerPoint, u1, 1 );
|
|
|
|
} else {
|
|
|
|
addVertex( lastPointR, u0, 1 );
|
|
addVertex( lastPointL, u0, 0 );
|
|
addVertex( outerPoint, u1, 1 );
|
|
|
|
addVertex( lastPointL, u0, 0 );
|
|
addVertex( innerPoint, u1, 0 );
|
|
addVertex( outerPoint, u1, 1 );
|
|
|
|
}
|
|
|
|
|
|
if ( joinIsOnLeftSide ) {
|
|
|
|
nextPointL.copy( outerPoint );
|
|
|
|
} else {
|
|
|
|
nextPointR.copy( outerPoint );
|
|
|
|
}
|
|
|
|
|
|
} else {
|
|
|
|
// Add extra miter join triangles
|
|
|
|
if ( joinIsOnLeftSide ) {
|
|
|
|
addVertex( currentPointL, u1, 0 );
|
|
addVertex( outerPoint, u1, 0 );
|
|
addVertex( currentPoint, u1, 0.5 );
|
|
|
|
addVertex( currentPoint, u1, 0.5 );
|
|
addVertex( outerPoint, u1, 0 );
|
|
addVertex( nextPointL, u1, 0 );
|
|
|
|
} else {
|
|
|
|
addVertex( currentPointR, u1, 1 );
|
|
addVertex( outerPoint, u1, 1 );
|
|
addVertex( currentPoint, u1, 0.5 );
|
|
|
|
addVertex( currentPoint, u1, 0.5 );
|
|
addVertex( outerPoint, u1, 1 );
|
|
addVertex( nextPointR, u1, 1 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
isMiter = true;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// The segment triangles are generated here when two consecutive points are collinear
|
|
|
|
makeSegmentTriangles();
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// The segment triangles are generated here if it is the ending segment
|
|
|
|
makeSegmentTriangles();
|
|
|
|
}
|
|
|
|
if ( ! isClosed && iPoint === numPoints - 1 ) {
|
|
|
|
// Start line endcap
|
|
addCapGeometry( points[ 0 ], point0L, point0R, joinIsOnLeftSide, true, u0 );
|
|
|
|
}
|
|
|
|
// Increment loop variables
|
|
|
|
u0 = u1;
|
|
|
|
previousPoint = currentPoint;
|
|
|
|
lastPointL.copy( nextPointL );
|
|
lastPointR.copy( nextPointR );
|
|
|
|
}
|
|
|
|
if ( ! isClosed ) {
|
|
|
|
// Ending line endcap
|
|
addCapGeometry( currentPoint, currentPointL, currentPointR, joinIsOnLeftSide, false, u1 );
|
|
|
|
} else if ( innerSideModified && vertices ) {
|
|
|
|
// Modify path first segment vertices to adjust to the segments inner and outer intersections
|
|
|
|
let lastOuter = outerPoint;
|
|
let lastInner = innerPoint;
|
|
|
|
if ( initialJoinIsOnLeftSide !== joinIsOnLeftSide ) {
|
|
|
|
lastOuter = innerPoint;
|
|
lastInner = outerPoint;
|
|
|
|
}
|
|
|
|
if ( joinIsOnLeftSide ) {
|
|
|
|
if ( isMiter || initialJoinIsOnLeftSide ) {
|
|
|
|
lastInner.toArray( vertices, 0 * 3 );
|
|
lastInner.toArray( vertices, 3 * 3 );
|
|
|
|
if ( isMiter ) {
|
|
|
|
lastOuter.toArray( vertices, 1 * 3 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if ( isMiter || ! initialJoinIsOnLeftSide ) {
|
|
|
|
lastInner.toArray( vertices, 1 * 3 );
|
|
lastInner.toArray( vertices, 3 * 3 );
|
|
|
|
if ( isMiter ) {
|
|
|
|
lastOuter.toArray( vertices, 0 * 3 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return numVertices;
|
|
|
|
// -- End of algorithm
|
|
|
|
// -- Functions
|
|
|
|
function getNormal( p1, p2, result ) {
|
|
|
|
result.subVectors( p2, p1 );
|
|
return result.set( - result.y, result.x ).normalize();
|
|
|
|
}
|
|
|
|
function addVertex( position, u, v ) {
|
|
|
|
if ( vertices ) {
|
|
|
|
vertices[ currentCoordinate ] = position.x;
|
|
vertices[ currentCoordinate + 1 ] = position.y;
|
|
vertices[ currentCoordinate + 2 ] = 0;
|
|
|
|
if ( normals ) {
|
|
|
|
normals[ currentCoordinate ] = 0;
|
|
normals[ currentCoordinate + 1 ] = 0;
|
|
normals[ currentCoordinate + 2 ] = 1;
|
|
|
|
}
|
|
|
|
currentCoordinate += 3;
|
|
|
|
if ( uvs ) {
|
|
|
|
uvs[ currentCoordinateUV ] = u;
|
|
uvs[ currentCoordinateUV + 1 ] = v;
|
|
|
|
currentCoordinateUV += 2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
numVertices += 3;
|
|
|
|
}
|
|
|
|
function makeCircularSector( center, p1, p2, u, v ) {
|
|
|
|
// param p1, p2: Points in the circle arc.
|
|
// p1 and p2 are in clockwise direction.
|
|
|
|
tempV2_1.copy( p1 ).sub( center ).normalize();
|
|
tempV2_2.copy( p2 ).sub( center ).normalize();
|
|
|
|
let angle = Math.PI;
|
|
const dot = tempV2_1.dot( tempV2_2 );
|
|
if ( Math.abs( dot ) < 1 ) angle = Math.abs( Math.acos( dot ) );
|
|
|
|
angle /= arcDivisions;
|
|
|
|
tempV2_3.copy( p1 );
|
|
|
|
for ( let i = 0, il = arcDivisions - 1; i < il; i ++ ) {
|
|
|
|
tempV2_4.copy( tempV2_3 ).rotateAround( center, angle );
|
|
|
|
addVertex( tempV2_3, u, v );
|
|
addVertex( tempV2_4, u, v );
|
|
addVertex( center, u, 0.5 );
|
|
|
|
tempV2_3.copy( tempV2_4 );
|
|
|
|
}
|
|
|
|
addVertex( tempV2_4, u, v );
|
|
addVertex( p2, u, v );
|
|
addVertex( center, u, 0.5 );
|
|
|
|
}
|
|
|
|
function makeSegmentTriangles() {
|
|
|
|
addVertex( lastPointR, u0, 1 );
|
|
addVertex( lastPointL, u0, 0 );
|
|
addVertex( currentPointL, u1, 0 );
|
|
|
|
addVertex( lastPointR, u0, 1 );
|
|
addVertex( currentPointL, u1, 0 );
|
|
addVertex( currentPointR, u1, 1 );
|
|
|
|
}
|
|
|
|
function makeSegmentWithBevelJoin( joinIsOnLeftSide, innerSideModified, u ) {
|
|
|
|
if ( innerSideModified ) {
|
|
|
|
// Optimized segment + bevel triangles
|
|
|
|
if ( joinIsOnLeftSide ) {
|
|
|
|
// Path segments triangles
|
|
|
|
addVertex( lastPointR, u0, 1 );
|
|
addVertex( lastPointL, u0, 0 );
|
|
addVertex( currentPointL, u1, 0 );
|
|
|
|
addVertex( lastPointR, u0, 1 );
|
|
addVertex( currentPointL, u1, 0 );
|
|
addVertex( innerPoint, u1, 1 );
|
|
|
|
// Bevel join triangle
|
|
|
|
addVertex( currentPointL, u, 0 );
|
|
addVertex( nextPointL, u, 0 );
|
|
addVertex( innerPoint, u, 0.5 );
|
|
|
|
} else {
|
|
|
|
// Path segments triangles
|
|
|
|
addVertex( lastPointR, u0, 1 );
|
|
addVertex( lastPointL, u0, 0 );
|
|
addVertex( currentPointR, u1, 1 );
|
|
|
|
addVertex( lastPointL, u0, 0 );
|
|
addVertex( innerPoint, u1, 0 );
|
|
addVertex( currentPointR, u1, 1 );
|
|
|
|
// Bevel join triangle
|
|
|
|
addVertex( currentPointR, u, 1 );
|
|
addVertex( innerPoint, u, 0 );
|
|
addVertex( nextPointR, u, 1 );
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Bevel join triangle. The segment triangles are done in the main loop
|
|
|
|
if ( joinIsOnLeftSide ) {
|
|
|
|
addVertex( currentPointL, u, 0 );
|
|
addVertex( nextPointL, u, 0 );
|
|
addVertex( currentPoint, u, 0.5 );
|
|
|
|
} else {
|
|
|
|
addVertex( currentPointR, u, 1 );
|
|
addVertex( nextPointR, u, 0 );
|
|
addVertex( currentPoint, u, 0.5 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
function createSegmentTrianglesWithMiddleSection( joinIsOnLeftSide, innerSideModified ) {
|
|
|
|
if ( innerSideModified ) {
|
|
|
|
if ( joinIsOnLeftSide ) {
|
|
|
|
addVertex( lastPointR, u0, 1 );
|
|
addVertex( lastPointL, u0, 0 );
|
|
addVertex( currentPointL, u1, 0 );
|
|
|
|
addVertex( lastPointR, u0, 1 );
|
|
addVertex( currentPointL, u1, 0 );
|
|
addVertex( innerPoint, u1, 1 );
|
|
|
|
addVertex( currentPointL, u0, 0 );
|
|
addVertex( currentPoint, u1, 0.5 );
|
|
addVertex( innerPoint, u1, 1 );
|
|
|
|
addVertex( currentPoint, u1, 0.5 );
|
|
addVertex( nextPointL, u0, 0 );
|
|
addVertex( innerPoint, u1, 1 );
|
|
|
|
} else {
|
|
|
|
addVertex( lastPointR, u0, 1 );
|
|
addVertex( lastPointL, u0, 0 );
|
|
addVertex( currentPointR, u1, 1 );
|
|
|
|
addVertex( lastPointL, u0, 0 );
|
|
addVertex( innerPoint, u1, 0 );
|
|
addVertex( currentPointR, u1, 1 );
|
|
|
|
addVertex( currentPointR, u0, 1 );
|
|
addVertex( innerPoint, u1, 0 );
|
|
addVertex( currentPoint, u1, 0.5 );
|
|
|
|
addVertex( currentPoint, u1, 0.5 );
|
|
addVertex( innerPoint, u1, 0 );
|
|
addVertex( nextPointR, u0, 1 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
function addCapGeometry( center, p1, p2, joinIsOnLeftSide, start, u ) {
|
|
|
|
// param center: End point of the path
|
|
// param p1, p2: Left and right cap points
|
|
|
|
switch ( style.strokeLineCap ) {
|
|
|
|
case 'round':
|
|
|
|
if ( start ) {
|
|
|
|
makeCircularSector( center, p2, p1, u, 0.5 );
|
|
|
|
} else {
|
|
|
|
makeCircularSector( center, p1, p2, u, 0.5 );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'square':
|
|
|
|
if ( start ) {
|
|
|
|
tempV2_1.subVectors( p1, center );
|
|
tempV2_2.set( tempV2_1.y, - tempV2_1.x );
|
|
|
|
tempV2_3.addVectors( tempV2_1, tempV2_2 ).add( center );
|
|
tempV2_4.subVectors( tempV2_2, tempV2_1 ).add( center );
|
|
|
|
// Modify already existing vertices
|
|
if ( joinIsOnLeftSide ) {
|
|
|
|
tempV2_3.toArray( vertices, 1 * 3 );
|
|
tempV2_4.toArray( vertices, 0 * 3 );
|
|
tempV2_4.toArray( vertices, 3 * 3 );
|
|
|
|
} else {
|
|
|
|
tempV2_3.toArray( vertices, 1 * 3 );
|
|
// using tempV2_4 to update 3rd vertex if the uv.y of 3rd vertex is 1
|
|
uvs[ 3 * 2 + 1 ] === 1 ? tempV2_4.toArray( vertices, 3 * 3 ) : tempV2_3.toArray( vertices, 3 * 3 );
|
|
tempV2_4.toArray( vertices, 0 * 3 );
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
tempV2_1.subVectors( p2, center );
|
|
tempV2_2.set( tempV2_1.y, - tempV2_1.x );
|
|
|
|
tempV2_3.addVectors( tempV2_1, tempV2_2 ).add( center );
|
|
tempV2_4.subVectors( tempV2_2, tempV2_1 ).add( center );
|
|
|
|
const vl = vertices.length;
|
|
|
|
// Modify already existing vertices
|
|
if ( joinIsOnLeftSide ) {
|
|
|
|
tempV2_3.toArray( vertices, vl - 1 * 3 );
|
|
tempV2_4.toArray( vertices, vl - 2 * 3 );
|
|
tempV2_4.toArray( vertices, vl - 4 * 3 );
|
|
|
|
} else {
|
|
|
|
tempV2_4.toArray( vertices, vl - 2 * 3 );
|
|
tempV2_3.toArray( vertices, vl - 1 * 3 );
|
|
tempV2_4.toArray( vertices, vl - 4 * 3 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'butt':
|
|
default:
|
|
|
|
// Nothing to do here
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
function removeDuplicatedPoints( points ) {
|
|
|
|
// Creates a new array if necessary with duplicated points removed.
|
|
// This does not remove duplicated initial and ending points of a closed path.
|
|
|
|
let dupPoints = false;
|
|
for ( let i = 1, n = points.length - 1; i < n; i ++ ) {
|
|
|
|
if ( points[ i ].distanceTo( points[ i + 1 ] ) < minDistance ) {
|
|
|
|
dupPoints = true;
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( ! dupPoints ) return points;
|
|
|
|
const newPoints = [];
|
|
newPoints.push( points[ 0 ] );
|
|
|
|
for ( let i = 1, n = points.length - 1; i < n; i ++ ) {
|
|
|
|
if ( points[ i ].distanceTo( points[ i + 1 ] ) >= minDistance ) {
|
|
|
|
newPoints.push( points[ i ] );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
newPoints.push( points[ points.length - 1 ] );
|
|
|
|
return newPoints;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
export { SVGLoader };
|