animate/webGl/my-threejs-test/node_modules/three/examples/jsm/loaders/SVGLoader.js

3174 lines
68 KiB
JavaScript

import {
Box2,
BufferGeometry,
FileLoader,
Float32BufferAttribute,
Loader,
Matrix3,
Path,
Shape,
ShapePath,
ShapeUtils,
SRGBColorSpace,
Vector2,
Vector3
} from 'three';
const COLOR_SPACE_SVG = SRGBColorSpace;
class SVGLoader extends Loader {
constructor( manager ) {
super( manager );
// Default dots per inch
this.defaultDPI = 90;
// Accepted units: 'mm', 'cm', 'in', 'pt', 'pc', 'px'
this.defaultUnit = 'px';
}
load( url, onLoad, onProgress, onError ) {
const scope = this;
const loader = new FileLoader( scope.manager );
loader.setPath( scope.path );
loader.setRequestHeader( scope.requestHeader );
loader.setWithCredentials( scope.withCredentials );
loader.load( url, function ( text ) {
try {
onLoad( scope.parse( text ) );
} catch ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
}
}, onProgress, onError );
}
parse( text ) {
const scope = this;
function parseNode( node, style ) {
if ( node.nodeType !== 1 ) return;
const transform = getNodeTransform( node );
let isDefsNode = false;
let path = null;
switch ( node.nodeName ) {
case 'svg':
style = parseStyle( node, style );
break;
case 'style':
parseCSSStylesheet( node );
break;
case 'g':
style = parseStyle( node, style );
break;
case 'path':
style = parseStyle( node, style );
if ( node.hasAttribute( 'd' ) ) path = parsePathNode( node );
break;
case 'rect':
style = parseStyle( node, style );
path = parseRectNode( node );
break;
case 'polygon':
style = parseStyle( node, style );
path = parsePolygonNode( node );
break;
case 'polyline':
style = parseStyle( node, style );
path = parsePolylineNode( node );
break;
case 'circle':
style = parseStyle( node, style );
path = parseCircleNode( node );
break;
case 'ellipse':
style = parseStyle( node, style );
path = parseEllipseNode( node );
break;
case 'line':
style = parseStyle( node, style );
path = parseLineNode( node );
break;
case 'defs':
isDefsNode = true;
break;
case 'use':
style = parseStyle( node, style );
const href = node.getAttributeNS( 'http://www.w3.org/1999/xlink', 'href' ) || '';
const usedNodeId = href.substring( 1 );
const usedNode = node.viewportElement.getElementById( usedNodeId );
if ( usedNode ) {
parseNode( usedNode, style );
} else {
console.warn( 'SVGLoader: \'use node\' references non-existent node id: ' + usedNodeId );
}
break;
default:
// console.log( node );
}
if ( path ) {
if ( style.fill !== undefined && style.fill !== 'none' ) {
path.color.setStyle( style.fill, COLOR_SPACE_SVG );
}
transformPath( path, currentTransform );
paths.push( path );
path.userData = { node: node, style: style };
}
const childNodes = node.childNodes;
for ( let i = 0; i < childNodes.length; i ++ ) {
const node = childNodes[ i ];
if ( isDefsNode && node.nodeName !== 'style' && node.nodeName !== 'defs' ) {
// Ignore everything in defs except CSS style definitions
// and nested defs, because it is OK by the standard to have
// <style/> there.
continue;
}
parseNode( node, style );
}
if ( transform ) {
transformStack.pop();
if ( transformStack.length > 0 ) {
currentTransform.copy( transformStack[ transformStack.length - 1 ] );
} else {
currentTransform.identity();
}
}
}
function parsePathNode( node ) {
const path = new ShapePath();
const point = new Vector2();
const control = new Vector2();
const firstPoint = new Vector2();
let isFirstPoint = true;
let doSetFirstPoint = false;
const d = node.getAttribute( 'd' );
if ( d === '' || d === 'none' ) return null;
// console.log( d );
const commands = d.match( /[a-df-z][^a-df-z]*/ig );
for ( let i = 0, l = commands.length; i < l; i ++ ) {
const command = commands[ i ];
const type = command.charAt( 0 );
const data = command.slice( 1 ).trim();
if ( isFirstPoint === true ) {
doSetFirstPoint = true;
isFirstPoint = false;
}
let numbers;
switch ( type ) {
case 'M':
numbers = parseFloats( data );
for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {
point.x = numbers[ j + 0 ];
point.y = numbers[ j + 1 ];
control.x = point.x;
control.y = point.y;
if ( j === 0 ) {
path.moveTo( point.x, point.y );
} else {
path.lineTo( point.x, point.y );
}
if ( j === 0 ) firstPoint.copy( point );
}
break;
case 'H':
numbers = parseFloats( data );
for ( let j = 0, jl = numbers.length; j < jl; j ++ ) {
point.x = numbers[ j ];
control.x = point.x;
control.y = point.y;
path.lineTo( point.x, point.y );
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'V':
numbers = parseFloats( data );
for ( let j = 0, jl = numbers.length; j < jl; j ++ ) {
point.y = numbers[ j ];
control.x = point.x;
control.y = point.y;
path.lineTo( point.x, point.y );
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'L':
numbers = parseFloats( data );
for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {
point.x = numbers[ j + 0 ];
point.y = numbers[ j + 1 ];
control.x = point.x;
control.y = point.y;
path.lineTo( point.x, point.y );
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'C':
numbers = parseFloats( data );
for ( let j = 0, jl = numbers.length; j < jl; j += 6 ) {
path.bezierCurveTo(
numbers[ j + 0 ],
numbers[ j + 1 ],
numbers[ j + 2 ],
numbers[ j + 3 ],
numbers[ j + 4 ],
numbers[ j + 5 ]
);
control.x = numbers[ j + 2 ];
control.y = numbers[ j + 3 ];
point.x = numbers[ j + 4 ];
point.y = numbers[ j + 5 ];
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'S':
numbers = parseFloats( data );
for ( let j = 0, jl = numbers.length; j < jl; j += 4 ) {
path.bezierCurveTo(
getReflection( point.x, control.x ),
getReflection( point.y, control.y ),
numbers[ j + 0 ],
numbers[ j + 1 ],
numbers[ j + 2 ],
numbers[ j + 3 ]
);
control.x = numbers[ j + 0 ];
control.y = numbers[ j + 1 ];
point.x = numbers[ j + 2 ];
point.y = numbers[ j + 3 ];
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'Q':
numbers = parseFloats( data );
for ( let j = 0, jl = numbers.length; j < jl; j += 4 ) {
path.quadraticCurveTo(
numbers[ j + 0 ],
numbers[ j + 1 ],
numbers[ j + 2 ],
numbers[ j + 3 ]
);
control.x = numbers[ j + 0 ];
control.y = numbers[ j + 1 ];
point.x = numbers[ j + 2 ];
point.y = numbers[ j + 3 ];
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'T':
numbers = parseFloats( data );
for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {
const rx = getReflection( point.x, control.x );
const ry = getReflection( point.y, control.y );
path.quadraticCurveTo(
rx,
ry,
numbers[ j + 0 ],
numbers[ j + 1 ]
);
control.x = rx;
control.y = ry;
point.x = numbers[ j + 0 ];
point.y = numbers[ j + 1 ];
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'A':
numbers = parseFloats( data, [ 3, 4 ], 7 );
for ( let j = 0, jl = numbers.length; j < jl; j += 7 ) {
// skip command if start point == end point
if ( numbers[ j + 5 ] == point.x && numbers[ j + 6 ] == point.y ) continue;
const start = point.clone();
point.x = numbers[ j + 5 ];
point.y = numbers[ j + 6 ];
control.x = point.x;
control.y = point.y;
parseArcCommand(
path, numbers[ j ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ], numbers[ j + 4 ], start, point
);
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'm':
numbers = parseFloats( data );
for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {
point.x += numbers[ j + 0 ];
point.y += numbers[ j + 1 ];
control.x = point.x;
control.y = point.y;
if ( j === 0 ) {
path.moveTo( point.x, point.y );
} else {
path.lineTo( point.x, point.y );
}
if ( j === 0 ) firstPoint.copy( point );
}
break;
case 'h':
numbers = parseFloats( data );
for ( let j = 0, jl = numbers.length; j < jl; j ++ ) {
point.x += numbers[ j ];
control.x = point.x;
control.y = point.y;
path.lineTo( point.x, point.y );
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'v':
numbers = parseFloats( data );
for ( let j = 0, jl = numbers.length; j < jl; j ++ ) {
point.y += numbers[ j ];
control.x = point.x;
control.y = point.y;
path.lineTo( point.x, point.y );
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'l':
numbers = parseFloats( data );
for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {
point.x += numbers[ j + 0 ];
point.y += numbers[ j + 1 ];
control.x = point.x;
control.y = point.y;
path.lineTo( point.x, point.y );
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'c':
numbers = parseFloats( data );
for ( let j = 0, jl = numbers.length; j < jl; j += 6 ) {
path.bezierCurveTo(
point.x + numbers[ j + 0 ],
point.y + numbers[ j + 1 ],
point.x + numbers[ j + 2 ],
point.y + numbers[ j + 3 ],
point.x + numbers[ j + 4 ],
point.y + numbers[ j + 5 ]
);
control.x = point.x + numbers[ j + 2 ];
control.y = point.y + numbers[ j + 3 ];
point.x += numbers[ j + 4 ];
point.y += numbers[ j + 5 ];
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 's':
numbers = parseFloats( data );
for ( let j = 0, jl = numbers.length; j < jl; j += 4 ) {
path.bezierCurveTo(
getReflection( point.x, control.x ),
getReflection( point.y, control.y ),
point.x + numbers[ j + 0 ],
point.y + numbers[ j + 1 ],
point.x + numbers[ j + 2 ],
point.y + numbers[ j + 3 ]
);
control.x = point.x + numbers[ j + 0 ];
control.y = point.y + numbers[ j + 1 ];
point.x += numbers[ j + 2 ];
point.y += numbers[ j + 3 ];
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'q':
numbers = parseFloats( data );
for ( let j = 0, jl = numbers.length; j < jl; j += 4 ) {
path.quadraticCurveTo(
point.x + numbers[ j + 0 ],
point.y + numbers[ j + 1 ],
point.x + numbers[ j + 2 ],
point.y + numbers[ j + 3 ]
);
control.x = point.x + numbers[ j + 0 ];
control.y = point.y + numbers[ j + 1 ];
point.x += numbers[ j + 2 ];
point.y += numbers[ j + 3 ];
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 't':
numbers = parseFloats( data );
for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) {
const rx = getReflection( point.x, control.x );
const ry = getReflection( point.y, control.y );
path.quadraticCurveTo(
rx,
ry,
point.x + numbers[ j + 0 ],
point.y + numbers[ j + 1 ]
);
control.x = rx;
control.y = ry;
point.x = point.x + numbers[ j + 0 ];
point.y = point.y + numbers[ j + 1 ];
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'a':
numbers = parseFloats( data, [ 3, 4 ], 7 );
for ( let j = 0, jl = numbers.length; j < jl; j += 7 ) {
// skip command if no displacement
if ( numbers[ j + 5 ] == 0 && numbers[ j + 6 ] == 0 ) continue;
const start = point.clone();
point.x += numbers[ j + 5 ];
point.y += numbers[ j + 6 ];
control.x = point.x;
control.y = point.y;
parseArcCommand(
path, numbers[ j ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ], numbers[ j + 4 ], start, point
);
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'Z':
case 'z':
path.currentPath.autoClose = true;
if ( path.currentPath.curves.length > 0 ) {
// Reset point to beginning of Path
point.copy( firstPoint );
path.currentPath.currentPoint.copy( point );
isFirstPoint = true;
}
break;
default:
console.warn( command );
}
// console.log( type, parseFloats( data ), parseFloats( data ).length )
doSetFirstPoint = false;
}
return path;
}
function parseCSSStylesheet( node ) {
if ( ! node.sheet || ! node.sheet.cssRules || ! node.sheet.cssRules.length ) return;
for ( let i = 0; i < node.sheet.cssRules.length; i ++ ) {
const stylesheet = node.sheet.cssRules[ i ];
if ( stylesheet.type !== 1 ) continue;
const selectorList = stylesheet.selectorText
.split( /,/gm )
.filter( Boolean )
.map( i => i.trim() );
for ( let j = 0; j < selectorList.length; j ++ ) {
// Remove empty rules
const definitions = Object.fromEntries(
Object.entries( stylesheet.style ).filter( ( [ , v ] ) => v !== '' )
);
stylesheets[ selectorList[ j ] ] = Object.assign(
stylesheets[ selectorList[ j ] ] || {},
definitions
);
}
}
}
/**
* https://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
* https://mortoray.com/2017/02/16/rendering-an-svg-elliptical-arc-as-bezier-curves/ Appendix: Endpoint to center arc conversion
* From
* rx ry x-axis-rotation large-arc-flag sweep-flag x y
* To
* aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation
*/
function parseArcCommand( path, rx, ry, x_axis_rotation, large_arc_flag, sweep_flag, start, end ) {
if ( rx == 0 || ry == 0 ) {
// draw a line if either of the radii == 0
path.lineTo( end.x, end.y );
return;
}
x_axis_rotation = x_axis_rotation * Math.PI / 180;
// Ensure radii are positive
rx = Math.abs( rx );
ry = Math.abs( ry );
// Compute (x1', y1')
const dx2 = ( start.x - end.x ) / 2.0;
const dy2 = ( start.y - end.y ) / 2.0;
const x1p = Math.cos( x_axis_rotation ) * dx2 + Math.sin( x_axis_rotation ) * dy2;
const y1p = - Math.sin( x_axis_rotation ) * dx2 + Math.cos( x_axis_rotation ) * dy2;
// Compute (cx', cy')
let rxs = rx * rx;
let rys = ry * ry;
const x1ps = x1p * x1p;
const y1ps = y1p * y1p;
// Ensure radii are large enough
const cr = x1ps / rxs + y1ps / rys;
if ( cr > 1 ) {
// scale up rx,ry equally so cr == 1
const s = Math.sqrt( cr );
rx = s * rx;
ry = s * ry;
rxs = rx * rx;
rys = ry * ry;
}
const dq = ( rxs * y1ps + rys * x1ps );
const pq = ( rxs * rys - dq ) / dq;
let q = Math.sqrt( Math.max( 0, pq ) );
if ( large_arc_flag === sweep_flag ) q = - q;
const cxp = q * rx * y1p / ry;
const cyp = - q * ry * x1p / rx;
// Step 3: Compute (cx, cy) from (cx', cy')
const cx = Math.cos( x_axis_rotation ) * cxp - Math.sin( x_axis_rotation ) * cyp + ( start.x + end.x ) / 2;
const cy = Math.sin( x_axis_rotation ) * cxp + Math.cos( x_axis_rotation ) * cyp + ( start.y + end.y ) / 2;
// Step 4: Compute θ1 and Δθ
const theta = svgAngle( 1, 0, ( x1p - cxp ) / rx, ( y1p - cyp ) / ry );
const delta = svgAngle( ( x1p - cxp ) / rx, ( y1p - cyp ) / ry, ( - x1p - cxp ) / rx, ( - y1p - cyp ) / ry ) % ( Math.PI * 2 );
path.currentPath.absellipse( cx, cy, rx, ry, theta, theta + delta, sweep_flag === 0, x_axis_rotation );
}
function svgAngle( ux, uy, vx, vy ) {
const dot = ux * vx + uy * vy;
const len = Math.sqrt( ux * ux + uy * uy ) * Math.sqrt( vx * vx + vy * vy );
let ang = Math.acos( Math.max( - 1, Math.min( 1, dot / len ) ) ); // floating point precision, slightly over values appear
if ( ( ux * vy - uy * vx ) < 0 ) ang = - ang;
return ang;
}
/*
* According to https://www.w3.org/TR/SVG/shapes.html#RectElementRXAttribute
* rounded corner should be rendered to elliptical arc, but bezier curve does the job well enough
*/
function parseRectNode( node ) {
const x = parseFloatWithUnits( node.getAttribute( 'x' ) || 0 );
const y = parseFloatWithUnits( node.getAttribute( 'y' ) || 0 );
const rx = parseFloatWithUnits( node.getAttribute( 'rx' ) || node.getAttribute( 'ry' ) || 0 );
const ry = parseFloatWithUnits( node.getAttribute( 'ry' ) || node.getAttribute( 'rx' ) || 0 );
const w = parseFloatWithUnits( node.getAttribute( 'width' ) );
const h = parseFloatWithUnits( node.getAttribute( 'height' ) );
// Ellipse arc to Bezier approximation Coefficient (Inversed). See:
// https://spencermortensen.com/articles/bezier-circle/
const bci = 1 - 0.551915024494;
const path = new ShapePath();
// top left
path.moveTo( x + rx, y );
// top right
path.lineTo( x + w - rx, y );
if ( rx !== 0 || ry !== 0 ) {
path.bezierCurveTo(
x + w - rx * bci,
y,
x + w,
y + ry * bci,
x + w,
y + ry
);
}
// bottom right
path.lineTo( x + w, y + h - ry );
if ( rx !== 0 || ry !== 0 ) {
path.bezierCurveTo(
x + w,
y + h - ry * bci,
x + w - rx * bci,
y + h,
x + w - rx,
y + h
);
}
// bottom left
path.lineTo( x + rx, y + h );
if ( rx !== 0 || ry !== 0 ) {
path.bezierCurveTo(
x + rx * bci,
y + h,
x,
y + h - ry * bci,
x,
y + h - ry
);
}
// back to top left
path.lineTo( x, y + ry );
if ( rx !== 0 || ry !== 0 ) {
path.bezierCurveTo( x, y + ry * bci, x + rx * bci, y, x + rx, y );
}
return path;
}
function parsePolygonNode( node ) {
function iterator( match, a, b ) {
const x = parseFloatWithUnits( a );
const y = parseFloatWithUnits( b );
if ( index === 0 ) {
path.moveTo( x, y );
} else {
path.lineTo( x, y );
}
index ++;
}
const regex = /([+-]?\d*\.?\d+(?:e[+-]?\d+)?)(?:,|\s)([+-]?\d*\.?\d+(?:e[+-]?\d+)?)/g;
const path = new ShapePath();
let index = 0;
node.getAttribute( 'points' ).replace( regex, iterator );
path.currentPath.autoClose = true;
return path;
}
function parsePolylineNode( node ) {
function iterator( match, a, b ) {
const x = parseFloatWithUnits( a );
const y = parseFloatWithUnits( b );
if ( index === 0 ) {
path.moveTo( x, y );
} else {
path.lineTo( x, y );
}
index ++;
}
const regex = /([+-]?\d*\.?\d+(?:e[+-]?\d+)?)(?:,|\s)([+-]?\d*\.?\d+(?:e[+-]?\d+)?)/g;
const path = new ShapePath();
let index = 0;
node.getAttribute( 'points' ).replace( regex, iterator );
path.currentPath.autoClose = false;
return path;
}
function parseCircleNode( node ) {
const x = parseFloatWithUnits( node.getAttribute( 'cx' ) || 0 );
const y = parseFloatWithUnits( node.getAttribute( 'cy' ) || 0 );
const r = parseFloatWithUnits( node.getAttribute( 'r' ) || 0 );
const subpath = new Path();
subpath.absarc( x, y, r, 0, Math.PI * 2 );
const path = new ShapePath();
path.subPaths.push( subpath );
return path;
}
function parseEllipseNode( node ) {
const x = parseFloatWithUnits( node.getAttribute( 'cx' ) || 0 );
const y = parseFloatWithUnits( node.getAttribute( 'cy' ) || 0 );
const rx = parseFloatWithUnits( node.getAttribute( 'rx' ) || 0 );
const ry = parseFloatWithUnits( node.getAttribute( 'ry' ) || 0 );
const subpath = new Path();
subpath.absellipse( x, y, rx, ry, 0, Math.PI * 2 );
const path = new ShapePath();
path.subPaths.push( subpath );
return path;
}
function parseLineNode( node ) {
const x1 = parseFloatWithUnits( node.getAttribute( 'x1' ) || 0 );
const y1 = parseFloatWithUnits( node.getAttribute( 'y1' ) || 0 );
const x2 = parseFloatWithUnits( node.getAttribute( 'x2' ) || 0 );
const y2 = parseFloatWithUnits( node.getAttribute( 'y2' ) || 0 );
const path = new ShapePath();
path.moveTo( x1, y1 );
path.lineTo( x2, y2 );
path.currentPath.autoClose = false;
return path;
}
//
function parseStyle( node, style ) {
style = Object.assign( {}, style ); // clone style
let stylesheetStyles = {};
if ( node.hasAttribute( 'class' ) ) {
const classSelectors = node.getAttribute( 'class' )
.split( /\s/ )
.filter( Boolean )
.map( i => i.trim() );
for ( let i = 0; i < classSelectors.length; i ++ ) {
stylesheetStyles = Object.assign( stylesheetStyles, stylesheets[ '.' + classSelectors[ i ] ] );
}
}
if ( node.hasAttribute( 'id' ) ) {
stylesheetStyles = Object.assign( stylesheetStyles, stylesheets[ '#' + node.getAttribute( 'id' ) ] );
}
function addStyle( svgName, jsName, adjustFunction ) {
if ( adjustFunction === undefined ) adjustFunction = function copy( v ) {
if ( v.startsWith( 'url' ) ) console.warn( 'SVGLoader: url access in attributes is not implemented.' );
return v;
};
if ( node.hasAttribute( svgName ) ) style[ jsName ] = adjustFunction( node.getAttribute( svgName ) );
if ( stylesheetStyles[ svgName ] ) style[ jsName ] = adjustFunction( stylesheetStyles[ svgName ] );
if ( node.style && node.style[ svgName ] !== '' ) style[ jsName ] = adjustFunction( node.style[ svgName ] );
}
function clamp( v ) {
return Math.max( 0, Math.min( 1, parseFloatWithUnits( v ) ) );
}
function positive( v ) {
return Math.max( 0, parseFloatWithUnits( v ) );
}
addStyle( 'fill', 'fill' );
addStyle( 'fill-opacity', 'fillOpacity', clamp );
addStyle( 'fill-rule', 'fillRule' );
addStyle( 'opacity', 'opacity', clamp );
addStyle( 'stroke', 'stroke' );
addStyle( 'stroke-opacity', 'strokeOpacity', clamp );
addStyle( 'stroke-width', 'strokeWidth', positive );
addStyle( 'stroke-linejoin', 'strokeLineJoin' );
addStyle( 'stroke-linecap', 'strokeLineCap' );
addStyle( 'stroke-miterlimit', 'strokeMiterLimit', positive );
addStyle( 'visibility', 'visibility' );
return style;
}
// http://www.w3.org/TR/SVG11/implnote.html#PathElementImplementationNotes
function getReflection( a, b ) {
return a - ( b - a );
}
// from https://github.com/ppvg/svg-numbers (MIT License)
function parseFloats( input, flags, stride ) {
if ( typeof input !== 'string' ) {
throw new TypeError( 'Invalid input: ' + typeof input );
}
// Character groups
const RE = {
SEPARATOR: /[ \t\r\n\,.\-+]/,
WHITESPACE: /[ \t\r\n]/,
DIGIT: /[\d]/,
SIGN: /[-+]/,
POINT: /\./,
COMMA: /,/,
EXP: /e/i,
FLAGS: /[01]/
};
// States
const SEP = 0;
const INT = 1;
const FLOAT = 2;
const EXP = 3;
let state = SEP;
let seenComma = true;
let number = '', exponent = '';
const result = [];
function throwSyntaxError( current, i, partial ) {
const error = new SyntaxError( 'Unexpected character "' + current + '" at index ' + i + '.' );
error.partial = partial;
throw error;
}
function newNumber() {
if ( number !== '' ) {
if ( exponent === '' ) result.push( Number( number ) );
else result.push( Number( number ) * Math.pow( 10, Number( exponent ) ) );
}
number = '';
exponent = '';
}
let current;
const length = input.length;
for ( let i = 0; i < length; i ++ ) {
current = input[ i ];
// check for flags
if ( Array.isArray( flags ) && flags.includes( result.length % stride ) && RE.FLAGS.test( current ) ) {
state = INT;
number = current;
newNumber();
continue;
}
// parse until next number
if ( state === SEP ) {
// eat whitespace
if ( RE.WHITESPACE.test( current ) ) {
continue;
}
// start new number
if ( RE.DIGIT.test( current ) || RE.SIGN.test( current ) ) {
state = INT;
number = current;
continue;
}
if ( RE.POINT.test( current ) ) {
state = FLOAT;
number = current;
continue;
}
// throw on double commas (e.g. "1, , 2")
if ( RE.COMMA.test( current ) ) {
if ( seenComma ) {
throwSyntaxError( current, i, result );
}
seenComma = true;
}
}
// parse integer part
if ( state === INT ) {
if ( RE.DIGIT.test( current ) ) {
number += current;
continue;
}
if ( RE.POINT.test( current ) ) {
number += current;
state = FLOAT;
continue;
}
if ( RE.EXP.test( current ) ) {
state = EXP;
continue;
}
// throw on double signs ("-+1"), but not on sign as separator ("-1-2")
if ( RE.SIGN.test( current )
&& number.length === 1
&& RE.SIGN.test( number[ 0 ] ) ) {
throwSyntaxError( current, i, result );
}
}
// parse decimal part
if ( state === FLOAT ) {
if ( RE.DIGIT.test( current ) ) {
number += current;
continue;
}
if ( RE.EXP.test( current ) ) {
state = EXP;
continue;
}
// throw on double decimal points (e.g. "1..2")
if ( RE.POINT.test( current ) && number[ number.length - 1 ] === '.' ) {
throwSyntaxError( current, i, result );
}
}
// parse exponent part
if ( state === EXP ) {
if ( RE.DIGIT.test( current ) ) {
exponent += current;
continue;
}
if ( RE.SIGN.test( current ) ) {
if ( exponent === '' ) {
exponent += current;
continue;
}
if ( exponent.length === 1 && RE.SIGN.test( exponent ) ) {
throwSyntaxError( current, i, result );
}
}
}
// end of number
if ( RE.WHITESPACE.test( current ) ) {
newNumber();
state = SEP;
seenComma = false;
} else if ( RE.COMMA.test( current ) ) {
newNumber();
state = SEP;
seenComma = true;
} else if ( RE.SIGN.test( current ) ) {
newNumber();
state = INT;
number = current;
} else if ( RE.POINT.test( current ) ) {
newNumber();
state = FLOAT;
number = current;
} else {
throwSyntaxError( current, i, result );
}
}
// add the last number found (if any)
newNumber();
return result;
}
// Units
const units = [ 'mm', 'cm', 'in', 'pt', 'pc', 'px' ];
// Conversion: [ fromUnit ][ toUnit ] (-1 means dpi dependent)
const unitConversion = {
'mm': {
'mm': 1,
'cm': 0.1,
'in': 1 / 25.4,
'pt': 72 / 25.4,
'pc': 6 / 25.4,
'px': - 1
},
'cm': {
'mm': 10,
'cm': 1,
'in': 1 / 2.54,
'pt': 72 / 2.54,
'pc': 6 / 2.54,
'px': - 1
},
'in': {
'mm': 25.4,
'cm': 2.54,
'in': 1,
'pt': 72,
'pc': 6,
'px': - 1
},
'pt': {
'mm': 25.4 / 72,
'cm': 2.54 / 72,
'in': 1 / 72,
'pt': 1,
'pc': 6 / 72,
'px': - 1
},
'pc': {
'mm': 25.4 / 6,
'cm': 2.54 / 6,
'in': 1 / 6,
'pt': 72 / 6,
'pc': 1,
'px': - 1
},
'px': {
'px': 1
}
};
function parseFloatWithUnits( string ) {
let theUnit = 'px';
if ( typeof string === 'string' || string instanceof String ) {
for ( let i = 0, n = units.length; i < n; i ++ ) {
const u = units[ i ];
if ( string.endsWith( u ) ) {
theUnit = u;
string = string.substring( 0, string.length - u.length );
break;
}
}
}
let scale = undefined;
if ( theUnit === 'px' && scope.defaultUnit !== 'px' ) {
// Conversion scale from pixels to inches, then to default units
scale = unitConversion[ 'in' ][ scope.defaultUnit ] / scope.defaultDPI;
} else {
scale = unitConversion[ theUnit ][ scope.defaultUnit ];
if ( scale < 0 ) {
// Conversion scale to pixels
scale = unitConversion[ theUnit ][ 'in' ] * scope.defaultDPI;
}
}
return scale * parseFloat( string );
}
// Transforms
function getNodeTransform( node ) {
if ( ! ( node.hasAttribute( 'transform' ) || ( node.nodeName === 'use' && ( node.hasAttribute( 'x' ) || node.hasAttribute( 'y' ) ) ) ) ) {
return null;
}
const transform = parseNodeTransform( node );
if ( transformStack.length > 0 ) {
transform.premultiply( transformStack[ transformStack.length - 1 ] );
}
currentTransform.copy( transform );
transformStack.push( transform );
return transform;
}
function parseNodeTransform( node ) {
const transform = new Matrix3();
const currentTransform = tempTransform0;
if ( node.nodeName === 'use' && ( node.hasAttribute( 'x' ) || node.hasAttribute( 'y' ) ) ) {
const tx = parseFloatWithUnits( node.getAttribute( 'x' ) );
const ty = parseFloatWithUnits( node.getAttribute( 'y' ) );
transform.translate( tx, ty );
}
if ( node.hasAttribute( 'transform' ) ) {
const transformsTexts = node.getAttribute( 'transform' ).split( ')' );
for ( let tIndex = transformsTexts.length - 1; tIndex >= 0; tIndex -- ) {
const transformText = transformsTexts[ tIndex ].trim();
if ( transformText === '' ) continue;
const openParPos = transformText.indexOf( '(' );
const closeParPos = transformText.length;
if ( openParPos > 0 && openParPos < closeParPos ) {
const transformType = transformText.slice( 0, openParPos );
const array = parseFloats( transformText.slice( openParPos + 1 ) );
currentTransform.identity();
switch ( transformType ) {
case 'translate':
if ( array.length >= 1 ) {
const tx = array[ 0 ];
let ty = 0;
if ( array.length >= 2 ) {
ty = array[ 1 ];
}
currentTransform.translate( tx, ty );
}
break;
case 'rotate':
if ( array.length >= 1 ) {
let angle = 0;
let cx = 0;
let cy = 0;
// Angle
angle = array[ 0 ] * Math.PI / 180;
if ( array.length >= 3 ) {
// Center x, y
cx = array[ 1 ];
cy = array[ 2 ];
}
// Rotate around center (cx, cy)
tempTransform1.makeTranslation( - cx, - cy );
tempTransform2.makeRotation( angle );
tempTransform3.multiplyMatrices( tempTransform2, tempTransform1 );
tempTransform1.makeTranslation( cx, cy );
currentTransform.multiplyMatrices( tempTransform1, tempTransform3 );
}
break;
case 'scale':
if ( array.length >= 1 ) {
const scaleX = array[ 0 ];
let scaleY = scaleX;
if ( array.length >= 2 ) {
scaleY = array[ 1 ];
}
currentTransform.scale( scaleX, scaleY );
}
break;
case 'skewX':
if ( array.length === 1 ) {
currentTransform.set(
1, Math.tan( array[ 0 ] * Math.PI / 180 ), 0,
0, 1, 0,
0, 0, 1
);
}
break;
case 'skewY':
if ( array.length === 1 ) {
currentTransform.set(
1, 0, 0,
Math.tan( array[ 0 ] * Math.PI / 180 ), 1, 0,
0, 0, 1
);
}
break;
case 'matrix':
if ( array.length === 6 ) {
currentTransform.set(
array[ 0 ], array[ 2 ], array[ 4 ],
array[ 1 ], array[ 3 ], array[ 5 ],
0, 0, 1
);
}
break;
}
}
transform.premultiply( currentTransform );
}
}
return transform;
}
function transformPath( path, m ) {
function transfVec2( v2 ) {
tempV3.set( v2.x, v2.y, 1 ).applyMatrix3( m );
v2.set( tempV3.x, tempV3.y );
}
function transfEllipseGeneric( curve ) {
// For math description see:
// https://math.stackexchange.com/questions/4544164
const a = curve.xRadius;
const b = curve.yRadius;
const cosTheta = Math.cos( curve.aRotation );
const sinTheta = Math.sin( curve.aRotation );
const v1 = new Vector3( a * cosTheta, a * sinTheta, 0 );
const v2 = new Vector3( - b * sinTheta, b * cosTheta, 0 );
const f1 = v1.applyMatrix3( m );
const f2 = v2.applyMatrix3( m );
const mF = tempTransform0.set(
f1.x, f2.x, 0,
f1.y, f2.y, 0,
0, 0, 1,
);
const mFInv = tempTransform1.copy( mF ).invert();
const mFInvT = tempTransform2.copy( mFInv ).transpose();
const mQ = mFInvT.multiply( mFInv );
const mQe = mQ.elements;
const ed = eigenDecomposition( mQe[ 0 ], mQe[ 1 ], mQe[ 4 ] );
const rt1sqrt = Math.sqrt( ed.rt1 );
const rt2sqrt = Math.sqrt( ed.rt2 );
curve.xRadius = 1 / rt1sqrt;
curve.yRadius = 1 / rt2sqrt;
curve.aRotation = Math.atan2( ed.sn, ed.cs );
const isFullEllipse =
( curve.aEndAngle - curve.aStartAngle ) % ( 2 * Math.PI ) < Number.EPSILON;
// Do not touch angles of a full ellipse because after transformation they
// would converge to a sinle value effectively removing the whole curve
if ( ! isFullEllipse ) {
const mDsqrt = tempTransform1.set(
rt1sqrt, 0, 0,
0, rt2sqrt, 0,
0, 0, 1,
);
const mRT = tempTransform2.set(
ed.cs, ed.sn, 0,
- ed.sn, ed.cs, 0,
0, 0, 1,
);
const mDRF = mDsqrt.multiply( mRT ).multiply( mF );
const transformAngle = phi => {
const { x: cosR, y: sinR } =
new Vector3( Math.cos( phi ), Math.sin( phi ), 0 ).applyMatrix3( mDRF );
return Math.atan2( sinR, cosR );
};
curve.aStartAngle = transformAngle( curve.aStartAngle );
curve.aEndAngle = transformAngle( curve.aEndAngle );
if ( isTransformFlipped( m ) ) {
curve.aClockwise = ! curve.aClockwise;
}
}
}
function transfEllipseNoSkew( curve ) {
// Faster shortcut if no skew is applied
// (e.g, a euclidean transform of a group containing the ellipse)
const sx = getTransformScaleX( m );
const sy = getTransformScaleY( m );
curve.xRadius *= sx;
curve.yRadius *= sy;
// Extract rotation angle from the matrix of form:
//
// | cosθ sx -sinθ sy |
// | sinθ sx cosθ sy |
//
// Remembering that tanθ = sinθ / cosθ; and that
// `sx`, `sy`, or both might be zero.
const theta =
sx > Number.EPSILON
? Math.atan2( m.elements[ 1 ], m.elements[ 0 ] )
: Math.atan2( - m.elements[ 3 ], m.elements[ 4 ] );
curve.aRotation += theta;
if ( isTransformFlipped( m ) ) {
curve.aStartAngle *= - 1;
curve.aEndAngle *= - 1;
curve.aClockwise = ! curve.aClockwise;
}
}
const subPaths = path.subPaths;
for ( let i = 0, n = subPaths.length; i < n; i ++ ) {
const subPath = subPaths[ i ];
const curves = subPath.curves;
for ( let j = 0; j < curves.length; j ++ ) {
const curve = curves[ j ];
if ( curve.isLineCurve ) {
transfVec2( curve.v1 );
transfVec2( curve.v2 );
} else if ( curve.isCubicBezierCurve ) {
transfVec2( curve.v0 );
transfVec2( curve.v1 );
transfVec2( curve.v2 );
transfVec2( curve.v3 );
} else if ( curve.isQuadraticBezierCurve ) {
transfVec2( curve.v0 );
transfVec2( curve.v1 );
transfVec2( curve.v2 );
} else if ( curve.isEllipseCurve ) {
// Transform ellipse center point
tempV2.set( curve.aX, curve.aY );
transfVec2( tempV2 );
curve.aX = tempV2.x;
curve.aY = tempV2.y;
// Transform ellipse shape parameters
if ( isTransformSkewed( m ) ) {
transfEllipseGeneric( curve );
} else {
transfEllipseNoSkew( curve );
}
}
}
}
}
function isTransformFlipped( m ) {
const te = m.elements;
return te[ 0 ] * te[ 4 ] - te[ 1 ] * te[ 3 ] < 0;
}
function isTransformSkewed( m ) {
const te = m.elements;
const basisDot = te[ 0 ] * te[ 3 ] + te[ 1 ] * te[ 4 ];
// Shortcut for trivial rotations and transformations
if ( basisDot === 0 ) return false;
const sx = getTransformScaleX( m );
const sy = getTransformScaleY( m );
return Math.abs( basisDot / ( sx * sy ) ) > Number.EPSILON;
}
function getTransformScaleX( m ) {
const te = m.elements;
return Math.sqrt( te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] );
}
function getTransformScaleY( m ) {
const te = m.elements;
return Math.sqrt( te[ 3 ] * te[ 3 ] + te[ 4 ] * te[ 4 ] );
}
// Calculates the eigensystem of a real symmetric 2x2 matrix
// [ A B ]
// [ B C ]
// in the form
// [ A B ] = [ cs -sn ] [ rt1 0 ] [ cs sn ]
// [ B C ] [ sn cs ] [ 0 rt2 ] [ -sn cs ]
// where rt1 >= rt2.
//
// Adapted from: https://www.mpi-hd.mpg.de/personalhomes/globes/3x3/index.html
// -> Algorithms for real symmetric matrices -> Analytical (2x2 symmetric)
function eigenDecomposition( A, B, C ) {
let rt1, rt2, cs, sn, t;
const sm = A + C;
const df = A - C;
const rt = Math.sqrt( df * df + 4 * B * B );
if ( sm > 0 ) {
rt1 = 0.5 * ( sm + rt );
t = 1 / rt1;
rt2 = A * t * C - B * t * B;
} else if ( sm < 0 ) {
rt2 = 0.5 * ( sm - rt );
} else {
// This case needs to be treated separately to avoid div by 0
rt1 = 0.5 * rt;
rt2 = - 0.5 * rt;
}
// Calculate eigenvectors
if ( df > 0 ) {
cs = df + rt;
} else {
cs = df - rt;
}
if ( Math.abs( cs ) > 2 * Math.abs( B ) ) {
t = - 2 * B / cs;
sn = 1 / Math.sqrt( 1 + t * t );
cs = t * sn;
} else if ( Math.abs( B ) === 0 ) {
cs = 1;
sn = 0;
} else {
t = - 0.5 * cs / B;
cs = 1 / Math.sqrt( 1 + t * t );
sn = t * cs;
}
if ( df > 0 ) {
t = cs;
cs = - sn;
sn = t;
}
return { rt1, rt2, cs, sn };
}
//
const paths = [];
const stylesheets = {};
const transformStack = [];
const tempTransform0 = new Matrix3();
const tempTransform1 = new Matrix3();
const tempTransform2 = new Matrix3();
const tempTransform3 = new Matrix3();
const tempV2 = new Vector2();
const tempV3 = new Vector3();
const currentTransform = new Matrix3();
const xml = new DOMParser().parseFromString( text, 'image/svg+xml' ); // application/xml
parseNode( xml.documentElement, {
fill: '#000',
fillOpacity: 1,
strokeOpacity: 1,
strokeWidth: 1,
strokeLineJoin: 'miter',
strokeLineCap: 'butt',
strokeMiterLimit: 4
} );
const data = { paths: paths, xml: xml.documentElement };
// console.log( paths );
return data;
}
static createShapes( shapePath ) {
// Param shapePath: a shapepath as returned by the parse function of this class
// Returns Shape object
const BIGNUMBER = 999999999;
const IntersectionLocationType = {
ORIGIN: 0,
DESTINATION: 1,
BETWEEN: 2,
LEFT: 3,
RIGHT: 4,
BEHIND: 5,
BEYOND: 6
};
const classifyResult = {
loc: IntersectionLocationType.ORIGIN,
t: 0
};
function findEdgeIntersection( a0, a1, b0, b1 ) {
const x1 = a0.x;
const x2 = a1.x;
const x3 = b0.x;
const x4 = b1.x;
const y1 = a0.y;
const y2 = a1.y;
const y3 = b0.y;
const y4 = b1.y;
const nom1 = ( x4 - x3 ) * ( y1 - y3 ) - ( y4 - y3 ) * ( x1 - x3 );
const nom2 = ( x2 - x1 ) * ( y1 - y3 ) - ( y2 - y1 ) * ( x1 - x3 );
const denom = ( y4 - y3 ) * ( x2 - x1 ) - ( x4 - x3 ) * ( y2 - y1 );
const t1 = nom1 / denom;
const t2 = nom2 / denom;
if ( ( ( denom === 0 ) && ( nom1 !== 0 ) ) || ( t1 <= 0 ) || ( t1 >= 1 ) || ( t2 < 0 ) || ( t2 > 1 ) ) {
//1. lines are parallel or edges don't intersect
return null;
} else if ( ( nom1 === 0 ) && ( denom === 0 ) ) {
//2. lines are colinear
//check if endpoints of edge2 (b0-b1) lies on edge1 (a0-a1)
for ( let i = 0; i < 2; i ++ ) {
classifyPoint( i === 0 ? b0 : b1, a0, a1 );
//find position of this endpoints relatively to edge1
if ( classifyResult.loc == IntersectionLocationType.ORIGIN ) {
const point = ( i === 0 ? b0 : b1 );
return { x: point.x, y: point.y, t: classifyResult.t };
} else if ( classifyResult.loc == IntersectionLocationType.BETWEEN ) {
const x = + ( ( x1 + classifyResult.t * ( x2 - x1 ) ).toPrecision( 10 ) );
const y = + ( ( y1 + classifyResult.t * ( y2 - y1 ) ).toPrecision( 10 ) );
return { x: x, y: y, t: classifyResult.t, };
}
}
return null;
} else {
//3. edges intersect
for ( let i = 0; i < 2; i ++ ) {
classifyPoint( i === 0 ? b0 : b1, a0, a1 );
if ( classifyResult.loc == IntersectionLocationType.ORIGIN ) {
const point = ( i === 0 ? b0 : b1 );
return { x: point.x, y: point.y, t: classifyResult.t };
}
}
const x = + ( ( x1 + t1 * ( x2 - x1 ) ).toPrecision( 10 ) );
const y = + ( ( y1 + t1 * ( y2 - y1 ) ).toPrecision( 10 ) );
return { x: x, y: y, t: t1 };
}
}
function classifyPoint( p, edgeStart, edgeEnd ) {
const ax = edgeEnd.x - edgeStart.x;
const ay = edgeEnd.y - edgeStart.y;
const bx = p.x - edgeStart.x;
const by = p.y - edgeStart.y;
const sa = ax * by - bx * ay;
if ( ( p.x === edgeStart.x ) && ( p.y === edgeStart.y ) ) {
classifyResult.loc = IntersectionLocationType.ORIGIN;
classifyResult.t = 0;
return;
}
if ( ( p.x === edgeEnd.x ) && ( p.y === edgeEnd.y ) ) {
classifyResult.loc = IntersectionLocationType.DESTINATION;
classifyResult.t = 1;
return;
}
if ( sa < - Number.EPSILON ) {
classifyResult.loc = IntersectionLocationType.LEFT;
return;
}
if ( sa > Number.EPSILON ) {
classifyResult.loc = IntersectionLocationType.RIGHT;
return;
}
if ( ( ( ax * bx ) < 0 ) || ( ( ay * by ) < 0 ) ) {
classifyResult.loc = IntersectionLocationType.BEHIND;
return;
}
if ( ( Math.sqrt( ax * ax + ay * ay ) ) < ( Math.sqrt( bx * bx + by * by ) ) ) {
classifyResult.loc = IntersectionLocationType.BEYOND;
return;
}
let t;
if ( ax !== 0 ) {
t = bx / ax;
} else {
t = by / ay;
}
classifyResult.loc = IntersectionLocationType.BETWEEN;
classifyResult.t = t;
}
function getIntersections( path1, path2 ) {
const intersectionsRaw = [];
const intersections = [];
for ( let index = 1; index < path1.length; index ++ ) {
const path1EdgeStart = path1[ index - 1 ];
const path1EdgeEnd = path1[ index ];
for ( let index2 = 1; index2 < path2.length; index2 ++ ) {
const path2EdgeStart = path2[ index2 - 1 ];
const path2EdgeEnd = path2[ index2 ];
const intersection = findEdgeIntersection( path1EdgeStart, path1EdgeEnd, path2EdgeStart, path2EdgeEnd );
if ( intersection !== null && intersectionsRaw.find( i => i.t <= intersection.t + Number.EPSILON && i.t >= intersection.t - Number.EPSILON ) === undefined ) {
intersectionsRaw.push( intersection );
intersections.push( new Vector2( intersection.x, intersection.y ) );
}
}
}
return intersections;
}
function getScanlineIntersections( scanline, boundingBox, paths ) {
const center = new Vector2();
boundingBox.getCenter( center );
const allIntersections = [];
paths.forEach( path => {
// check if the center of the bounding box is in the bounding box of the paths.
// this is a pruning method to limit the search of intersections in paths that can't envelop of the current path.
// if a path envelops another path. The center of that oter path, has to be inside the bounding box of the enveloping path.
if ( path.boundingBox.containsPoint( center ) ) {
const intersections = getIntersections( scanline, path.points );
intersections.forEach( p => {
allIntersections.push( { identifier: path.identifier, isCW: path.isCW, point: p } );
} );
}
} );
allIntersections.sort( ( i1, i2 ) => {
return i1.point.x - i2.point.x;
} );
return allIntersections;
}
function isHoleTo( simplePath, allPaths, scanlineMinX, scanlineMaxX, _fillRule ) {
if ( _fillRule === null || _fillRule === undefined || _fillRule === '' ) {
_fillRule = 'nonzero';
}
const centerBoundingBox = new Vector2();
simplePath.boundingBox.getCenter( centerBoundingBox );
const scanline = [ new Vector2( scanlineMinX, centerBoundingBox.y ), new Vector2( scanlineMaxX, centerBoundingBox.y ) ];
const scanlineIntersections = getScanlineIntersections( scanline, simplePath.boundingBox, allPaths );
scanlineIntersections.sort( ( i1, i2 ) => {
return i1.point.x - i2.point.x;
} );
const baseIntersections = [];
const otherIntersections = [];
scanlineIntersections.forEach( i => {
if ( i.identifier === simplePath.identifier ) {
baseIntersections.push( i );
} else {
otherIntersections.push( i );
}
} );
const firstXOfPath = baseIntersections[ 0 ].point.x;
// build up the path hierarchy
const stack = [];
let i = 0;
while ( i < otherIntersections.length && otherIntersections[ i ].point.x < firstXOfPath ) {
if ( stack.length > 0 && stack[ stack.length - 1 ] === otherIntersections[ i ].identifier ) {
stack.pop();
} else {
stack.push( otherIntersections[ i ].identifier );
}
i ++;
}
stack.push( simplePath.identifier );
if ( _fillRule === 'evenodd' ) {
const isHole = stack.length % 2 === 0 ? true : false;
const isHoleFor = stack[ stack.length - 2 ];
return { identifier: simplePath.identifier, isHole: isHole, for: isHoleFor };
} else if ( _fillRule === 'nonzero' ) {
// check if path is a hole by counting the amount of paths with alternating rotations it has to cross.
let isHole = true;
let isHoleFor = null;
let lastCWValue = null;
for ( let i = 0; i < stack.length; i ++ ) {
const identifier = stack[ i ];
if ( isHole ) {
lastCWValue = allPaths[ identifier ].isCW;
isHole = false;
isHoleFor = identifier;
} else if ( lastCWValue !== allPaths[ identifier ].isCW ) {
lastCWValue = allPaths[ identifier ].isCW;
isHole = true;
}
}
return { identifier: simplePath.identifier, isHole: isHole, for: isHoleFor };
} else {
console.warn( 'fill-rule: "' + _fillRule + '" is currently not implemented.' );
}
}
// check for self intersecting paths
// TODO
// check intersecting paths
// TODO
// prepare paths for hole detection
let scanlineMinX = BIGNUMBER;
let scanlineMaxX = - BIGNUMBER;
let simplePaths = shapePath.subPaths.map( p => {
const points = p.getPoints();
let maxY = - BIGNUMBER;
let minY = BIGNUMBER;
let maxX = - BIGNUMBER;
let minX = BIGNUMBER;
//points.forEach(p => p.y *= -1);
for ( let i = 0; i < points.length; i ++ ) {
const p = points[ i ];
if ( p.y > maxY ) {
maxY = p.y;
}
if ( p.y < minY ) {
minY = p.y;
}
if ( p.x > maxX ) {
maxX = p.x;
}
if ( p.x < minX ) {
minX = p.x;
}
}
//
if ( scanlineMaxX <= maxX ) {
scanlineMaxX = maxX + 1;
}
if ( scanlineMinX >= minX ) {
scanlineMinX = minX - 1;
}
return { curves: p.curves, points: points, isCW: ShapeUtils.isClockWise( points ), identifier: - 1, boundingBox: new Box2( new Vector2( minX, minY ), new Vector2( maxX, maxY ) ) };
} );
simplePaths = simplePaths.filter( sp => sp.points.length > 1 );
for ( let identifier = 0; identifier < simplePaths.length; identifier ++ ) {
simplePaths[ identifier ].identifier = identifier;
}
// check if path is solid or a hole
const isAHole = simplePaths.map( p => isHoleTo( p, simplePaths, scanlineMinX, scanlineMaxX, ( shapePath.userData ? shapePath.userData.style.fillRule : undefined ) ) );
const shapesToReturn = [];
simplePaths.forEach( p => {
const amIAHole = isAHole[ p.identifier ];
if ( ! amIAHole.isHole ) {
const shape = new Shape();
shape.curves = p.curves;
const holes = isAHole.filter( h => h.isHole && h.for === p.identifier );
holes.forEach( h => {
const hole = simplePaths[ h.identifier ];
const path = new Path();
path.curves = hole.curves;
shape.holes.push( path );
} );
shapesToReturn.push( shape );
}
} );
return shapesToReturn;
}
static getStrokeStyle( width, color, lineJoin, lineCap, miterLimit ) {
// Param width: Stroke width
// Param color: As returned by THREE.Color.getStyle()
// Param lineJoin: One of "round", "bevel", "miter" or "miter-limit"
// Param lineCap: One of "round", "square" or "butt"
// Param miterLimit: Maximum join length, in multiples of the "width" parameter (join is truncated if it exceeds that distance)
// Returns style object
width = width !== undefined ? width : 1;
color = color !== undefined ? color : '#000';
lineJoin = lineJoin !== undefined ? lineJoin : 'miter';
lineCap = lineCap !== undefined ? lineCap : 'butt';
miterLimit = miterLimit !== undefined ? miterLimit : 4;
return {
strokeColor: color,
strokeWidth: width,
strokeLineJoin: lineJoin,
strokeLineCap: lineCap,
strokeMiterLimit: miterLimit
};
}
static pointsToStroke( points, style, arcDivisions, minDistance ) {
// Generates a stroke with some width around the given path.
// The path can be open or closed (last point equals to first point)
// Param points: Array of Vector2D (the path). Minimum 2 points.
// Param style: Object with SVG properties as returned by SVGLoader.getStrokeStyle(), or SVGLoader.parse() in the path.userData.style object
// Params arcDivisions: Arc divisions for round joins and endcaps. (Optional)
// Param minDistance: Points closer to this distance will be merged. (Optional)
// Returns BufferGeometry with stroke triangles (In plane z = 0). UV coordinates are generated ('u' along path. 'v' across it, from left to right)
const vertices = [];
const normals = [];
const uvs = [];
if ( SVGLoader.pointsToStrokeWithBuffers( points, style, arcDivisions, minDistance, vertices, normals, uvs ) === 0 ) {
return null;
}
const geometry = new BufferGeometry();
geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
geometry.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
geometry.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
return geometry;
}
static pointsToStrokeWithBuffers( points, style, arcDivisions, minDistance, vertices, normals, uvs, vertexOffset ) {
// This function can be called to update existing arrays or buffers.
// Accepts same parameters as pointsToStroke, plus the buffers and optional offset.
// Param vertexOffset: Offset vertices to start writing in the buffers (3 elements/vertex for vertices and normals, and 2 elements/vertex for uvs)
// Returns number of written vertices / normals / uvs pairs
// if 'vertices' parameter is undefined no triangles will be generated, but the returned vertices count will still be valid (useful to preallocate the buffers)
// 'normals' and 'uvs' buffers are optional
const tempV2_1 = new Vector2();
const tempV2_2 = new Vector2();
const tempV2_3 = new Vector2();
const tempV2_4 = new Vector2();
const tempV2_5 = new Vector2();
const tempV2_6 = new Vector2();
const tempV2_7 = new Vector2();
const lastPointL = new Vector2();
const lastPointR = new Vector2();
const point0L = new Vector2();
const point0R = new Vector2();
const currentPointL = new Vector2();
const currentPointR = new Vector2();
const nextPointL = new Vector2();
const nextPointR = new Vector2();
const innerPoint = new Vector2();
const outerPoint = new Vector2();
arcDivisions = arcDivisions !== undefined ? arcDivisions : 12;
minDistance = minDistance !== undefined ? minDistance : 0.001;
vertexOffset = vertexOffset !== undefined ? vertexOffset : 0;
// First ensure there are no duplicated points
points = removeDuplicatedPoints( points );
const numPoints = points.length;
if ( numPoints < 2 ) return 0;
const isClosed = points[ 0 ].equals( points[ numPoints - 1 ] );
let currentPoint;
let previousPoint = points[ 0 ];
let nextPoint;
const strokeWidth2 = style.strokeWidth / 2;
const deltaU = 1 / ( numPoints - 1 );
let u0 = 0, u1;
let innerSideModified;
let joinIsOnLeftSide;
let isMiter;
let initialJoinIsOnLeftSide = false;
let numVertices = 0;
let currentCoordinate = vertexOffset * 3;
let currentCoordinateUV = vertexOffset * 2;
// Get initial left and right stroke points
getNormal( points[ 0 ], points[ 1 ], tempV2_1 ).multiplyScalar( strokeWidth2 );
lastPointL.copy( points[ 0 ] ).sub( tempV2_1 );
lastPointR.copy( points[ 0 ] ).add( tempV2_1 );
point0L.copy( lastPointL );
point0R.copy( lastPointR );
for ( let iPoint = 1; iPoint < numPoints; iPoint ++ ) {
currentPoint = points[ iPoint ];
// Get next point
if ( iPoint === numPoints - 1 ) {
if ( isClosed ) {
// Skip duplicated initial point
nextPoint = points[ 1 ];
} else nextPoint = undefined;
} else {
nextPoint = points[ iPoint + 1 ];
}
// Normal of previous segment in tempV2_1
const normal1 = tempV2_1;
getNormal( previousPoint, currentPoint, normal1 );
tempV2_3.copy( normal1 ).multiplyScalar( strokeWidth2 );
currentPointL.copy( currentPoint ).sub( tempV2_3 );
currentPointR.copy( currentPoint ).add( tempV2_3 );
u1 = u0 + deltaU;
innerSideModified = false;
if ( nextPoint !== undefined ) {
// Normal of next segment in tempV2_2
getNormal( currentPoint, nextPoint, tempV2_2 );
tempV2_3.copy( tempV2_2 ).multiplyScalar( strokeWidth2 );
nextPointL.copy( currentPoint ).sub( tempV2_3 );
nextPointR.copy( currentPoint ).add( tempV2_3 );
joinIsOnLeftSide = true;
tempV2_3.subVectors( nextPoint, previousPoint );
if ( normal1.dot( tempV2_3 ) < 0 ) {
joinIsOnLeftSide = false;
}
if ( iPoint === 1 ) initialJoinIsOnLeftSide = joinIsOnLeftSide;
tempV2_3.subVectors( nextPoint, currentPoint );
tempV2_3.normalize();
const dot = Math.abs( normal1.dot( tempV2_3 ) );
// If path is straight, don't create join
if ( dot > Number.EPSILON ) {
// Compute inner and outer segment intersections
const miterSide = strokeWidth2 / dot;
tempV2_3.multiplyScalar( - miterSide );
tempV2_4.subVectors( currentPoint, previousPoint );
tempV2_5.copy( tempV2_4 ).setLength( miterSide ).add( tempV2_3 );
innerPoint.copy( tempV2_5 ).negate();
const miterLength2 = tempV2_5.length();
const segmentLengthPrev = tempV2_4.length();
tempV2_4.divideScalar( segmentLengthPrev );
tempV2_6.subVectors( nextPoint, currentPoint );
const segmentLengthNext = tempV2_6.length();
tempV2_6.divideScalar( segmentLengthNext );
// Check that previous and next segments doesn't overlap with the innerPoint of intersection
if ( tempV2_4.dot( innerPoint ) < segmentLengthPrev && tempV2_6.dot( innerPoint ) < segmentLengthNext ) {
innerSideModified = true;
}
outerPoint.copy( tempV2_5 ).add( currentPoint );
innerPoint.add( currentPoint );
isMiter = false;
if ( innerSideModified ) {
if ( joinIsOnLeftSide ) {
nextPointR.copy( innerPoint );
currentPointR.copy( innerPoint );
} else {
nextPointL.copy( innerPoint );
currentPointL.copy( innerPoint );
}
} else {
// The segment triangles are generated here if there was overlapping
makeSegmentTriangles();
}
switch ( style.strokeLineJoin ) {
case 'bevel':
makeSegmentWithBevelJoin( joinIsOnLeftSide, innerSideModified, u1 );
break;
case 'round':
// Segment triangles
createSegmentTrianglesWithMiddleSection( joinIsOnLeftSide, innerSideModified );
// Join triangles
if ( joinIsOnLeftSide ) {
makeCircularSector( currentPoint, currentPointL, nextPointL, u1, 0 );
} else {
makeCircularSector( currentPoint, nextPointR, currentPointR, u1, 1 );
}
break;
case 'miter':
case 'miter-clip':
default:
const miterFraction = ( strokeWidth2 * style.strokeMiterLimit ) / miterLength2;
if ( miterFraction < 1 ) {
// The join miter length exceeds the miter limit
if ( style.strokeLineJoin !== 'miter-clip' ) {
makeSegmentWithBevelJoin( joinIsOnLeftSide, innerSideModified, u1 );
break;
} else {
// Segment triangles
createSegmentTrianglesWithMiddleSection( joinIsOnLeftSide, innerSideModified );
// Miter-clip join triangles
if ( joinIsOnLeftSide ) {
tempV2_6.subVectors( outerPoint, currentPointL ).multiplyScalar( miterFraction ).add( currentPointL );
tempV2_7.subVectors( outerPoint, nextPointL ).multiplyScalar( miterFraction ).add( nextPointL );
addVertex( currentPointL, u1, 0 );
addVertex( tempV2_6, u1, 0 );
addVertex( currentPoint, u1, 0.5 );
addVertex( currentPoint, u1, 0.5 );
addVertex( tempV2_6, u1, 0 );
addVertex( tempV2_7, u1, 0 );
addVertex( currentPoint, u1, 0.5 );
addVertex( tempV2_7, u1, 0 );
addVertex( nextPointL, u1, 0 );
} else {
tempV2_6.subVectors( outerPoint, currentPointR ).multiplyScalar( miterFraction ).add( currentPointR );
tempV2_7.subVectors( outerPoint, nextPointR ).multiplyScalar( miterFraction ).add( nextPointR );
addVertex( currentPointR, u1, 1 );
addVertex( tempV2_6, u1, 1 );
addVertex( currentPoint, u1, 0.5 );
addVertex( currentPoint, u1, 0.5 );
addVertex( tempV2_6, u1, 1 );
addVertex( tempV2_7, u1, 1 );
addVertex( currentPoint, u1, 0.5 );
addVertex( tempV2_7, u1, 1 );
addVertex( nextPointR, u1, 1 );
}
}
} else {
// Miter join segment triangles
if ( innerSideModified ) {
// Optimized segment + join triangles
if ( joinIsOnLeftSide ) {
addVertex( lastPointR, u0, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( outerPoint, u1, 0 );
addVertex( lastPointR, u0, 1 );
addVertex( outerPoint, u1, 0 );
addVertex( innerPoint, u1, 1 );
} else {
addVertex( lastPointR, u0, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( outerPoint, u1, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( innerPoint, u1, 0 );
addVertex( outerPoint, u1, 1 );
}
if ( joinIsOnLeftSide ) {
nextPointL.copy( outerPoint );
} else {
nextPointR.copy( outerPoint );
}
} else {
// Add extra miter join triangles
if ( joinIsOnLeftSide ) {
addVertex( currentPointL, u1, 0 );
addVertex( outerPoint, u1, 0 );
addVertex( currentPoint, u1, 0.5 );
addVertex( currentPoint, u1, 0.5 );
addVertex( outerPoint, u1, 0 );
addVertex( nextPointL, u1, 0 );
} else {
addVertex( currentPointR, u1, 1 );
addVertex( outerPoint, u1, 1 );
addVertex( currentPoint, u1, 0.5 );
addVertex( currentPoint, u1, 0.5 );
addVertex( outerPoint, u1, 1 );
addVertex( nextPointR, u1, 1 );
}
}
isMiter = true;
}
break;
}
} else {
// The segment triangles are generated here when two consecutive points are collinear
makeSegmentTriangles();
}
} else {
// The segment triangles are generated here if it is the ending segment
makeSegmentTriangles();
}
if ( ! isClosed && iPoint === numPoints - 1 ) {
// Start line endcap
addCapGeometry( points[ 0 ], point0L, point0R, joinIsOnLeftSide, true, u0 );
}
// Increment loop variables
u0 = u1;
previousPoint = currentPoint;
lastPointL.copy( nextPointL );
lastPointR.copy( nextPointR );
}
if ( ! isClosed ) {
// Ending line endcap
addCapGeometry( currentPoint, currentPointL, currentPointR, joinIsOnLeftSide, false, u1 );
} else if ( innerSideModified && vertices ) {
// Modify path first segment vertices to adjust to the segments inner and outer intersections
let lastOuter = outerPoint;
let lastInner = innerPoint;
if ( initialJoinIsOnLeftSide !== joinIsOnLeftSide ) {
lastOuter = innerPoint;
lastInner = outerPoint;
}
if ( joinIsOnLeftSide ) {
if ( isMiter || initialJoinIsOnLeftSide ) {
lastInner.toArray( vertices, 0 * 3 );
lastInner.toArray( vertices, 3 * 3 );
if ( isMiter ) {
lastOuter.toArray( vertices, 1 * 3 );
}
}
} else {
if ( isMiter || ! initialJoinIsOnLeftSide ) {
lastInner.toArray( vertices, 1 * 3 );
lastInner.toArray( vertices, 3 * 3 );
if ( isMiter ) {
lastOuter.toArray( vertices, 0 * 3 );
}
}
}
}
return numVertices;
// -- End of algorithm
// -- Functions
function getNormal( p1, p2, result ) {
result.subVectors( p2, p1 );
return result.set( - result.y, result.x ).normalize();
}
function addVertex( position, u, v ) {
if ( vertices ) {
vertices[ currentCoordinate ] = position.x;
vertices[ currentCoordinate + 1 ] = position.y;
vertices[ currentCoordinate + 2 ] = 0;
if ( normals ) {
normals[ currentCoordinate ] = 0;
normals[ currentCoordinate + 1 ] = 0;
normals[ currentCoordinate + 2 ] = 1;
}
currentCoordinate += 3;
if ( uvs ) {
uvs[ currentCoordinateUV ] = u;
uvs[ currentCoordinateUV + 1 ] = v;
currentCoordinateUV += 2;
}
}
numVertices += 3;
}
function makeCircularSector( center, p1, p2, u, v ) {
// param p1, p2: Points in the circle arc.
// p1 and p2 are in clockwise direction.
tempV2_1.copy( p1 ).sub( center ).normalize();
tempV2_2.copy( p2 ).sub( center ).normalize();
let angle = Math.PI;
const dot = tempV2_1.dot( tempV2_2 );
if ( Math.abs( dot ) < 1 ) angle = Math.abs( Math.acos( dot ) );
angle /= arcDivisions;
tempV2_3.copy( p1 );
for ( let i = 0, il = arcDivisions - 1; i < il; i ++ ) {
tempV2_4.copy( tempV2_3 ).rotateAround( center, angle );
addVertex( tempV2_3, u, v );
addVertex( tempV2_4, u, v );
addVertex( center, u, 0.5 );
tempV2_3.copy( tempV2_4 );
}
addVertex( tempV2_4, u, v );
addVertex( p2, u, v );
addVertex( center, u, 0.5 );
}
function makeSegmentTriangles() {
addVertex( lastPointR, u0, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( currentPointL, u1, 0 );
addVertex( lastPointR, u0, 1 );
addVertex( currentPointL, u1, 0 );
addVertex( currentPointR, u1, 1 );
}
function makeSegmentWithBevelJoin( joinIsOnLeftSide, innerSideModified, u ) {
if ( innerSideModified ) {
// Optimized segment + bevel triangles
if ( joinIsOnLeftSide ) {
// Path segments triangles
addVertex( lastPointR, u0, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( currentPointL, u1, 0 );
addVertex( lastPointR, u0, 1 );
addVertex( currentPointL, u1, 0 );
addVertex( innerPoint, u1, 1 );
// Bevel join triangle
addVertex( currentPointL, u, 0 );
addVertex( nextPointL, u, 0 );
addVertex( innerPoint, u, 0.5 );
} else {
// Path segments triangles
addVertex( lastPointR, u0, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( currentPointR, u1, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( innerPoint, u1, 0 );
addVertex( currentPointR, u1, 1 );
// Bevel join triangle
addVertex( currentPointR, u, 1 );
addVertex( innerPoint, u, 0 );
addVertex( nextPointR, u, 1 );
}
} else {
// Bevel join triangle. The segment triangles are done in the main loop
if ( joinIsOnLeftSide ) {
addVertex( currentPointL, u, 0 );
addVertex( nextPointL, u, 0 );
addVertex( currentPoint, u, 0.5 );
} else {
addVertex( currentPointR, u, 1 );
addVertex( nextPointR, u, 0 );
addVertex( currentPoint, u, 0.5 );
}
}
}
function createSegmentTrianglesWithMiddleSection( joinIsOnLeftSide, innerSideModified ) {
if ( innerSideModified ) {
if ( joinIsOnLeftSide ) {
addVertex( lastPointR, u0, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( currentPointL, u1, 0 );
addVertex( lastPointR, u0, 1 );
addVertex( currentPointL, u1, 0 );
addVertex( innerPoint, u1, 1 );
addVertex( currentPointL, u0, 0 );
addVertex( currentPoint, u1, 0.5 );
addVertex( innerPoint, u1, 1 );
addVertex( currentPoint, u1, 0.5 );
addVertex( nextPointL, u0, 0 );
addVertex( innerPoint, u1, 1 );
} else {
addVertex( lastPointR, u0, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( currentPointR, u1, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( innerPoint, u1, 0 );
addVertex( currentPointR, u1, 1 );
addVertex( currentPointR, u0, 1 );
addVertex( innerPoint, u1, 0 );
addVertex( currentPoint, u1, 0.5 );
addVertex( currentPoint, u1, 0.5 );
addVertex( innerPoint, u1, 0 );
addVertex( nextPointR, u0, 1 );
}
}
}
function addCapGeometry( center, p1, p2, joinIsOnLeftSide, start, u ) {
// param center: End point of the path
// param p1, p2: Left and right cap points
switch ( style.strokeLineCap ) {
case 'round':
if ( start ) {
makeCircularSector( center, p2, p1, u, 0.5 );
} else {
makeCircularSector( center, p1, p2, u, 0.5 );
}
break;
case 'square':
if ( start ) {
tempV2_1.subVectors( p1, center );
tempV2_2.set( tempV2_1.y, - tempV2_1.x );
tempV2_3.addVectors( tempV2_1, tempV2_2 ).add( center );
tempV2_4.subVectors( tempV2_2, tempV2_1 ).add( center );
// Modify already existing vertices
if ( joinIsOnLeftSide ) {
tempV2_3.toArray( vertices, 1 * 3 );
tempV2_4.toArray( vertices, 0 * 3 );
tempV2_4.toArray( vertices, 3 * 3 );
} else {
tempV2_3.toArray( vertices, 1 * 3 );
// using tempV2_4 to update 3rd vertex if the uv.y of 3rd vertex is 1
uvs[ 3 * 2 + 1 ] === 1 ? tempV2_4.toArray( vertices, 3 * 3 ) : tempV2_3.toArray( vertices, 3 * 3 );
tempV2_4.toArray( vertices, 0 * 3 );
}
} else {
tempV2_1.subVectors( p2, center );
tempV2_2.set( tempV2_1.y, - tempV2_1.x );
tempV2_3.addVectors( tempV2_1, tempV2_2 ).add( center );
tempV2_4.subVectors( tempV2_2, tempV2_1 ).add( center );
const vl = vertices.length;
// Modify already existing vertices
if ( joinIsOnLeftSide ) {
tempV2_3.toArray( vertices, vl - 1 * 3 );
tempV2_4.toArray( vertices, vl - 2 * 3 );
tempV2_4.toArray( vertices, vl - 4 * 3 );
} else {
tempV2_4.toArray( vertices, vl - 2 * 3 );
tempV2_3.toArray( vertices, vl - 1 * 3 );
tempV2_4.toArray( vertices, vl - 4 * 3 );
}
}
break;
case 'butt':
default:
// Nothing to do here
break;
}
}
function removeDuplicatedPoints( points ) {
// Creates a new array if necessary with duplicated points removed.
// This does not remove duplicated initial and ending points of a closed path.
let dupPoints = false;
for ( let i = 1, n = points.length - 1; i < n; i ++ ) {
if ( points[ i ].distanceTo( points[ i + 1 ] ) < minDistance ) {
dupPoints = true;
break;
}
}
if ( ! dupPoints ) return points;
const newPoints = [];
newPoints.push( points[ 0 ] );
for ( let i = 1, n = points.length - 1; i < n; i ++ ) {
if ( points[ i ].distanceTo( points[ i + 1 ] ) >= minDistance ) {
newPoints.push( points[ i ] );
}
}
newPoints.push( points[ points.length - 1 ] );
return newPoints;
}
}
}
export { SVGLoader };