animate/webGl/my-threejs-test/node_modules/three/examples/jsm/loaders/MMDLoader.js

2277 lines
51 KiB
JavaScript

import {
AddOperation,
AnimationClip,
Bone,
BufferGeometry,
Color,
CustomBlending,
TangentSpaceNormalMap,
DoubleSide,
DstAlphaFactor,
Euler,
FileLoader,
Float32BufferAttribute,
FrontSide,
Interpolant,
Loader,
LoaderUtils,
UniformsUtils,
ShaderMaterial,
MultiplyOperation,
NearestFilter,
NumberKeyframeTrack,
OneMinusSrcAlphaFactor,
Quaternion,
QuaternionKeyframeTrack,
RepeatWrapping,
Skeleton,
SkinnedMesh,
SrcAlphaFactor,
SRGBColorSpace,
TextureLoader,
Uint16BufferAttribute,
Vector3,
VectorKeyframeTrack,
RGB_S3TC_DXT1_Format,
RGB_PVRTC_4BPPV1_Format,
RGB_PVRTC_2BPPV1_Format,
RGB_ETC1_Format,
RGB_ETC2_Format
} from 'three';
import { MMDToonShader } from '../shaders/MMDToonShader.js';
import { TGALoader } from '../loaders/TGALoader.js';
import { MMDParser } from '../libs/mmdparser.module.js';
/**
* Dependencies
* - mmd-parser https://github.com/takahirox/mmd-parser
* - TGALoader
* - OutlineEffect
*
* MMDLoader creates Three.js Objects from MMD resources as
* PMD, PMX, VMD, and VPD files.
*
* PMD/PMX is a model data format, VMD is a motion data format
* VPD is a posing data format used in MMD(Miku Miku Dance).
*
* MMD official site
* - https://sites.google.com/view/evpvp/
*
* PMD, VMD format (in Japanese)
* - http://blog.goo.ne.jp/torisu_tetosuki/e/209ad341d3ece2b1b4df24abf619d6e4
*
* PMX format
* - https://gist.github.com/felixjones/f8a06bd48f9da9a4539f
*
* TODO
* - light motion in vmd support.
* - SDEF support.
* - uv/material/bone morphing support.
* - more precise grant skinning support.
* - shadow support.
*/
/**
* @param {THREE.LoadingManager} manager
*/
class MMDLoader extends Loader {
constructor( manager ) {
super( manager );
this.loader = new FileLoader( this.manager );
this.parser = null; // lazy generation
this.meshBuilder = new MeshBuilder( this.manager );
this.animationBuilder = new AnimationBuilder();
}
/**
* @param {string} animationPath
* @return {MMDLoader}
*/
setAnimationPath( animationPath ) {
this.animationPath = animationPath;
return this;
}
// Load MMD assets as Three.js Object
/**
* Loads Model file (.pmd or .pmx) as a SkinnedMesh.
*
* @param {string} url - url to Model(.pmd or .pmx) file
* @param {function} onLoad
* @param {function} onProgress
* @param {function} onError
*/
load( url, onLoad, onProgress, onError ) {
const builder = this.meshBuilder.setCrossOrigin( this.crossOrigin );
// resource path
let resourcePath;
if ( this.resourcePath !== '' ) {
resourcePath = this.resourcePath;
} else if ( this.path !== '' ) {
resourcePath = this.path;
} else {
resourcePath = LoaderUtils.extractUrlBase( url );
}
const modelExtension = this._extractExtension( url ).toLowerCase();
// Should I detect by seeing header?
if ( modelExtension !== 'pmd' && modelExtension !== 'pmx' ) {
if ( onError ) onError( new Error( 'THREE.MMDLoader: Unknown model file extension .' + modelExtension + '.' ) );
return;
}
this[ modelExtension === 'pmd' ? 'loadPMD' : 'loadPMX' ]( url, function ( data ) {
onLoad( builder.build( data, resourcePath, onProgress, onError ) );
}, onProgress, onError );
}
/**
* Loads Motion file(s) (.vmd) as a AnimationClip.
* If two or more files are specified, they'll be merged.
*
* @param {string|Array<string>} url - url(s) to animation(.vmd) file(s)
* @param {SkinnedMesh|THREE.Camera} object - tracks will be fitting to this object
* @param {function} onLoad
* @param {function} onProgress
* @param {function} onError
*/
loadAnimation( url, object, onLoad, onProgress, onError ) {
const builder = this.animationBuilder;
this.loadVMD( url, function ( vmd ) {
onLoad( object.isCamera
? builder.buildCameraAnimation( vmd )
: builder.build( vmd, object ) );
}, onProgress, onError );
}
/**
* Loads mode file and motion file(s) as an object containing
* a SkinnedMesh and a AnimationClip.
* Tracks of AnimationClip are fitting to the model.
*
* @param {string} modelUrl - url to Model(.pmd or .pmx) file
* @param {string|Array{string}} vmdUrl - url(s) to animation(.vmd) file
* @param {function} onLoad
* @param {function} onProgress
* @param {function} onError
*/
loadWithAnimation( modelUrl, vmdUrl, onLoad, onProgress, onError ) {
const scope = this;
this.load( modelUrl, function ( mesh ) {
scope.loadAnimation( vmdUrl, mesh, function ( animation ) {
onLoad( {
mesh: mesh,
animation: animation
} );
}, onProgress, onError );
}, onProgress, onError );
}
// Load MMD assets as Object data parsed by MMDParser
/**
* Loads .pmd file as an Object.
*
* @param {string} url - url to .pmd file
* @param {function} onLoad
* @param {function} onProgress
* @param {function} onError
*/
loadPMD( url, onLoad, onProgress, onError ) {
const parser = this._getParser();
this.loader
.setMimeType( undefined )
.setPath( this.path )
.setResponseType( 'arraybuffer' )
.setRequestHeader( this.requestHeader )
.setWithCredentials( this.withCredentials )
.load( url, function ( buffer ) {
try {
onLoad( parser.parsePmd( buffer, true ) );
} catch ( e ) {
if ( onError ) onError( e );
}
}, onProgress, onError );
}
/**
* Loads .pmx file as an Object.
*
* @param {string} url - url to .pmx file
* @param {function} onLoad
* @param {function} onProgress
* @param {function} onError
*/
loadPMX( url, onLoad, onProgress, onError ) {
const parser = this._getParser();
this.loader
.setMimeType( undefined )
.setPath( this.path )
.setResponseType( 'arraybuffer' )
.setRequestHeader( this.requestHeader )
.setWithCredentials( this.withCredentials )
.load( url, function ( buffer ) {
try {
onLoad( parser.parsePmx( buffer, true ) );
} catch ( e ) {
if ( onError ) onError( e );
}
}, onProgress, onError );
}
/**
* Loads .vmd file as an Object. If two or more files are specified
* they'll be merged.
*
* @param {string|Array<string>} url - url(s) to .vmd file(s)
* @param {function} onLoad
* @param {function} onProgress
* @param {function} onError
*/
loadVMD( url, onLoad, onProgress, onError ) {
const urls = Array.isArray( url ) ? url : [ url ];
const vmds = [];
const vmdNum = urls.length;
const parser = this._getParser();
this.loader
.setMimeType( undefined )
.setPath( this.animationPath )
.setResponseType( 'arraybuffer' )
.setRequestHeader( this.requestHeader )
.setWithCredentials( this.withCredentials );
for ( let i = 0, il = urls.length; i < il; i ++ ) {
this.loader.load( urls[ i ], function ( buffer ) {
try {
vmds.push( parser.parseVmd( buffer, true ) );
if ( vmds.length === vmdNum ) onLoad( parser.mergeVmds( vmds ) );
} catch ( e ) {
if ( onError ) onError( e );
}
}, onProgress, onError );
}
}
/**
* Loads .vpd file as an Object.
*
* @param {string} url - url to .vpd file
* @param {boolean} isUnicode
* @param {function} onLoad
* @param {function} onProgress
* @param {function} onError
*/
loadVPD( url, isUnicode, onLoad, onProgress, onError ) {
const parser = this._getParser();
this.loader
.setMimeType( isUnicode ? undefined : 'text/plain; charset=shift_jis' )
.setPath( this.animationPath )
.setResponseType( 'text' )
.setRequestHeader( this.requestHeader )
.setWithCredentials( this.withCredentials )
.load( url, function ( text ) {
try {
onLoad( parser.parseVpd( text, true ) );
} catch ( e ) {
if ( onError ) onError( e );
}
}, onProgress, onError );
}
// private methods
_extractExtension( url ) {
const index = url.lastIndexOf( '.' );
return index < 0 ? '' : url.slice( index + 1 );
}
_getParser() {
if ( this.parser === null ) {
this.parser = new MMDParser.Parser();
}
return this.parser;
}
}
// Utilities
/*
* base64 encoded defalut toon textures toon00.bmp - toon10.bmp.
* We don't need to request external toon image files.
*/
const DEFAULT_TOON_TEXTURES = [
'',
'',
'',
'',
'',
'',
'',
'',
'',
'',
''
];
const NON_ALPHA_CHANNEL_FORMATS = [
RGB_S3TC_DXT1_Format,
RGB_PVRTC_4BPPV1_Format,
RGB_PVRTC_2BPPV1_Format,
RGB_ETC1_Format,
RGB_ETC2_Format
];
// Builders. They build Three.js object from Object data parsed by MMDParser.
/**
* @param {THREE.LoadingManager} manager
*/
class MeshBuilder {
constructor( manager ) {
this.crossOrigin = 'anonymous';
this.geometryBuilder = new GeometryBuilder();
this.materialBuilder = new MaterialBuilder( manager );
}
/**
* @param {string} crossOrigin
* @return {MeshBuilder}
*/
setCrossOrigin( crossOrigin ) {
this.crossOrigin = crossOrigin;
return this;
}
/**
* @param {Object} data - parsed PMD/PMX data
* @param {string} resourcePath
* @param {function} onProgress
* @param {function} onError
* @return {SkinnedMesh}
*/
build( data, resourcePath, onProgress, onError ) {
const geometry = this.geometryBuilder.build( data );
const material = this.materialBuilder
.setCrossOrigin( this.crossOrigin )
.setResourcePath( resourcePath )
.build( data, geometry, onProgress, onError );
const mesh = new SkinnedMesh( geometry, material );
const skeleton = new Skeleton( initBones( mesh ) );
mesh.bind( skeleton );
// console.log( mesh ); // for console debug
return mesh;
}
}
// TODO: Try to remove this function
function initBones( mesh ) {
const geometry = mesh.geometry;
const bones = [];
if ( geometry && geometry.bones !== undefined ) {
// first, create array of 'Bone' objects from geometry data
for ( let i = 0, il = geometry.bones.length; i < il; i ++ ) {
const gbone = geometry.bones[ i ];
// create new 'Bone' object
const bone = new Bone();
bones.push( bone );
// apply values
bone.name = gbone.name;
bone.position.fromArray( gbone.pos );
bone.quaternion.fromArray( gbone.rotq );
if ( gbone.scl !== undefined ) bone.scale.fromArray( gbone.scl );
}
// second, create bone hierarchy
for ( let i = 0, il = geometry.bones.length; i < il; i ++ ) {
const gbone = geometry.bones[ i ];
if ( ( gbone.parent !== - 1 ) && ( gbone.parent !== null ) && ( bones[ gbone.parent ] !== undefined ) ) {
// subsequent bones in the hierarchy
bones[ gbone.parent ].add( bones[ i ] );
} else {
// topmost bone, immediate child of the skinned mesh
mesh.add( bones[ i ] );
}
}
}
// now the bones are part of the scene graph and children of the skinned mesh.
// let's update the corresponding matrices
mesh.updateMatrixWorld( true );
return bones;
}
//
class GeometryBuilder {
/**
* @param {Object} data - parsed PMD/PMX data
* @return {BufferGeometry}
*/
build( data ) {
// for geometry
const positions = [];
const uvs = [];
const normals = [];
const indices = [];
const groups = [];
const bones = [];
const skinIndices = [];
const skinWeights = [];
const morphTargets = [];
const morphPositions = [];
const iks = [];
const grants = [];
const rigidBodies = [];
const constraints = [];
// for work
let offset = 0;
const boneTypeTable = {};
// positions, normals, uvs, skinIndices, skinWeights
for ( let i = 0; i < data.metadata.vertexCount; i ++ ) {
const v = data.vertices[ i ];
for ( let j = 0, jl = v.position.length; j < jl; j ++ ) {
positions.push( v.position[ j ] );
}
for ( let j = 0, jl = v.normal.length; j < jl; j ++ ) {
normals.push( v.normal[ j ] );
}
for ( let j = 0, jl = v.uv.length; j < jl; j ++ ) {
uvs.push( v.uv[ j ] );
}
for ( let j = 0; j < 4; j ++ ) {
skinIndices.push( v.skinIndices.length - 1 >= j ? v.skinIndices[ j ] : 0.0 );
}
for ( let j = 0; j < 4; j ++ ) {
skinWeights.push( v.skinWeights.length - 1 >= j ? v.skinWeights[ j ] : 0.0 );
}
}
// indices
for ( let i = 0; i < data.metadata.faceCount; i ++ ) {
const face = data.faces[ i ];
for ( let j = 0, jl = face.indices.length; j < jl; j ++ ) {
indices.push( face.indices[ j ] );
}
}
// groups
for ( let i = 0; i < data.metadata.materialCount; i ++ ) {
const material = data.materials[ i ];
groups.push( {
offset: offset * 3,
count: material.faceCount * 3
} );
offset += material.faceCount;
}
// bones
for ( let i = 0; i < data.metadata.rigidBodyCount; i ++ ) {
const body = data.rigidBodies[ i ];
let value = boneTypeTable[ body.boneIndex ];
// keeps greater number if already value is set without any special reasons
value = value === undefined ? body.type : Math.max( body.type, value );
boneTypeTable[ body.boneIndex ] = value;
}
for ( let i = 0; i < data.metadata.boneCount; i ++ ) {
const boneData = data.bones[ i ];
const bone = {
index: i,
transformationClass: boneData.transformationClass,
parent: boneData.parentIndex,
name: boneData.name,
pos: boneData.position.slice( 0, 3 ),
rotq: [ 0, 0, 0, 1 ],
scl: [ 1, 1, 1 ],
rigidBodyType: boneTypeTable[ i ] !== undefined ? boneTypeTable[ i ] : - 1
};
if ( bone.parent !== - 1 ) {
bone.pos[ 0 ] -= data.bones[ bone.parent ].position[ 0 ];
bone.pos[ 1 ] -= data.bones[ bone.parent ].position[ 1 ];
bone.pos[ 2 ] -= data.bones[ bone.parent ].position[ 2 ];
}
bones.push( bone );
}
// iks
// TODO: remove duplicated codes between PMD and PMX
if ( data.metadata.format === 'pmd' ) {
for ( let i = 0; i < data.metadata.ikCount; i ++ ) {
const ik = data.iks[ i ];
const param = {
target: ik.target,
effector: ik.effector,
iteration: ik.iteration,
maxAngle: ik.maxAngle * 4,
links: []
};
for ( let j = 0, jl = ik.links.length; j < jl; j ++ ) {
const link = {};
link.index = ik.links[ j ].index;
link.enabled = true;
if ( data.bones[ link.index ].name.indexOf( 'ひざ' ) >= 0 ) {
link.limitation = new Vector3( 1.0, 0.0, 0.0 );
}
param.links.push( link );
}
iks.push( param );
}
} else {
for ( let i = 0; i < data.metadata.boneCount; i ++ ) {
const ik = data.bones[ i ].ik;
if ( ik === undefined ) continue;
const param = {
target: i,
effector: ik.effector,
iteration: ik.iteration,
maxAngle: ik.maxAngle,
links: []
};
for ( let j = 0, jl = ik.links.length; j < jl; j ++ ) {
const link = {};
link.index = ik.links[ j ].index;
link.enabled = true;
if ( ik.links[ j ].angleLimitation === 1 ) {
// Revert if rotationMin/Max doesn't work well
// link.limitation = new Vector3( 1.0, 0.0, 0.0 );
const rotationMin = ik.links[ j ].lowerLimitationAngle;
const rotationMax = ik.links[ j ].upperLimitationAngle;
// Convert Left to Right coordinate by myself because
// MMDParser doesn't convert. It's a MMDParser's bug
const tmp1 = - rotationMax[ 0 ];
const tmp2 = - rotationMax[ 1 ];
rotationMax[ 0 ] = - rotationMin[ 0 ];
rotationMax[ 1 ] = - rotationMin[ 1 ];
rotationMin[ 0 ] = tmp1;
rotationMin[ 1 ] = tmp2;
link.rotationMin = new Vector3().fromArray( rotationMin );
link.rotationMax = new Vector3().fromArray( rotationMax );
}
param.links.push( link );
}
iks.push( param );
// Save the reference even from bone data for efficiently
// simulating PMX animation system
bones[ i ].ik = param;
}
}
// grants
if ( data.metadata.format === 'pmx' ) {
// bone index -> grant entry map
const grantEntryMap = {};
for ( let i = 0; i < data.metadata.boneCount; i ++ ) {
const boneData = data.bones[ i ];
const grant = boneData.grant;
if ( grant === undefined ) continue;
const param = {
index: i,
parentIndex: grant.parentIndex,
ratio: grant.ratio,
isLocal: grant.isLocal,
affectRotation: grant.affectRotation,
affectPosition: grant.affectPosition,
transformationClass: boneData.transformationClass
};
grantEntryMap[ i ] = { parent: null, children: [], param: param, visited: false };
}
const rootEntry = { parent: null, children: [], param: null, visited: false };
// Build a tree representing grant hierarchy
for ( const boneIndex in grantEntryMap ) {
const grantEntry = grantEntryMap[ boneIndex ];
const parentGrantEntry = grantEntryMap[ grantEntry.parentIndex ] || rootEntry;
grantEntry.parent = parentGrantEntry;
parentGrantEntry.children.push( grantEntry );
}
// Sort grant parameters from parents to children because
// grant uses parent's transform that parent's grant is already applied
// so grant should be applied in order from parents to children
function traverse( entry ) {
if ( entry.param ) {
grants.push( entry.param );
// Save the reference even from bone data for efficiently
// simulating PMX animation system
bones[ entry.param.index ].grant = entry.param;
}
entry.visited = true;
for ( let i = 0, il = entry.children.length; i < il; i ++ ) {
const child = entry.children[ i ];
// Cut off a loop if exists. (Is a grant loop invalid?)
if ( ! child.visited ) traverse( child );
}
}
traverse( rootEntry );
}
// morph
function updateAttributes( attribute, morph, ratio ) {
for ( let i = 0; i < morph.elementCount; i ++ ) {
const element = morph.elements[ i ];
let index;
if ( data.metadata.format === 'pmd' ) {
index = data.morphs[ 0 ].elements[ element.index ].index;
} else {
index = element.index;
}
attribute.array[ index * 3 + 0 ] += element.position[ 0 ] * ratio;
attribute.array[ index * 3 + 1 ] += element.position[ 1 ] * ratio;
attribute.array[ index * 3 + 2 ] += element.position[ 2 ] * ratio;
}
}
for ( let i = 0; i < data.metadata.morphCount; i ++ ) {
const morph = data.morphs[ i ];
const params = { name: morph.name };
const attribute = new Float32BufferAttribute( data.metadata.vertexCount * 3, 3 );
attribute.name = morph.name;
for ( let j = 0; j < data.metadata.vertexCount * 3; j ++ ) {
attribute.array[ j ] = positions[ j ];
}
if ( data.metadata.format === 'pmd' ) {
if ( i !== 0 ) {
updateAttributes( attribute, morph, 1.0 );
}
} else {
if ( morph.type === 0 ) { // group
for ( let j = 0; j < morph.elementCount; j ++ ) {
const morph2 = data.morphs[ morph.elements[ j ].index ];
const ratio = morph.elements[ j ].ratio;
if ( morph2.type === 1 ) {
updateAttributes( attribute, morph2, ratio );
} else {
// TODO: implement
}
}
} else if ( morph.type === 1 ) { // vertex
updateAttributes( attribute, morph, 1.0 );
} else if ( morph.type === 2 ) { // bone
// TODO: implement
} else if ( morph.type === 3 ) { // uv
// TODO: implement
} else if ( morph.type === 4 ) { // additional uv1
// TODO: implement
} else if ( morph.type === 5 ) { // additional uv2
// TODO: implement
} else if ( morph.type === 6 ) { // additional uv3
// TODO: implement
} else if ( morph.type === 7 ) { // additional uv4
// TODO: implement
} else if ( morph.type === 8 ) { // material
// TODO: implement
}
}
morphTargets.push( params );
morphPositions.push( attribute );
}
// rigid bodies from rigidBodies field.
for ( let i = 0; i < data.metadata.rigidBodyCount; i ++ ) {
const rigidBody = data.rigidBodies[ i ];
const params = {};
for ( const key in rigidBody ) {
params[ key ] = rigidBody[ key ];
}
/*
* RigidBody position parameter in PMX seems global position
* while the one in PMD seems offset from corresponding bone.
* So unify being offset.
*/
if ( data.metadata.format === 'pmx' ) {
if ( params.boneIndex !== - 1 ) {
const bone = data.bones[ params.boneIndex ];
params.position[ 0 ] -= bone.position[ 0 ];
params.position[ 1 ] -= bone.position[ 1 ];
params.position[ 2 ] -= bone.position[ 2 ];
}
}
rigidBodies.push( params );
}
// constraints from constraints field.
for ( let i = 0; i < data.metadata.constraintCount; i ++ ) {
const constraint = data.constraints[ i ];
const params = {};
for ( const key in constraint ) {
params[ key ] = constraint[ key ];
}
const bodyA = rigidBodies[ params.rigidBodyIndex1 ];
const bodyB = rigidBodies[ params.rigidBodyIndex2 ];
// Refer to http://www20.atpages.jp/katwat/wp/?p=4135
if ( bodyA.type !== 0 && bodyB.type === 2 ) {
if ( bodyA.boneIndex !== - 1 && bodyB.boneIndex !== - 1 &&
data.bones[ bodyB.boneIndex ].parentIndex === bodyA.boneIndex ) {
bodyB.type = 1;
}
}
constraints.push( params );
}
// build BufferGeometry.
const geometry = new BufferGeometry();
geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );
geometry.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
geometry.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
geometry.setAttribute( 'skinIndex', new Uint16BufferAttribute( skinIndices, 4 ) );
geometry.setAttribute( 'skinWeight', new Float32BufferAttribute( skinWeights, 4 ) );
geometry.setIndex( indices );
for ( let i = 0, il = groups.length; i < il; i ++ ) {
geometry.addGroup( groups[ i ].offset, groups[ i ].count, i );
}
geometry.bones = bones;
geometry.morphTargets = morphTargets;
geometry.morphAttributes.position = morphPositions;
geometry.morphTargetsRelative = false;
geometry.userData.MMD = {
bones: bones,
iks: iks,
grants: grants,
rigidBodies: rigidBodies,
constraints: constraints,
format: data.metadata.format
};
geometry.computeBoundingSphere();
return geometry;
}
}
//
/**
* @param {THREE.LoadingManager} manager
*/
class MaterialBuilder {
constructor( manager ) {
this.manager = manager;
this.textureLoader = new TextureLoader( this.manager );
this.tgaLoader = null; // lazy generation
this.crossOrigin = 'anonymous';
this.resourcePath = undefined;
}
/**
* @param {string} crossOrigin
* @return {MaterialBuilder}
*/
setCrossOrigin( crossOrigin ) {
this.crossOrigin = crossOrigin;
return this;
}
/**
* @param {string} resourcePath
* @return {MaterialBuilder}
*/
setResourcePath( resourcePath ) {
this.resourcePath = resourcePath;
return this;
}
/**
* @param {Object} data - parsed PMD/PMX data
* @param {BufferGeometry} geometry - some properties are dependend on geometry
* @param {function} onProgress
* @param {function} onError
* @return {Array<MMDToonMaterial>}
*/
build( data, geometry /*, onProgress, onError */ ) {
const materials = [];
const textures = {};
this.textureLoader.setCrossOrigin( this.crossOrigin );
// materials
for ( let i = 0; i < data.metadata.materialCount; i ++ ) {
const material = data.materials[ i ];
const params = { userData: { MMD: {} } };
if ( material.name !== undefined ) params.name = material.name;
/*
* Color
*
* MMD MMDToonMaterial
* ambient - emissive * a
* (a = 1.0 without map texture or 0.2 with map texture)
*
* MMDToonMaterial doesn't have ambient. Set it to emissive instead.
* It'll be too bright if material has map texture so using coef 0.2.
*/
params.diffuse = new Color().setRGB(
material.diffuse[ 0 ],
material.diffuse[ 1 ],
material.diffuse[ 2 ],
SRGBColorSpace
);
params.opacity = material.diffuse[ 3 ];
params.specular = new Color().setRGB( ...material.specular, SRGBColorSpace );
params.shininess = material.shininess;
params.emissive = new Color().setRGB( ...material.ambient, SRGBColorSpace );
params.transparent = params.opacity !== 1.0;
//
params.fog = true;
// blend
params.blending = CustomBlending;
params.blendSrc = SrcAlphaFactor;
params.blendDst = OneMinusSrcAlphaFactor;
params.blendSrcAlpha = SrcAlphaFactor;
params.blendDstAlpha = DstAlphaFactor;
// side
if ( data.metadata.format === 'pmx' && ( material.flag & 0x1 ) === 1 ) {
params.side = DoubleSide;
} else {
params.side = params.opacity === 1.0 ? FrontSide : DoubleSide;
}
if ( data.metadata.format === 'pmd' ) {
// map, matcap
if ( material.fileName ) {
const fileName = material.fileName;
const fileNames = fileName.split( '*' );
// fileNames[ 0 ]: mapFileName
// fileNames[ 1 ]: matcapFileName( optional )
params.map = this._loadTexture( fileNames[ 0 ], textures );
if ( fileNames.length > 1 ) {
const extension = fileNames[ 1 ].slice( - 4 ).toLowerCase();
params.matcap = this._loadTexture(
fileNames[ 1 ],
textures
);
params.matcapCombine = extension === '.sph'
? MultiplyOperation
: AddOperation;
}
}
// gradientMap
const toonFileName = ( material.toonIndex === - 1 )
? 'toon00.bmp'
: data.toonTextures[ material.toonIndex ].fileName;
params.gradientMap = this._loadTexture(
toonFileName,
textures,
{
isToonTexture: true,
isDefaultToonTexture: this._isDefaultToonTexture( toonFileName )
}
);
// parameters for OutlineEffect
params.userData.outlineParameters = {
thickness: material.edgeFlag === 1 ? 0.003 : 0.0,
color: [ 0, 0, 0 ],
alpha: 1.0,
visible: material.edgeFlag === 1
};
} else {
// map
if ( material.textureIndex !== - 1 ) {
params.map = this._loadTexture( data.textures[ material.textureIndex ], textures );
// Since PMX spec don't have standard to list map files except color map and env map,
// we need to save file name for further mapping, like matching normal map file names after model loaded.
// ref: https://gist.github.com/felixjones/f8a06bd48f9da9a4539f#texture
params.userData.MMD.mapFileName = data.textures[ material.textureIndex ];
}
// matcap TODO: support m.envFlag === 3
if ( material.envTextureIndex !== - 1 && ( material.envFlag === 1 || material.envFlag == 2 ) ) {
params.matcap = this._loadTexture(
data.textures[ material.envTextureIndex ],
textures
);
// Same as color map above, keep file name in userData for further usage.
params.userData.MMD.matcapFileName = data.textures[ material.envTextureIndex ];
params.matcapCombine = material.envFlag === 1
? MultiplyOperation
: AddOperation;
}
// gradientMap
let toonFileName, isDefaultToon;
if ( material.toonIndex === - 1 || material.toonFlag !== 0 ) {
toonFileName = 'toon' + ( '0' + ( material.toonIndex + 1 ) ).slice( - 2 ) + '.bmp';
isDefaultToon = true;
} else {
toonFileName = data.textures[ material.toonIndex ];
isDefaultToon = false;
}
params.gradientMap = this._loadTexture(
toonFileName,
textures,
{
isToonTexture: true,
isDefaultToonTexture: isDefaultToon
}
);
// parameters for OutlineEffect
params.userData.outlineParameters = {
thickness: material.edgeSize / 300, // TODO: better calculation?
color: material.edgeColor.slice( 0, 3 ),
alpha: material.edgeColor[ 3 ],
visible: ( material.flag & 0x10 ) !== 0 && material.edgeSize > 0.0
};
}
if ( params.map !== undefined ) {
if ( ! params.transparent ) {
this._checkImageTransparency( params.map, geometry, i );
}
params.emissive.multiplyScalar( 0.2 );
}
materials.push( new MMDToonMaterial( params ) );
}
if ( data.metadata.format === 'pmx' ) {
// set transparent true if alpha morph is defined.
function checkAlphaMorph( elements, materials ) {
for ( let i = 0, il = elements.length; i < il; i ++ ) {
const element = elements[ i ];
if ( element.index === - 1 ) continue;
const material = materials[ element.index ];
if ( material.opacity !== element.diffuse[ 3 ] ) {
material.transparent = true;
}
}
}
for ( let i = 0, il = data.morphs.length; i < il; i ++ ) {
const morph = data.morphs[ i ];
const elements = morph.elements;
if ( morph.type === 0 ) {
for ( let j = 0, jl = elements.length; j < jl; j ++ ) {
const morph2 = data.morphs[ elements[ j ].index ];
if ( morph2.type !== 8 ) continue;
checkAlphaMorph( morph2.elements, materials );
}
} else if ( morph.type === 8 ) {
checkAlphaMorph( elements, materials );
}
}
}
return materials;
}
// private methods
_getTGALoader() {
if ( this.tgaLoader === null ) {
if ( TGALoader === undefined ) {
throw new Error( 'THREE.MMDLoader: Import TGALoader' );
}
this.tgaLoader = new TGALoader( this.manager );
}
return this.tgaLoader;
}
_isDefaultToonTexture( name ) {
if ( name.length !== 10 ) return false;
return /toon(10|0[0-9])\.bmp/.test( name );
}
_loadTexture( filePath, textures, params, onProgress, onError ) {
params = params || {};
const scope = this;
let fullPath;
if ( params.isDefaultToonTexture === true ) {
let index;
try {
index = parseInt( filePath.match( /toon([0-9]{2})\.bmp$/ )[ 1 ] );
} catch ( e ) {
console.warn( 'THREE.MMDLoader: ' + filePath + ' seems like a '
+ 'not right default texture path. Using toon00.bmp instead.' );
index = 0;
}
fullPath = DEFAULT_TOON_TEXTURES[ index ];
} else {
fullPath = this.resourcePath + filePath;
}
if ( textures[ fullPath ] !== undefined ) return textures[ fullPath ];
let loader = this.manager.getHandler( fullPath );
if ( loader === null ) {
loader = ( filePath.slice( - 4 ).toLowerCase() === '.tga' )
? this._getTGALoader()
: this.textureLoader;
}
const texture = loader.load( fullPath, function ( t ) {
// MMD toon texture is Axis-Y oriented
// but Three.js gradient map is Axis-X oriented.
// So here replaces the toon texture image with the rotated one.
if ( params.isToonTexture === true ) {
t.image = scope._getRotatedImage( t.image );
t.magFilter = NearestFilter;
t.minFilter = NearestFilter;
}
t.flipY = false;
t.wrapS = RepeatWrapping;
t.wrapT = RepeatWrapping;
t.colorSpace = SRGBColorSpace;
for ( let i = 0; i < texture.readyCallbacks.length; i ++ ) {
texture.readyCallbacks[ i ]( texture );
}
delete texture.readyCallbacks;
}, onProgress, onError );
texture.readyCallbacks = [];
textures[ fullPath ] = texture;
return texture;
}
_getRotatedImage( image ) {
const canvas = document.createElement( 'canvas' );
const context = canvas.getContext( '2d' );
const width = image.width;
const height = image.height;
canvas.width = width;
canvas.height = height;
context.clearRect( 0, 0, width, height );
context.translate( width / 2.0, height / 2.0 );
context.rotate( 0.5 * Math.PI ); // 90.0 * Math.PI / 180.0
context.translate( - width / 2.0, - height / 2.0 );
context.drawImage( image, 0, 0 );
return context.getImageData( 0, 0, width, height );
}
// Check if the partial image area used by the texture is transparent.
_checkImageTransparency( map, geometry, groupIndex ) {
map.readyCallbacks.push( function ( texture ) {
// Is there any efficient ways?
function createImageData( image ) {
const canvas = document.createElement( 'canvas' );
canvas.width = image.width;
canvas.height = image.height;
const context = canvas.getContext( '2d' );
context.drawImage( image, 0, 0 );
return context.getImageData( 0, 0, canvas.width, canvas.height );
}
function detectImageTransparency( image, uvs, indices ) {
const width = image.width;
const height = image.height;
const data = image.data;
const threshold = 253;
if ( data.length / ( width * height ) !== 4 ) return false;
for ( let i = 0; i < indices.length; i += 3 ) {
const centerUV = { x: 0.0, y: 0.0 };
for ( let j = 0; j < 3; j ++ ) {
const index = indices[ i * 3 + j ];
const uv = { x: uvs[ index * 2 + 0 ], y: uvs[ index * 2 + 1 ] };
if ( getAlphaByUv( image, uv ) < threshold ) return true;
centerUV.x += uv.x;
centerUV.y += uv.y;
}
centerUV.x /= 3;
centerUV.y /= 3;
if ( getAlphaByUv( image, centerUV ) < threshold ) return true;
}
return false;
}
/*
* This method expects
* texture.flipY = false
* texture.wrapS = RepeatWrapping
* texture.wrapT = RepeatWrapping
* TODO: more precise
*/
function getAlphaByUv( image, uv ) {
const width = image.width;
const height = image.height;
let x = Math.round( uv.x * width ) % width;
let y = Math.round( uv.y * height ) % height;
if ( x < 0 ) x += width;
if ( y < 0 ) y += height;
const index = y * width + x;
return image.data[ index * 4 + 3 ];
}
if ( texture.isCompressedTexture === true ) {
if ( NON_ALPHA_CHANNEL_FORMATS.includes( texture.format ) ) {
map.transparent = false;
} else {
// any other way to check transparency of CompressedTexture?
map.transparent = true;
}
return;
}
const imageData = texture.image.data !== undefined
? texture.image
: createImageData( texture.image );
const group = geometry.groups[ groupIndex ];
if ( detectImageTransparency(
imageData,
geometry.attributes.uv.array,
geometry.index.array.slice( group.start, group.start + group.count ) ) ) {
map.transparent = true;
}
} );
}
}
//
class AnimationBuilder {
/**
* @param {Object} vmd - parsed VMD data
* @param {SkinnedMesh} mesh - tracks will be fitting to mesh
* @return {AnimationClip}
*/
build( vmd, mesh ) {
// combine skeletal and morph animations
const tracks = this.buildSkeletalAnimation( vmd, mesh ).tracks;
const tracks2 = this.buildMorphAnimation( vmd, mesh ).tracks;
for ( let i = 0, il = tracks2.length; i < il; i ++ ) {
tracks.push( tracks2[ i ] );
}
return new AnimationClip( '', - 1, tracks );
}
/**
* @param {Object} vmd - parsed VMD data
* @param {SkinnedMesh} mesh - tracks will be fitting to mesh
* @return {AnimationClip}
*/
buildSkeletalAnimation( vmd, mesh ) {
function pushInterpolation( array, interpolation, index ) {
array.push( interpolation[ index + 0 ] / 127 ); // x1
array.push( interpolation[ index + 8 ] / 127 ); // x2
array.push( interpolation[ index + 4 ] / 127 ); // y1
array.push( interpolation[ index + 12 ] / 127 ); // y2
}
const tracks = [];
const motions = {};
const bones = mesh.skeleton.bones;
const boneNameDictionary = {};
for ( let i = 0, il = bones.length; i < il; i ++ ) {
boneNameDictionary[ bones[ i ].name ] = true;
}
for ( let i = 0; i < vmd.metadata.motionCount; i ++ ) {
const motion = vmd.motions[ i ];
const boneName = motion.boneName;
if ( boneNameDictionary[ boneName ] === undefined ) continue;
motions[ boneName ] = motions[ boneName ] || [];
motions[ boneName ].push( motion );
}
for ( const key in motions ) {
const array = motions[ key ];
array.sort( function ( a, b ) {
return a.frameNum - b.frameNum;
} );
const times = [];
const positions = [];
const rotations = [];
const pInterpolations = [];
const rInterpolations = [];
const basePosition = mesh.skeleton.getBoneByName( key ).position.toArray();
for ( let i = 0, il = array.length; i < il; i ++ ) {
const time = array[ i ].frameNum / 30;
const position = array[ i ].position;
const rotation = array[ i ].rotation;
const interpolation = array[ i ].interpolation;
times.push( time );
for ( let j = 0; j < 3; j ++ ) positions.push( basePosition[ j ] + position[ j ] );
for ( let j = 0; j < 4; j ++ ) rotations.push( rotation[ j ] );
for ( let j = 0; j < 3; j ++ ) pushInterpolation( pInterpolations, interpolation, j );
pushInterpolation( rInterpolations, interpolation, 3 );
}
const targetName = '.bones[' + key + ']';
tracks.push( this._createTrack( targetName + '.position', VectorKeyframeTrack, times, positions, pInterpolations ) );
tracks.push( this._createTrack( targetName + '.quaternion', QuaternionKeyframeTrack, times, rotations, rInterpolations ) );
}
return new AnimationClip( '', - 1, tracks );
}
/**
* @param {Object} vmd - parsed VMD data
* @param {SkinnedMesh} mesh - tracks will be fitting to mesh
* @return {AnimationClip}
*/
buildMorphAnimation( vmd, mesh ) {
const tracks = [];
const morphs = {};
const morphTargetDictionary = mesh.morphTargetDictionary;
for ( let i = 0; i < vmd.metadata.morphCount; i ++ ) {
const morph = vmd.morphs[ i ];
const morphName = morph.morphName;
if ( morphTargetDictionary[ morphName ] === undefined ) continue;
morphs[ morphName ] = morphs[ morphName ] || [];
morphs[ morphName ].push( morph );
}
for ( const key in morphs ) {
const array = morphs[ key ];
array.sort( function ( a, b ) {
return a.frameNum - b.frameNum;
} );
const times = [];
const values = [];
for ( let i = 0, il = array.length; i < il; i ++ ) {
times.push( array[ i ].frameNum / 30 );
values.push( array[ i ].weight );
}
tracks.push( new NumberKeyframeTrack( '.morphTargetInfluences[' + morphTargetDictionary[ key ] + ']', times, values ) );
}
return new AnimationClip( '', - 1, tracks );
}
/**
* @param {Object} vmd - parsed VMD data
* @return {AnimationClip}
*/
buildCameraAnimation( vmd ) {
function pushVector3( array, vec ) {
array.push( vec.x );
array.push( vec.y );
array.push( vec.z );
}
function pushQuaternion( array, q ) {
array.push( q.x );
array.push( q.y );
array.push( q.z );
array.push( q.w );
}
function pushInterpolation( array, interpolation, index ) {
array.push( interpolation[ index * 4 + 0 ] / 127 ); // x1
array.push( interpolation[ index * 4 + 1 ] / 127 ); // x2
array.push( interpolation[ index * 4 + 2 ] / 127 ); // y1
array.push( interpolation[ index * 4 + 3 ] / 127 ); // y2
}
const cameras = vmd.cameras === undefined ? [] : vmd.cameras.slice();
cameras.sort( function ( a, b ) {
return a.frameNum - b.frameNum;
} );
const times = [];
const centers = [];
const quaternions = [];
const positions = [];
const fovs = [];
const cInterpolations = [];
const qInterpolations = [];
const pInterpolations = [];
const fInterpolations = [];
const quaternion = new Quaternion();
const euler = new Euler();
const position = new Vector3();
const center = new Vector3();
for ( let i = 0, il = cameras.length; i < il; i ++ ) {
const motion = cameras[ i ];
const time = motion.frameNum / 30;
const pos = motion.position;
const rot = motion.rotation;
const distance = motion.distance;
const fov = motion.fov;
const interpolation = motion.interpolation;
times.push( time );
position.set( 0, 0, - distance );
center.set( pos[ 0 ], pos[ 1 ], pos[ 2 ] );
euler.set( - rot[ 0 ], - rot[ 1 ], - rot[ 2 ] );
quaternion.setFromEuler( euler );
position.add( center );
position.applyQuaternion( quaternion );
pushVector3( centers, center );
pushQuaternion( quaternions, quaternion );
pushVector3( positions, position );
fovs.push( fov );
for ( let j = 0; j < 3; j ++ ) {
pushInterpolation( cInterpolations, interpolation, j );
}
pushInterpolation( qInterpolations, interpolation, 3 );
// use the same parameter for x, y, z axis.
for ( let j = 0; j < 3; j ++ ) {
pushInterpolation( pInterpolations, interpolation, 4 );
}
pushInterpolation( fInterpolations, interpolation, 5 );
}
const tracks = [];
// I expect an object whose name 'target' exists under THREE.Camera
tracks.push( this._createTrack( 'target.position', VectorKeyframeTrack, times, centers, cInterpolations ) );
tracks.push( this._createTrack( '.quaternion', QuaternionKeyframeTrack, times, quaternions, qInterpolations ) );
tracks.push( this._createTrack( '.position', VectorKeyframeTrack, times, positions, pInterpolations ) );
tracks.push( this._createTrack( '.fov', NumberKeyframeTrack, times, fovs, fInterpolations ) );
return new AnimationClip( '', - 1, tracks );
}
// private method
_createTrack( node, typedKeyframeTrack, times, values, interpolations ) {
/*
* optimizes here not to let KeyframeTrackPrototype optimize
* because KeyframeTrackPrototype optimizes times and values but
* doesn't optimize interpolations.
*/
if ( times.length > 2 ) {
times = times.slice();
values = values.slice();
interpolations = interpolations.slice();
const stride = values.length / times.length;
const interpolateStride = interpolations.length / times.length;
let index = 1;
for ( let aheadIndex = 2, endIndex = times.length; aheadIndex < endIndex; aheadIndex ++ ) {
for ( let i = 0; i < stride; i ++ ) {
if ( values[ index * stride + i ] !== values[ ( index - 1 ) * stride + i ] ||
values[ index * stride + i ] !== values[ aheadIndex * stride + i ] ) {
index ++;
break;
}
}
if ( aheadIndex > index ) {
times[ index ] = times[ aheadIndex ];
for ( let i = 0; i < stride; i ++ ) {
values[ index * stride + i ] = values[ aheadIndex * stride + i ];
}
for ( let i = 0; i < interpolateStride; i ++ ) {
interpolations[ index * interpolateStride + i ] = interpolations[ aheadIndex * interpolateStride + i ];
}
}
}
times.length = index + 1;
values.length = ( index + 1 ) * stride;
interpolations.length = ( index + 1 ) * interpolateStride;
}
const track = new typedKeyframeTrack( node, times, values );
track.createInterpolant = function InterpolantFactoryMethodCubicBezier( result ) {
return new CubicBezierInterpolation( this.times, this.values, this.getValueSize(), result, new Float32Array( interpolations ) );
};
return track;
}
}
// interpolation
class CubicBezierInterpolation extends Interpolant {
constructor( parameterPositions, sampleValues, sampleSize, resultBuffer, params ) {
super( parameterPositions, sampleValues, sampleSize, resultBuffer );
this.interpolationParams = params;
}
interpolate_( i1, t0, t, t1 ) {
const result = this.resultBuffer;
const values = this.sampleValues;
const stride = this.valueSize;
const params = this.interpolationParams;
const offset1 = i1 * stride;
const offset0 = offset1 - stride;
// No interpolation if next key frame is in one frame in 30fps.
// This is from MMD animation spec.
// '1.5' is for precision loss. times are Float32 in Three.js Animation system.
const weight1 = ( ( t1 - t0 ) < 1 / 30 * 1.5 ) ? 0.0 : ( t - t0 ) / ( t1 - t0 );
if ( stride === 4 ) { // Quaternion
const x1 = params[ i1 * 4 + 0 ];
const x2 = params[ i1 * 4 + 1 ];
const y1 = params[ i1 * 4 + 2 ];
const y2 = params[ i1 * 4 + 3 ];
const ratio = this._calculate( x1, x2, y1, y2, weight1 );
Quaternion.slerpFlat( result, 0, values, offset0, values, offset1, ratio );
} else if ( stride === 3 ) { // Vector3
for ( let i = 0; i !== stride; ++ i ) {
const x1 = params[ i1 * 12 + i * 4 + 0 ];
const x2 = params[ i1 * 12 + i * 4 + 1 ];
const y1 = params[ i1 * 12 + i * 4 + 2 ];
const y2 = params[ i1 * 12 + i * 4 + 3 ];
const ratio = this._calculate( x1, x2, y1, y2, weight1 );
result[ i ] = values[ offset0 + i ] * ( 1 - ratio ) + values[ offset1 + i ] * ratio;
}
} else { // Number
const x1 = params[ i1 * 4 + 0 ];
const x2 = params[ i1 * 4 + 1 ];
const y1 = params[ i1 * 4 + 2 ];
const y2 = params[ i1 * 4 + 3 ];
const ratio = this._calculate( x1, x2, y1, y2, weight1 );
result[ 0 ] = values[ offset0 ] * ( 1 - ratio ) + values[ offset1 ] * ratio;
}
return result;
}
_calculate( x1, x2, y1, y2, x ) {
/*
* Cubic Bezier curves
* https://en.wikipedia.org/wiki/B%C3%A9zier_curve#Cubic_B.C3.A9zier_curves
*
* B(t) = ( 1 - t ) ^ 3 * P0
* + 3 * ( 1 - t ) ^ 2 * t * P1
* + 3 * ( 1 - t ) * t^2 * P2
* + t ^ 3 * P3
* ( 0 <= t <= 1 )
*
* MMD uses Cubic Bezier curves for bone and camera animation interpolation.
* http://d.hatena.ne.jp/edvakf/20111016/1318716097
*
* x = ( 1 - t ) ^ 3 * x0
* + 3 * ( 1 - t ) ^ 2 * t * x1
* + 3 * ( 1 - t ) * t^2 * x2
* + t ^ 3 * x3
* y = ( 1 - t ) ^ 3 * y0
* + 3 * ( 1 - t ) ^ 2 * t * y1
* + 3 * ( 1 - t ) * t^2 * y2
* + t ^ 3 * y3
* ( x0 = 0, y0 = 0 )
* ( x3 = 1, y3 = 1 )
* ( 0 <= t, x1, x2, y1, y2 <= 1 )
*
* Here solves this equation with Bisection method,
* https://en.wikipedia.org/wiki/Bisection_method
* gets t, and then calculate y.
*
* f(t) = 3 * ( 1 - t ) ^ 2 * t * x1
* + 3 * ( 1 - t ) * t^2 * x2
* + t ^ 3 - x = 0
*
* (Another option: Newton's method
* https://en.wikipedia.org/wiki/Newton%27s_method)
*/
let c = 0.5;
let t = c;
let s = 1.0 - t;
const loop = 15;
const eps = 1e-5;
const math = Math;
let sst3, stt3, ttt;
for ( let i = 0; i < loop; i ++ ) {
sst3 = 3.0 * s * s * t;
stt3 = 3.0 * s * t * t;
ttt = t * t * t;
const ft = ( sst3 * x1 ) + ( stt3 * x2 ) + ( ttt ) - x;
if ( math.abs( ft ) < eps ) break;
c /= 2.0;
t += ( ft < 0 ) ? c : - c;
s = 1.0 - t;
}
return ( sst3 * y1 ) + ( stt3 * y2 ) + ttt;
}
}
class MMDToonMaterial extends ShaderMaterial {
constructor( parameters ) {
super();
this.isMMDToonMaterial = true;
this.type = 'MMDToonMaterial';
this._matcapCombine = AddOperation;
this.emissiveIntensity = 1.0;
this.normalMapType = TangentSpaceNormalMap;
this.combine = MultiplyOperation;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.flatShading = false;
this.lights = true;
this.vertexShader = MMDToonShader.vertexShader;
this.fragmentShader = MMDToonShader.fragmentShader;
this.defines = Object.assign( {}, MMDToonShader.defines );
Object.defineProperty( this, 'matcapCombine', {
get: function () {
return this._matcapCombine;
},
set: function ( value ) {
this._matcapCombine = value;
switch ( value ) {
case MultiplyOperation:
this.defines.MATCAP_BLENDING_MULTIPLY = true;
delete this.defines.MATCAP_BLENDING_ADD;
break;
default:
case AddOperation:
this.defines.MATCAP_BLENDING_ADD = true;
delete this.defines.MATCAP_BLENDING_MULTIPLY;
break;
}
},
} );
this.uniforms = UniformsUtils.clone( MMDToonShader.uniforms );
// merged from MeshToon/Phong/MatcapMaterial
const exposePropertyNames = [
'specular',
'opacity',
'diffuse',
'map',
'matcap',
'gradientMap',
'lightMap',
'lightMapIntensity',
'aoMap',
'aoMapIntensity',
'emissive',
'emissiveMap',
'bumpMap',
'bumpScale',
'normalMap',
'normalScale',
'displacemantBias',
'displacemantMap',
'displacemantScale',
'specularMap',
'alphaMap',
'reflectivity',
'refractionRatio',
];
for ( const propertyName of exposePropertyNames ) {
Object.defineProperty( this, propertyName, {
get: function () {
return this.uniforms[ propertyName ].value;
},
set: function ( value ) {
this.uniforms[ propertyName ].value = value;
},
} );
}
// Special path for shininess to handle zero shininess properly
this._shininess = 30;
Object.defineProperty( this, 'shininess', {
get: function () {
return this._shininess;
},
set: function ( value ) {
this._shininess = value;
this.uniforms.shininess.value = Math.max( this._shininess, 1e-4 ); // To prevent pow( 0.0, 0.0 )
},
} );
Object.defineProperty(
this,
'color',
Object.getOwnPropertyDescriptor( this, 'diffuse' )
);
this.setValues( parameters );
}
copy( source ) {
super.copy( source );
this.matcapCombine = source.matcapCombine;
this.emissiveIntensity = source.emissiveIntensity;
this.normalMapType = source.normalMapType;
this.combine = source.combine;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.flatShading = source.flatShading;
return this;
}
}
export { MMDLoader };