animate/webGl/my-threejs-test/node_modules/msgpackr/dist/node.cjs

3198 lines
104 KiB
JavaScript

'use strict';
var stream = require('stream');
var module$1 = require('module');
var decoder;
try {
decoder = new TextDecoder();
} catch(error) {}
var src;
var srcEnd;
var position$1 = 0;
const EMPTY_ARRAY = [];
var strings = EMPTY_ARRAY;
var stringPosition = 0;
var currentUnpackr = {};
var currentStructures;
var srcString;
var srcStringStart = 0;
var srcStringEnd = 0;
var bundledStrings$1;
var referenceMap;
var currentExtensions = [];
var dataView;
var defaultOptions = {
useRecords: false,
mapsAsObjects: true
};
class C1Type {}
const C1 = new C1Type();
C1.name = 'MessagePack 0xC1';
var sequentialMode = false;
var inlineObjectReadThreshold = 2;
var readStruct$1, onLoadedStructures$1, onSaveState;
// no-eval build
try {
new Function('');
} catch(error) {
// if eval variants are not supported, do not create inline object readers ever
inlineObjectReadThreshold = Infinity;
}
class Unpackr {
constructor(options) {
if (options) {
if (options.useRecords === false && options.mapsAsObjects === undefined)
options.mapsAsObjects = true;
if (options.sequential && options.trusted !== false) {
options.trusted = true;
if (!options.structures && options.useRecords != false) {
options.structures = [];
if (!options.maxSharedStructures)
options.maxSharedStructures = 0;
}
}
if (options.structures)
options.structures.sharedLength = options.structures.length;
else if (options.getStructures) {
(options.structures = []).uninitialized = true; // this is what we use to denote an uninitialized structures
options.structures.sharedLength = 0;
}
if (options.int64AsNumber) {
options.int64AsType = 'number';
}
}
Object.assign(this, options);
}
unpack(source, options) {
if (src) {
// re-entrant execution, save the state and restore it after we do this unpack
return saveState$1(() => {
clearSource();
return this ? this.unpack(source, options) : Unpackr.prototype.unpack.call(defaultOptions, source, options)
})
}
if (!source.buffer && source.constructor === ArrayBuffer)
source = typeof Buffer !== 'undefined' ? Buffer.from(source) : new Uint8Array(source);
if (typeof options === 'object') {
srcEnd = options.end || source.length;
position$1 = options.start || 0;
} else {
position$1 = 0;
srcEnd = options > -1 ? options : source.length;
}
stringPosition = 0;
srcStringEnd = 0;
srcString = null;
strings = EMPTY_ARRAY;
bundledStrings$1 = null;
src = source;
// this provides cached access to the data view for a buffer if it is getting reused, which is a recommend
// technique for getting data from a database where it can be copied into an existing buffer instead of creating
// new ones
try {
dataView = source.dataView || (source.dataView = new DataView(source.buffer, source.byteOffset, source.byteLength));
} catch(error) {
// if it doesn't have a buffer, maybe it is the wrong type of object
src = null;
if (source instanceof Uint8Array)
throw error
throw new Error('Source must be a Uint8Array or Buffer but was a ' + ((source && typeof source == 'object') ? source.constructor.name : typeof source))
}
if (this instanceof Unpackr) {
currentUnpackr = this;
if (this.structures) {
currentStructures = this.structures;
return checkedRead(options)
} else if (!currentStructures || currentStructures.length > 0) {
currentStructures = [];
}
} else {
currentUnpackr = defaultOptions;
if (!currentStructures || currentStructures.length > 0)
currentStructures = [];
}
return checkedRead(options)
}
unpackMultiple(source, forEach) {
let values, lastPosition = 0;
try {
sequentialMode = true;
let size = source.length;
let value = this ? this.unpack(source, size) : defaultUnpackr.unpack(source, size);
if (forEach) {
if (forEach(value, lastPosition, position$1) === false) return;
while(position$1 < size) {
lastPosition = position$1;
if (forEach(checkedRead(), lastPosition, position$1) === false) {
return
}
}
}
else {
values = [ value ];
while(position$1 < size) {
lastPosition = position$1;
values.push(checkedRead());
}
return values
}
} catch(error) {
error.lastPosition = lastPosition;
error.values = values;
throw error
} finally {
sequentialMode = false;
clearSource();
}
}
_mergeStructures(loadedStructures, existingStructures) {
if (onLoadedStructures$1)
loadedStructures = onLoadedStructures$1.call(this, loadedStructures);
loadedStructures = loadedStructures || [];
if (Object.isFrozen(loadedStructures))
loadedStructures = loadedStructures.map(structure => structure.slice(0));
for (let i = 0, l = loadedStructures.length; i < l; i++) {
let structure = loadedStructures[i];
if (structure) {
structure.isShared = true;
if (i >= 32)
structure.highByte = (i - 32) >> 5;
}
}
loadedStructures.sharedLength = loadedStructures.length;
for (let id in existingStructures || []) {
if (id >= 0) {
let structure = loadedStructures[id];
let existing = existingStructures[id];
if (existing) {
if (structure)
(loadedStructures.restoreStructures || (loadedStructures.restoreStructures = []))[id] = structure;
loadedStructures[id] = existing;
}
}
}
return this.structures = loadedStructures
}
decode(source, options) {
return this.unpack(source, options)
}
}
function checkedRead(options) {
try {
if (!currentUnpackr.trusted && !sequentialMode) {
let sharedLength = currentStructures.sharedLength || 0;
if (sharedLength < currentStructures.length)
currentStructures.length = sharedLength;
}
let result;
if (currentUnpackr.randomAccessStructure && src[position$1] < 0x40 && src[position$1] >= 0x20 && readStruct$1) {
result = readStruct$1(src, position$1, srcEnd, currentUnpackr);
src = null; // dispose of this so that recursive unpack calls don't save state
if (!(options && options.lazy) && result)
result = result.toJSON();
position$1 = srcEnd;
} else
result = read();
if (bundledStrings$1) { // bundled strings to skip past
position$1 = bundledStrings$1.postBundlePosition;
bundledStrings$1 = null;
}
if (sequentialMode)
// we only need to restore the structures if there was an error, but if we completed a read,
// we can clear this out and keep the structures we read
currentStructures.restoreStructures = null;
if (position$1 == srcEnd) {
// finished reading this source, cleanup references
if (currentStructures && currentStructures.restoreStructures)
restoreStructures();
currentStructures = null;
src = null;
if (referenceMap)
referenceMap = null;
} else if (position$1 > srcEnd) {
// over read
throw new Error('Unexpected end of MessagePack data')
} else if (!sequentialMode) {
let jsonView;
try {
jsonView = JSON.stringify(result, (_, value) => typeof value === "bigint" ? `${value}n` : value).slice(0, 100);
} catch(error) {
jsonView = '(JSON view not available ' + error + ')';
}
throw new Error('Data read, but end of buffer not reached ' + jsonView)
}
// else more to read, but we are reading sequentially, so don't clear source yet
return result
} catch(error) {
if (currentStructures && currentStructures.restoreStructures)
restoreStructures();
clearSource();
if (error instanceof RangeError || error.message.startsWith('Unexpected end of buffer') || position$1 > srcEnd) {
error.incomplete = true;
}
throw error
}
}
function restoreStructures() {
for (let id in currentStructures.restoreStructures) {
currentStructures[id] = currentStructures.restoreStructures[id];
}
currentStructures.restoreStructures = null;
}
function read() {
let token = src[position$1++];
if (token < 0xa0) {
if (token < 0x80) {
if (token < 0x40)
return token
else {
let structure = currentStructures[token & 0x3f] ||
currentUnpackr.getStructures && loadStructures()[token & 0x3f];
if (structure) {
if (!structure.read) {
structure.read = createStructureReader(structure, token & 0x3f);
}
return structure.read()
} else
return token
}
} else if (token < 0x90) {
// map
token -= 0x80;
if (currentUnpackr.mapsAsObjects) {
let object = {};
for (let i = 0; i < token; i++) {
let key = readKey();
if (key === '__proto__')
key = '__proto_';
object[key] = read();
}
return object
} else {
let map = new Map();
for (let i = 0; i < token; i++) {
map.set(read(), read());
}
return map
}
} else {
token -= 0x90;
let array = new Array(token);
for (let i = 0; i < token; i++) {
array[i] = read();
}
if (currentUnpackr.freezeData)
return Object.freeze(array)
return array
}
} else if (token < 0xc0) {
// fixstr
let length = token - 0xa0;
if (srcStringEnd >= position$1) {
return srcString.slice(position$1 - srcStringStart, (position$1 += length) - srcStringStart)
}
if (srcStringEnd == 0 && srcEnd < 140) {
// for small blocks, avoiding the overhead of the extract call is helpful
let string = length < 16 ? shortStringInJS(length) : longStringInJS(length);
if (string != null)
return string
}
return readFixedString(length)
} else {
let value;
switch (token) {
case 0xc0: return null
case 0xc1:
if (bundledStrings$1) {
value = read(); // followed by the length of the string in characters (not bytes!)
if (value > 0)
return bundledStrings$1[1].slice(bundledStrings$1.position1, bundledStrings$1.position1 += value)
else
return bundledStrings$1[0].slice(bundledStrings$1.position0, bundledStrings$1.position0 -= value)
}
return C1; // "never-used", return special object to denote that
case 0xc2: return false
case 0xc3: return true
case 0xc4:
// bin 8
value = src[position$1++];
if (value === undefined)
throw new Error('Unexpected end of buffer')
return readBin(value)
case 0xc5:
// bin 16
value = dataView.getUint16(position$1);
position$1 += 2;
return readBin(value)
case 0xc6:
// bin 32
value = dataView.getUint32(position$1);
position$1 += 4;
return readBin(value)
case 0xc7:
// ext 8
return readExt(src[position$1++])
case 0xc8:
// ext 16
value = dataView.getUint16(position$1);
position$1 += 2;
return readExt(value)
case 0xc9:
// ext 32
value = dataView.getUint32(position$1);
position$1 += 4;
return readExt(value)
case 0xca:
value = dataView.getFloat32(position$1);
if (currentUnpackr.useFloat32 > 2) {
// this does rounding of numbers that were encoded in 32-bit float to nearest significant decimal digit that could be preserved
let multiplier = mult10[((src[position$1] & 0x7f) << 1) | (src[position$1 + 1] >> 7)];
position$1 += 4;
return ((multiplier * value + (value > 0 ? 0.5 : -0.5)) >> 0) / multiplier
}
position$1 += 4;
return value
case 0xcb:
value = dataView.getFloat64(position$1);
position$1 += 8;
return value
// uint handlers
case 0xcc:
return src[position$1++]
case 0xcd:
value = dataView.getUint16(position$1);
position$1 += 2;
return value
case 0xce:
value = dataView.getUint32(position$1);
position$1 += 4;
return value
case 0xcf:
if (currentUnpackr.int64AsType === 'number') {
value = dataView.getUint32(position$1) * 0x100000000;
value += dataView.getUint32(position$1 + 4);
} else if (currentUnpackr.int64AsType === 'string') {
value = dataView.getBigUint64(position$1).toString();
} else if (currentUnpackr.int64AsType === 'auto') {
value = dataView.getBigUint64(position$1);
if (value<=BigInt(2)<<BigInt(52)) value=Number(value);
} else
value = dataView.getBigUint64(position$1);
position$1 += 8;
return value
// int handlers
case 0xd0:
return dataView.getInt8(position$1++)
case 0xd1:
value = dataView.getInt16(position$1);
position$1 += 2;
return value
case 0xd2:
value = dataView.getInt32(position$1);
position$1 += 4;
return value
case 0xd3:
if (currentUnpackr.int64AsType === 'number') {
value = dataView.getInt32(position$1) * 0x100000000;
value += dataView.getUint32(position$1 + 4);
} else if (currentUnpackr.int64AsType === 'string') {
value = dataView.getBigInt64(position$1).toString();
} else if (currentUnpackr.int64AsType === 'auto') {
value = dataView.getBigInt64(position$1);
if (value>=BigInt(-2)<<BigInt(52)&&value<=BigInt(2)<<BigInt(52)) value=Number(value);
} else
value = dataView.getBigInt64(position$1);
position$1 += 8;
return value
case 0xd4:
// fixext 1
value = src[position$1++];
if (value == 0x72) {
return recordDefinition(src[position$1++] & 0x3f)
} else {
let extension = currentExtensions[value];
if (extension) {
if (extension.read) {
position$1++; // skip filler byte
return extension.read(read())
} else if (extension.noBuffer) {
position$1++; // skip filler byte
return extension()
} else
return extension(src.subarray(position$1, ++position$1))
} else
throw new Error('Unknown extension ' + value)
}
case 0xd5:
// fixext 2
value = src[position$1];
if (value == 0x72) {
position$1++;
return recordDefinition(src[position$1++] & 0x3f, src[position$1++])
} else
return readExt(2)
case 0xd6:
// fixext 4
return readExt(4)
case 0xd7:
// fixext 8
return readExt(8)
case 0xd8:
// fixext 16
return readExt(16)
case 0xd9:
// str 8
value = src[position$1++];
if (srcStringEnd >= position$1) {
return srcString.slice(position$1 - srcStringStart, (position$1 += value) - srcStringStart)
}
return readString8(value)
case 0xda:
// str 16
value = dataView.getUint16(position$1);
position$1 += 2;
if (srcStringEnd >= position$1) {
return srcString.slice(position$1 - srcStringStart, (position$1 += value) - srcStringStart)
}
return readString16(value)
case 0xdb:
// str 32
value = dataView.getUint32(position$1);
position$1 += 4;
if (srcStringEnd >= position$1) {
return srcString.slice(position$1 - srcStringStart, (position$1 += value) - srcStringStart)
}
return readString32(value)
case 0xdc:
// array 16
value = dataView.getUint16(position$1);
position$1 += 2;
return readArray(value)
case 0xdd:
// array 32
value = dataView.getUint32(position$1);
position$1 += 4;
return readArray(value)
case 0xde:
// map 16
value = dataView.getUint16(position$1);
position$1 += 2;
return readMap(value)
case 0xdf:
// map 32
value = dataView.getUint32(position$1);
position$1 += 4;
return readMap(value)
default: // negative int
if (token >= 0xe0)
return token - 0x100
if (token === undefined) {
let error = new Error('Unexpected end of MessagePack data');
error.incomplete = true;
throw error
}
throw new Error('Unknown MessagePack token ' + token)
}
}
}
const validName = /^[a-zA-Z_$][a-zA-Z\d_$]*$/;
function createStructureReader(structure, firstId) {
function readObject() {
// This initial function is quick to instantiate, but runs slower. After several iterations pay the cost to build the faster function
if (readObject.count++ > inlineObjectReadThreshold) {
let readObject = structure.read = (new Function('r', 'return function(){return ' + (currentUnpackr.freezeData ? 'Object.freeze' : '') +
'({' + structure.map(key => key === '__proto__' ? '__proto_:r()' : validName.test(key) ? key + ':r()' : ('[' + JSON.stringify(key) + ']:r()')).join(',') + '})}'))(read);
if (structure.highByte === 0)
structure.read = createSecondByteReader(firstId, structure.read);
return readObject() // second byte is already read, if there is one so immediately read object
}
let object = {};
for (let i = 0, l = structure.length; i < l; i++) {
let key = structure[i];
if (key === '__proto__')
key = '__proto_';
object[key] = read();
}
if (currentUnpackr.freezeData)
return Object.freeze(object);
return object
}
readObject.count = 0;
if (structure.highByte === 0) {
return createSecondByteReader(firstId, readObject)
}
return readObject
}
const createSecondByteReader = (firstId, read0) => {
return function() {
let highByte = src[position$1++];
if (highByte === 0)
return read0()
let id = firstId < 32 ? -(firstId + (highByte << 5)) : firstId + (highByte << 5);
let structure = currentStructures[id] || loadStructures()[id];
if (!structure) {
throw new Error('Record id is not defined for ' + id)
}
if (!structure.read)
structure.read = createStructureReader(structure, firstId);
return structure.read()
}
};
function loadStructures() {
let loadedStructures = saveState$1(() => {
// save the state in case getStructures modifies our buffer
src = null;
return currentUnpackr.getStructures()
});
return currentStructures = currentUnpackr._mergeStructures(loadedStructures, currentStructures)
}
var readFixedString = readStringJS;
var readString8 = readStringJS;
var readString16 = readStringJS;
var readString32 = readStringJS;
exports.isNativeAccelerationEnabled = false;
function setExtractor(extractStrings) {
exports.isNativeAccelerationEnabled = true;
readFixedString = readString(1);
readString8 = readString(2);
readString16 = readString(3);
readString32 = readString(5);
function readString(headerLength) {
return function readString(length) {
let string = strings[stringPosition++];
if (string == null) {
if (bundledStrings$1)
return readStringJS(length)
let byteOffset = src.byteOffset;
let extraction = extractStrings(position$1 - headerLength + byteOffset, srcEnd + byteOffset, src.buffer);
if (typeof extraction == 'string') {
string = extraction;
strings = EMPTY_ARRAY;
} else {
strings = extraction;
stringPosition = 1;
srcStringEnd = 1; // even if a utf-8 string was decoded, must indicate we are in the midst of extracted strings and can't skip strings
string = strings[0];
if (string === undefined)
throw new Error('Unexpected end of buffer')
}
}
let srcStringLength = string.length;
if (srcStringLength <= length) {
position$1 += length;
return string
}
srcString = string;
srcStringStart = position$1;
srcStringEnd = position$1 + srcStringLength;
position$1 += length;
return string.slice(0, length) // we know we just want the beginning
}
}
}
function readStringJS(length) {
let result;
if (length < 16) {
if (result = shortStringInJS(length))
return result
}
if (length > 64 && decoder)
return decoder.decode(src.subarray(position$1, position$1 += length))
const end = position$1 + length;
const units = [];
result = '';
while (position$1 < end) {
const byte1 = src[position$1++];
if ((byte1 & 0x80) === 0) {
// 1 byte
units.push(byte1);
} else if ((byte1 & 0xe0) === 0xc0) {
// 2 bytes
const byte2 = src[position$1++] & 0x3f;
units.push(((byte1 & 0x1f) << 6) | byte2);
} else if ((byte1 & 0xf0) === 0xe0) {
// 3 bytes
const byte2 = src[position$1++] & 0x3f;
const byte3 = src[position$1++] & 0x3f;
units.push(((byte1 & 0x1f) << 12) | (byte2 << 6) | byte3);
} else if ((byte1 & 0xf8) === 0xf0) {
// 4 bytes
const byte2 = src[position$1++] & 0x3f;
const byte3 = src[position$1++] & 0x3f;
const byte4 = src[position$1++] & 0x3f;
let unit = ((byte1 & 0x07) << 0x12) | (byte2 << 0x0c) | (byte3 << 0x06) | byte4;
if (unit > 0xffff) {
unit -= 0x10000;
units.push(((unit >>> 10) & 0x3ff) | 0xd800);
unit = 0xdc00 | (unit & 0x3ff);
}
units.push(unit);
} else {
units.push(byte1);
}
if (units.length >= 0x1000) {
result += fromCharCode.apply(String, units);
units.length = 0;
}
}
if (units.length > 0) {
result += fromCharCode.apply(String, units);
}
return result
}
function readString(source, start, length) {
let existingSrc = src;
src = source;
position$1 = start;
try {
return readStringJS(length);
} finally {
src = existingSrc;
}
}
function readArray(length) {
let array = new Array(length);
for (let i = 0; i < length; i++) {
array[i] = read();
}
if (currentUnpackr.freezeData)
return Object.freeze(array)
return array
}
function readMap(length) {
if (currentUnpackr.mapsAsObjects) {
let object = {};
for (let i = 0; i < length; i++) {
let key = readKey();
if (key === '__proto__')
key = '__proto_';
object[key] = read();
}
return object
} else {
let map = new Map();
for (let i = 0; i < length; i++) {
map.set(read(), read());
}
return map
}
}
var fromCharCode = String.fromCharCode;
function longStringInJS(length) {
let start = position$1;
let bytes = new Array(length);
for (let i = 0; i < length; i++) {
const byte = src[position$1++];
if ((byte & 0x80) > 0) {
position$1 = start;
return
}
bytes[i] = byte;
}
return fromCharCode.apply(String, bytes)
}
function shortStringInJS(length) {
if (length < 4) {
if (length < 2) {
if (length === 0)
return ''
else {
let a = src[position$1++];
if ((a & 0x80) > 1) {
position$1 -= 1;
return
}
return fromCharCode(a)
}
} else {
let a = src[position$1++];
let b = src[position$1++];
if ((a & 0x80) > 0 || (b & 0x80) > 0) {
position$1 -= 2;
return
}
if (length < 3)
return fromCharCode(a, b)
let c = src[position$1++];
if ((c & 0x80) > 0) {
position$1 -= 3;
return
}
return fromCharCode(a, b, c)
}
} else {
let a = src[position$1++];
let b = src[position$1++];
let c = src[position$1++];
let d = src[position$1++];
if ((a & 0x80) > 0 || (b & 0x80) > 0 || (c & 0x80) > 0 || (d & 0x80) > 0) {
position$1 -= 4;
return
}
if (length < 6) {
if (length === 4)
return fromCharCode(a, b, c, d)
else {
let e = src[position$1++];
if ((e & 0x80) > 0) {
position$1 -= 5;
return
}
return fromCharCode(a, b, c, d, e)
}
} else if (length < 8) {
let e = src[position$1++];
let f = src[position$1++];
if ((e & 0x80) > 0 || (f & 0x80) > 0) {
position$1 -= 6;
return
}
if (length < 7)
return fromCharCode(a, b, c, d, e, f)
let g = src[position$1++];
if ((g & 0x80) > 0) {
position$1 -= 7;
return
}
return fromCharCode(a, b, c, d, e, f, g)
} else {
let e = src[position$1++];
let f = src[position$1++];
let g = src[position$1++];
let h = src[position$1++];
if ((e & 0x80) > 0 || (f & 0x80) > 0 || (g & 0x80) > 0 || (h & 0x80) > 0) {
position$1 -= 8;
return
}
if (length < 10) {
if (length === 8)
return fromCharCode(a, b, c, d, e, f, g, h)
else {
let i = src[position$1++];
if ((i & 0x80) > 0) {
position$1 -= 9;
return
}
return fromCharCode(a, b, c, d, e, f, g, h, i)
}
} else if (length < 12) {
let i = src[position$1++];
let j = src[position$1++];
if ((i & 0x80) > 0 || (j & 0x80) > 0) {
position$1 -= 10;
return
}
if (length < 11)
return fromCharCode(a, b, c, d, e, f, g, h, i, j)
let k = src[position$1++];
if ((k & 0x80) > 0) {
position$1 -= 11;
return
}
return fromCharCode(a, b, c, d, e, f, g, h, i, j, k)
} else {
let i = src[position$1++];
let j = src[position$1++];
let k = src[position$1++];
let l = src[position$1++];
if ((i & 0x80) > 0 || (j & 0x80) > 0 || (k & 0x80) > 0 || (l & 0x80) > 0) {
position$1 -= 12;
return
}
if (length < 14) {
if (length === 12)
return fromCharCode(a, b, c, d, e, f, g, h, i, j, k, l)
else {
let m = src[position$1++];
if ((m & 0x80) > 0) {
position$1 -= 13;
return
}
return fromCharCode(a, b, c, d, e, f, g, h, i, j, k, l, m)
}
} else {
let m = src[position$1++];
let n = src[position$1++];
if ((m & 0x80) > 0 || (n & 0x80) > 0) {
position$1 -= 14;
return
}
if (length < 15)
return fromCharCode(a, b, c, d, e, f, g, h, i, j, k, l, m, n)
let o = src[position$1++];
if ((o & 0x80) > 0) {
position$1 -= 15;
return
}
return fromCharCode(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)
}
}
}
}
}
function readOnlyJSString() {
let token = src[position$1++];
let length;
if (token < 0xc0) {
// fixstr
length = token - 0xa0;
} else {
switch(token) {
case 0xd9:
// str 8
length = src[position$1++];
break
case 0xda:
// str 16
length = dataView.getUint16(position$1);
position$1 += 2;
break
case 0xdb:
// str 32
length = dataView.getUint32(position$1);
position$1 += 4;
break
default:
throw new Error('Expected string')
}
}
return readStringJS(length)
}
function readBin(length) {
return currentUnpackr.copyBuffers ?
// specifically use the copying slice (not the node one)
Uint8Array.prototype.slice.call(src, position$1, position$1 += length) :
src.subarray(position$1, position$1 += length)
}
function readExt(length) {
let type = src[position$1++];
if (currentExtensions[type]) {
let end;
return currentExtensions[type](src.subarray(position$1, end = (position$1 += length)), (readPosition) => {
position$1 = readPosition;
try {
return read();
} finally {
position$1 = end;
}
})
}
else
throw new Error('Unknown extension type ' + type)
}
var keyCache = new Array(4096);
function readKey() {
let length = src[position$1++];
if (length >= 0xa0 && length < 0xc0) {
// fixstr, potentially use key cache
length = length - 0xa0;
if (srcStringEnd >= position$1) // if it has been extracted, must use it (and faster anyway)
return srcString.slice(position$1 - srcStringStart, (position$1 += length) - srcStringStart)
else if (!(srcStringEnd == 0 && srcEnd < 180))
return readFixedString(length)
} else { // not cacheable, go back and do a standard read
position$1--;
return asSafeString(read())
}
let key = ((length << 5) ^ (length > 1 ? dataView.getUint16(position$1) : length > 0 ? src[position$1] : 0)) & 0xfff;
let entry = keyCache[key];
let checkPosition = position$1;
let end = position$1 + length - 3;
let chunk;
let i = 0;
if (entry && entry.bytes == length) {
while (checkPosition < end) {
chunk = dataView.getUint32(checkPosition);
if (chunk != entry[i++]) {
checkPosition = 0x70000000;
break
}
checkPosition += 4;
}
end += 3;
while (checkPosition < end) {
chunk = src[checkPosition++];
if (chunk != entry[i++]) {
checkPosition = 0x70000000;
break
}
}
if (checkPosition === end) {
position$1 = checkPosition;
return entry.string
}
end -= 3;
checkPosition = position$1;
}
entry = [];
keyCache[key] = entry;
entry.bytes = length;
while (checkPosition < end) {
chunk = dataView.getUint32(checkPosition);
entry.push(chunk);
checkPosition += 4;
}
end += 3;
while (checkPosition < end) {
chunk = src[checkPosition++];
entry.push(chunk);
}
// for small blocks, avoiding the overhead of the extract call is helpful
let string = length < 16 ? shortStringInJS(length) : longStringInJS(length);
if (string != null)
return entry.string = string
return entry.string = readFixedString(length)
}
function asSafeString(property) {
if (typeof property === 'string') return property;
if (typeof property === 'number') return property.toString();
throw new Error('Invalid property type for record', typeof property);
}
// the registration of the record definition extension (as "r")
const recordDefinition = (id, highByte) => {
let structure = read().map(asSafeString); // ensure that all keys are strings and
// that the array is mutable
let firstByte = id;
if (highByte !== undefined) {
id = id < 32 ? -((highByte << 5) + id) : ((highByte << 5) + id);
structure.highByte = highByte;
}
let existingStructure = currentStructures[id];
// If it is a shared structure, we need to restore any changes after reading.
// Also in sequential mode, we may get incomplete reads and thus errors, and we need to restore
// to the state prior to an incomplete read in order to properly resume.
if (existingStructure && (existingStructure.isShared || sequentialMode)) {
(currentStructures.restoreStructures || (currentStructures.restoreStructures = []))[id] = existingStructure;
}
currentStructures[id] = structure;
structure.read = createStructureReader(structure, firstByte);
return structure.read()
};
currentExtensions[0] = () => {}; // notepack defines extension 0 to mean undefined, so use that as the default here
currentExtensions[0].noBuffer = true;
currentExtensions[0x42] = (data) => {
// decode bigint
let length = data.length;
let value = BigInt(data[0] & 0x80 ? data[0] - 0x100 : data[0]);
for (let i = 1; i < length; i++) {
value <<= 8n;
value += BigInt(data[i]);
}
return value;
};
let errors = { Error, TypeError, ReferenceError };
currentExtensions[0x65] = () => {
let data = read();
return (errors[data[0]] || Error)(data[1])
};
currentExtensions[0x69] = (data) => {
// id extension (for structured clones)
if (currentUnpackr.structuredClone === false) throw new Error('Structured clone extension is disabled')
let id = dataView.getUint32(position$1 - 4);
if (!referenceMap)
referenceMap = new Map();
let token = src[position$1];
let target;
// TODO: handle Maps, Sets, and other types that can cycle; this is complicated, because you potentially need to read
// ahead past references to record structure definitions
if (token >= 0x90 && token < 0xa0 || token == 0xdc || token == 0xdd)
target = [];
else
target = {};
let refEntry = { target }; // a placeholder object
referenceMap.set(id, refEntry);
let targetProperties = read(); // read the next value as the target object to id
if (refEntry.used) // there is a cycle, so we have to assign properties to original target
return Object.assign(target, targetProperties)
refEntry.target = targetProperties; // the placeholder wasn't used, replace with the deserialized one
return targetProperties // no cycle, can just use the returned read object
};
currentExtensions[0x70] = (data) => {
// pointer extension (for structured clones)
if (currentUnpackr.structuredClone === false) throw new Error('Structured clone extension is disabled')
let id = dataView.getUint32(position$1 - 4);
let refEntry = referenceMap.get(id);
refEntry.used = true;
return refEntry.target
};
currentExtensions[0x73] = () => new Set(read());
const typedArrays = ['Int8','Uint8','Uint8Clamped','Int16','Uint16','Int32','Uint32','Float32','Float64','BigInt64','BigUint64'].map(type => type + 'Array');
let glbl = typeof globalThis === 'object' ? globalThis : window;
currentExtensions[0x74] = (data) => {
let typeCode = data[0];
let typedArrayName = typedArrays[typeCode];
if (!typedArrayName)
throw new Error('Could not find typed array for code ' + typeCode)
// we have to always slice/copy here to get a new ArrayBuffer that is word/byte aligned
return new glbl[typedArrayName](Uint8Array.prototype.slice.call(data, 1).buffer)
};
currentExtensions[0x78] = () => {
let data = read();
return new RegExp(data[0], data[1])
};
const TEMP_BUNDLE = [];
currentExtensions[0x62] = (data) => {
let dataSize = (data[0] << 24) + (data[1] << 16) + (data[2] << 8) + data[3];
let dataPosition = position$1;
position$1 += dataSize - data.length;
bundledStrings$1 = TEMP_BUNDLE;
bundledStrings$1 = [readOnlyJSString(), readOnlyJSString()];
bundledStrings$1.position0 = 0;
bundledStrings$1.position1 = 0;
bundledStrings$1.postBundlePosition = position$1;
position$1 = dataPosition;
return read()
};
currentExtensions[0xff] = (data) => {
// 32-bit date extension
if (data.length == 4)
return new Date((data[0] * 0x1000000 + (data[1] << 16) + (data[2] << 8) + data[3]) * 1000)
else if (data.length == 8)
return new Date(
((data[0] << 22) + (data[1] << 14) + (data[2] << 6) + (data[3] >> 2)) / 1000000 +
((data[3] & 0x3) * 0x100000000 + data[4] * 0x1000000 + (data[5] << 16) + (data[6] << 8) + data[7]) * 1000)
else if (data.length == 12)// TODO: Implement support for negative
return new Date(
((data[0] << 24) + (data[1] << 16) + (data[2] << 8) + data[3]) / 1000000 +
(((data[4] & 0x80) ? -0x1000000000000 : 0) + data[6] * 0x10000000000 + data[7] * 0x100000000 + data[8] * 0x1000000 + (data[9] << 16) + (data[10] << 8) + data[11]) * 1000)
else
return new Date('invalid')
}; // notepack defines extension 0 to mean undefined, so use that as the default here
// registration of bulk record definition?
// currentExtensions[0x52] = () =>
function saveState$1(callback) {
if (onSaveState)
onSaveState();
let savedSrcEnd = srcEnd;
let savedPosition = position$1;
let savedStringPosition = stringPosition;
let savedSrcStringStart = srcStringStart;
let savedSrcStringEnd = srcStringEnd;
let savedSrcString = srcString;
let savedStrings = strings;
let savedReferenceMap = referenceMap;
let savedBundledStrings = bundledStrings$1;
// TODO: We may need to revisit this if we do more external calls to user code (since it could be slow)
let savedSrc = new Uint8Array(src.slice(0, srcEnd)); // we copy the data in case it changes while external data is processed
let savedStructures = currentStructures;
let savedStructuresContents = currentStructures.slice(0, currentStructures.length);
let savedPackr = currentUnpackr;
let savedSequentialMode = sequentialMode;
let value = callback();
srcEnd = savedSrcEnd;
position$1 = savedPosition;
stringPosition = savedStringPosition;
srcStringStart = savedSrcStringStart;
srcStringEnd = savedSrcStringEnd;
srcString = savedSrcString;
strings = savedStrings;
referenceMap = savedReferenceMap;
bundledStrings$1 = savedBundledStrings;
src = savedSrc;
sequentialMode = savedSequentialMode;
currentStructures = savedStructures;
currentStructures.splice(0, currentStructures.length, ...savedStructuresContents);
currentUnpackr = savedPackr;
dataView = new DataView(src.buffer, src.byteOffset, src.byteLength);
return value
}
function clearSource() {
src = null;
referenceMap = null;
currentStructures = null;
}
function addExtension$1(extension) {
if (extension.unpack)
currentExtensions[extension.type] = extension.unpack;
else
currentExtensions[extension.type] = extension;
}
const mult10 = new Array(147); // this is a table matching binary exponents to the multiplier to determine significant digit rounding
for (let i = 0; i < 256; i++) {
mult10[i] = +('1e' + Math.floor(45.15 - i * 0.30103));
}
const Decoder = Unpackr;
var defaultUnpackr = new Unpackr({ useRecords: false });
const unpack = defaultUnpackr.unpack;
const unpackMultiple = defaultUnpackr.unpackMultiple;
const decode = defaultUnpackr.unpack;
const FLOAT32_OPTIONS = {
NEVER: 0,
ALWAYS: 1,
DECIMAL_ROUND: 3,
DECIMAL_FIT: 4
};
let f32Array = new Float32Array(1);
let u8Array = new Uint8Array(f32Array.buffer, 0, 4);
function roundFloat32(float32Number) {
f32Array[0] = float32Number;
let multiplier = mult10[((u8Array[3] & 0x7f) << 1) | (u8Array[2] >> 7)];
return ((multiplier * float32Number + (float32Number > 0 ? 0.5 : -0.5)) >> 0) / multiplier
}
function setReadStruct(updatedReadStruct, loadedStructs, saveState) {
readStruct$1 = updatedReadStruct;
onLoadedStructures$1 = loadedStructs;
onSaveState = saveState;
}
let textEncoder$1;
try {
textEncoder$1 = new TextEncoder();
} catch (error) {}
let extensions, extensionClasses;
const hasNodeBuffer$1 = typeof Buffer !== 'undefined';
const ByteArrayAllocate = hasNodeBuffer$1 ?
function(length) { return Buffer.allocUnsafeSlow(length) } : Uint8Array;
const ByteArray = hasNodeBuffer$1 ? Buffer : Uint8Array;
const MAX_BUFFER_SIZE = hasNodeBuffer$1 ? 0x100000000 : 0x7fd00000;
let target, keysTarget;
let targetView;
let position = 0;
let safeEnd;
let bundledStrings = null;
let writeStructSlots;
const MAX_BUNDLE_SIZE = 0x5500; // maximum characters such that the encoded bytes fits in 16 bits.
const hasNonLatin = /[\u0080-\uFFFF]/;
const RECORD_SYMBOL = Symbol('record-id');
class Packr extends Unpackr {
constructor(options) {
super(options);
this.offset = 0;
let start;
let hasSharedUpdate;
let structures;
let referenceMap;
let encodeUtf8 = ByteArray.prototype.utf8Write ? function(string, position) {
return target.utf8Write(string, position, 0xffffffff)
} : (textEncoder$1 && textEncoder$1.encodeInto) ?
function(string, position) {
return textEncoder$1.encodeInto(string, target.subarray(position)).written
} : false;
let packr = this;
if (!options)
options = {};
let isSequential = options && options.sequential;
let hasSharedStructures = options.structures || options.saveStructures;
let maxSharedStructures = options.maxSharedStructures;
if (maxSharedStructures == null)
maxSharedStructures = hasSharedStructures ? 32 : 0;
if (maxSharedStructures > 8160)
throw new Error('Maximum maxSharedStructure is 8160')
if (options.structuredClone && options.moreTypes == undefined) {
this.moreTypes = true;
}
let maxOwnStructures = options.maxOwnStructures;
if (maxOwnStructures == null)
maxOwnStructures = hasSharedStructures ? 32 : 64;
if (!this.structures && options.useRecords != false)
this.structures = [];
// two byte record ids for shared structures
let useTwoByteRecords = maxSharedStructures > 32 || (maxOwnStructures + maxSharedStructures > 64);
let sharedLimitId = maxSharedStructures + 0x40;
let maxStructureId = maxSharedStructures + maxOwnStructures + 0x40;
if (maxStructureId > 8256) {
throw new Error('Maximum maxSharedStructure + maxOwnStructure is 8192')
}
let recordIdsToRemove = [];
let transitionsCount = 0;
let serializationsSinceTransitionRebuild = 0;
this.pack = this.encode = function(value, encodeOptions) {
if (!target) {
target = new ByteArrayAllocate(8192);
targetView = target.dataView || (target.dataView = new DataView(target.buffer, 0, 8192));
position = 0;
}
safeEnd = target.length - 10;
if (safeEnd - position < 0x800) {
// don't start too close to the end,
target = new ByteArrayAllocate(target.length);
targetView = target.dataView || (target.dataView = new DataView(target.buffer, 0, target.length));
safeEnd = target.length - 10;
position = 0;
} else
position = (position + 7) & 0x7ffffff8; // Word align to make any future copying of this buffer faster
start = position;
if (encodeOptions & RESERVE_START_SPACE) position += (encodeOptions & 0xff);
referenceMap = packr.structuredClone ? new Map() : null;
if (packr.bundleStrings && typeof value !== 'string') {
bundledStrings = [];
bundledStrings.size = Infinity; // force a new bundle start on first string
} else
bundledStrings = null;
structures = packr.structures;
if (structures) {
if (structures.uninitialized)
structures = packr._mergeStructures(packr.getStructures());
let sharedLength = structures.sharedLength || 0;
if (sharedLength > maxSharedStructures) {
//if (maxSharedStructures <= 32 && structures.sharedLength > 32) // TODO: could support this, but would need to update the limit ids
throw new Error('Shared structures is larger than maximum shared structures, try increasing maxSharedStructures to ' + structures.sharedLength)
}
if (!structures.transitions) {
// rebuild our structure transitions
structures.transitions = Object.create(null);
for (let i = 0; i < sharedLength; i++) {
let keys = structures[i];
if (!keys)
continue
let nextTransition, transition = structures.transitions;
for (let j = 0, l = keys.length; j < l; j++) {
let key = keys[j];
nextTransition = transition[key];
if (!nextTransition) {
nextTransition = transition[key] = Object.create(null);
}
transition = nextTransition;
}
transition[RECORD_SYMBOL] = i + 0x40;
}
this.lastNamedStructuresLength = sharedLength;
}
if (!isSequential) {
structures.nextId = sharedLength + 0x40;
}
}
if (hasSharedUpdate)
hasSharedUpdate = false;
let encodingError;
try {
if (packr.randomAccessStructure && value && value.constructor && value.constructor === Object)
writeStruct(value);
else
pack(value);
let lastBundle = bundledStrings;
if (bundledStrings)
writeBundles(start, pack, 0);
if (referenceMap && referenceMap.idsToInsert) {
let idsToInsert = referenceMap.idsToInsert.sort((a, b) => a.offset > b.offset ? 1 : -1);
let i = idsToInsert.length;
let incrementPosition = -1;
while (lastBundle && i > 0) {
let insertionPoint = idsToInsert[--i].offset + start;
if (insertionPoint < (lastBundle.stringsPosition + start) && incrementPosition === -1)
incrementPosition = 0;
if (insertionPoint > (lastBundle.position + start)) {
if (incrementPosition >= 0)
incrementPosition += 6;
} else {
if (incrementPosition >= 0) {
// update the bundle reference now
targetView.setUint32(lastBundle.position + start,
targetView.getUint32(lastBundle.position + start) + incrementPosition);
incrementPosition = -1; // reset
}
lastBundle = lastBundle.previous;
i++;
}
}
if (incrementPosition >= 0 && lastBundle) {
// update the bundle reference now
targetView.setUint32(lastBundle.position + start,
targetView.getUint32(lastBundle.position + start) + incrementPosition);
}
position += idsToInsert.length * 6;
if (position > safeEnd)
makeRoom(position);
packr.offset = position;
let serialized = insertIds(target.subarray(start, position), idsToInsert);
referenceMap = null;
return serialized
}
packr.offset = position; // update the offset so next serialization doesn't write over our buffer, but can continue writing to same buffer sequentially
if (encodeOptions & REUSE_BUFFER_MODE) {
target.start = start;
target.end = position;
return target
}
return target.subarray(start, position) // position can change if we call pack again in saveStructures, so we get the buffer now
} catch(error) {
encodingError = error;
throw error;
} finally {
if (structures) {
resetStructures();
if (hasSharedUpdate && packr.saveStructures) {
let sharedLength = structures.sharedLength || 0;
// we can't rely on start/end with REUSE_BUFFER_MODE since they will (probably) change when we save
let returnBuffer = target.subarray(start, position);
let newSharedData = prepareStructures$1(structures, packr);
if (!encodingError) { // TODO: If there is an encoding error, should make the structures as uninitialized so they get rebuilt next time
if (packr.saveStructures(newSharedData, newSharedData.isCompatible) === false) {
// get updated structures and try again if the update failed
return packr.pack(value, encodeOptions)
}
packr.lastNamedStructuresLength = sharedLength;
return returnBuffer
}
}
}
if (encodeOptions & RESET_BUFFER_MODE)
position = start;
}
};
const resetStructures = () => {
if (serializationsSinceTransitionRebuild < 10)
serializationsSinceTransitionRebuild++;
let sharedLength = structures.sharedLength || 0;
if (structures.length > sharedLength && !isSequential)
structures.length = sharedLength;
if (transitionsCount > 10000) {
// force a rebuild occasionally after a lot of transitions so it can get cleaned up
structures.transitions = null;
serializationsSinceTransitionRebuild = 0;
transitionsCount = 0;
if (recordIdsToRemove.length > 0)
recordIdsToRemove = [];
} else if (recordIdsToRemove.length > 0 && !isSequential) {
for (let i = 0, l = recordIdsToRemove.length; i < l; i++) {
recordIdsToRemove[i][RECORD_SYMBOL] = 0;
}
recordIdsToRemove = [];
}
};
const packArray = (value) => {
var length = value.length;
if (length < 0x10) {
target[position++] = 0x90 | length;
} else if (length < 0x10000) {
target[position++] = 0xdc;
target[position++] = length >> 8;
target[position++] = length & 0xff;
} else {
target[position++] = 0xdd;
targetView.setUint32(position, length);
position += 4;
}
for (let i = 0; i < length; i++) {
pack(value[i]);
}
};
const pack = (value) => {
if (position > safeEnd)
target = makeRoom(position);
var type = typeof value;
var length;
if (type === 'string') {
let strLength = value.length;
if (bundledStrings && strLength >= 4 && strLength < 0x1000) {
if ((bundledStrings.size += strLength) > MAX_BUNDLE_SIZE) {
let extStart;
let maxBytes = (bundledStrings[0] ? bundledStrings[0].length * 3 + bundledStrings[1].length : 0) + 10;
if (position + maxBytes > safeEnd)
target = makeRoom(position + maxBytes);
let lastBundle;
if (bundledStrings.position) { // here we use the 0x62 extension to write the last bundle and reserve space for the reference pointer to the next/current bundle
lastBundle = bundledStrings;
target[position] = 0xc8; // ext 16
position += 3; // reserve for the writing bundle size
target[position++] = 0x62; // 'b'
extStart = position - start;
position += 4; // reserve for writing bundle reference
writeBundles(start, pack, 0); // write the last bundles
targetView.setUint16(extStart + start - 3, position - start - extStart);
} else { // here we use the 0x62 extension just to reserve the space for the reference pointer to the bundle (will be updated once the bundle is written)
target[position++] = 0xd6; // fixext 4
target[position++] = 0x62; // 'b'
extStart = position - start;
position += 4; // reserve for writing bundle reference
}
bundledStrings = ['', '']; // create new ones
bundledStrings.previous = lastBundle;
bundledStrings.size = 0;
bundledStrings.position = extStart;
}
let twoByte = hasNonLatin.test(value);
bundledStrings[twoByte ? 0 : 1] += value;
target[position++] = 0xc1;
pack(twoByte ? -strLength : strLength);
return
}
let headerSize;
// first we estimate the header size, so we can write to the correct location
if (strLength < 0x20) {
headerSize = 1;
} else if (strLength < 0x100) {
headerSize = 2;
} else if (strLength < 0x10000) {
headerSize = 3;
} else {
headerSize = 5;
}
let maxBytes = strLength * 3;
if (position + maxBytes > safeEnd)
target = makeRoom(position + maxBytes);
if (strLength < 0x40 || !encodeUtf8) {
let i, c1, c2, strPosition = position + headerSize;
for (i = 0; i < strLength; i++) {
c1 = value.charCodeAt(i);
if (c1 < 0x80) {
target[strPosition++] = c1;
} else if (c1 < 0x800) {
target[strPosition++] = c1 >> 6 | 0xc0;
target[strPosition++] = c1 & 0x3f | 0x80;
} else if (
(c1 & 0xfc00) === 0xd800 &&
((c2 = value.charCodeAt(i + 1)) & 0xfc00) === 0xdc00
) {
c1 = 0x10000 + ((c1 & 0x03ff) << 10) + (c2 & 0x03ff);
i++;
target[strPosition++] = c1 >> 18 | 0xf0;
target[strPosition++] = c1 >> 12 & 0x3f | 0x80;
target[strPosition++] = c1 >> 6 & 0x3f | 0x80;
target[strPosition++] = c1 & 0x3f | 0x80;
} else {
target[strPosition++] = c1 >> 12 | 0xe0;
target[strPosition++] = c1 >> 6 & 0x3f | 0x80;
target[strPosition++] = c1 & 0x3f | 0x80;
}
}
length = strPosition - position - headerSize;
} else {
length = encodeUtf8(value, position + headerSize);
}
if (length < 0x20) {
target[position++] = 0xa0 | length;
} else if (length < 0x100) {
if (headerSize < 2) {
target.copyWithin(position + 2, position + 1, position + 1 + length);
}
target[position++] = 0xd9;
target[position++] = length;
} else if (length < 0x10000) {
if (headerSize < 3) {
target.copyWithin(position + 3, position + 2, position + 2 + length);
}
target[position++] = 0xda;
target[position++] = length >> 8;
target[position++] = length & 0xff;
} else {
if (headerSize < 5) {
target.copyWithin(position + 5, position + 3, position + 3 + length);
}
target[position++] = 0xdb;
targetView.setUint32(position, length);
position += 4;
}
position += length;
} else if (type === 'number') {
if (value >>> 0 === value) {// positive integer, 32-bit or less
// positive uint
if (value < 0x20 || (value < 0x80 && this.useRecords === false) || (value < 0x40 && !this.randomAccessStructure)) {
target[position++] = value;
} else if (value < 0x100) {
target[position++] = 0xcc;
target[position++] = value;
} else if (value < 0x10000) {
target[position++] = 0xcd;
target[position++] = value >> 8;
target[position++] = value & 0xff;
} else {
target[position++] = 0xce;
targetView.setUint32(position, value);
position += 4;
}
} else if (value >> 0 === value) { // negative integer
if (value >= -0x20) {
target[position++] = 0x100 + value;
} else if (value >= -0x80) {
target[position++] = 0xd0;
target[position++] = value + 0x100;
} else if (value >= -0x8000) {
target[position++] = 0xd1;
targetView.setInt16(position, value);
position += 2;
} else {
target[position++] = 0xd2;
targetView.setInt32(position, value);
position += 4;
}
} else {
let useFloat32;
if ((useFloat32 = this.useFloat32) > 0 && value < 0x100000000 && value >= -0x80000000) {
target[position++] = 0xca;
targetView.setFloat32(position, value);
let xShifted;
if (useFloat32 < 4 ||
// this checks for rounding of numbers that were encoded in 32-bit float to nearest significant decimal digit that could be preserved
((xShifted = value * mult10[((target[position] & 0x7f) << 1) | (target[position + 1] >> 7)]) >> 0) === xShifted) {
position += 4;
return
} else
position--; // move back into position for writing a double
}
target[position++] = 0xcb;
targetView.setFloat64(position, value);
position += 8;
}
} else if (type === 'object' || type === 'function') {
if (!value)
target[position++] = 0xc0;
else {
if (referenceMap) {
let referee = referenceMap.get(value);
if (referee) {
if (!referee.id) {
let idsToInsert = referenceMap.idsToInsert || (referenceMap.idsToInsert = []);
referee.id = idsToInsert.push(referee);
}
target[position++] = 0xd6; // fixext 4
target[position++] = 0x70; // "p" for pointer
targetView.setUint32(position, referee.id);
position += 4;
return
} else
referenceMap.set(value, { offset: position - start });
}
let constructor = value.constructor;
if (constructor === Object) {
writeObject(value, true);
} else if (constructor === Array) {
packArray(value);
} else if (constructor === Map) {
if (this.mapAsEmptyObject) target[position++] = 0x80;
else {
length = value.size;
if (length < 0x10) {
target[position++] = 0x80 | length;
} else if (length < 0x10000) {
target[position++] = 0xde;
target[position++] = length >> 8;
target[position++] = length & 0xff;
} else {
target[position++] = 0xdf;
targetView.setUint32(position, length);
position += 4;
}
for (let [key, entryValue] of value) {
pack(key);
pack(entryValue);
}
}
} else {
for (let i = 0, l = extensions.length; i < l; i++) {
let extensionClass = extensionClasses[i];
if (value instanceof extensionClass) {
let extension = extensions[i];
if (extension.write) {
if (extension.type) {
target[position++] = 0xd4; // one byte "tag" extension
target[position++] = extension.type;
target[position++] = 0;
}
let writeResult = extension.write.call(this, value);
if (writeResult === value) { // avoid infinite recursion
if (Array.isArray(value)) {
packArray(value);
} else {
writeObject(value);
}
} else {
pack(writeResult);
}
return
}
let currentTarget = target;
let currentTargetView = targetView;
let currentPosition = position;
target = null;
let result;
try {
result = extension.pack.call(this, value, (size) => {
// restore target and use it
target = currentTarget;
currentTarget = null;
position += size;
if (position > safeEnd)
makeRoom(position);
return {
target, targetView, position: position - size
}
}, pack);
} finally {
// restore current target information (unless already restored)
if (currentTarget) {
target = currentTarget;
targetView = currentTargetView;
position = currentPosition;
safeEnd = target.length - 10;
}
}
if (result) {
if (result.length + position > safeEnd)
makeRoom(result.length + position);
position = writeExtensionData(result, target, position, extension.type);
}
return
}
}
// check isArray after extensions, because extensions can extend Array
if (Array.isArray(value)) {
packArray(value);
} else {
// use this as an alternate mechanism for expressing how to serialize
if (value.toJSON) {
const json = value.toJSON();
// if for some reason value.toJSON returns itself it'll loop forever
if (json !== value)
return pack(json)
}
// if there is a writeFunction, use it, otherwise just encode as undefined
if (type === 'function')
return pack(this.writeFunction && this.writeFunction(value));
// no extension found, write as object
writeObject(value, !value.hasOwnProperty); // if it doesn't have hasOwnProperty, don't do hasOwnProperty checks
}
}
}
} else if (type === 'boolean') {
target[position++] = value ? 0xc3 : 0xc2;
} else if (type === 'bigint') {
if (value < (BigInt(1)<<BigInt(63)) && value >= -(BigInt(1)<<BigInt(63))) {
// use a signed int as long as it fits
target[position++] = 0xd3;
targetView.setBigInt64(position, value);
} else if (value < (BigInt(1)<<BigInt(64)) && value > 0) {
// if we can fit an unsigned int, use that
target[position++] = 0xcf;
targetView.setBigUint64(position, value);
} else {
// overflow
if (this.largeBigIntToFloat) {
target[position++] = 0xcb;
targetView.setFloat64(position, Number(value));
} else if (this.useBigIntExtension && value < 2n**(1023n) && value > -(2n**(1023n))) {
target[position++] = 0xc7;
position++;
target[position++] = 0x42; // "B" for BigInt
let bytes = [];
let alignedSign;
do {
let byte = value & 0xffn;
alignedSign = (byte & 0x80n) === (value < 0n ? 0x80n : 0n);
bytes.push(byte);
value >>= 8n;
} while (!((value === 0n || value === -1n) && alignedSign));
target[position-2] = bytes.length;
for (let i = bytes.length; i > 0;) {
target[position++] = Number(bytes[--i]);
}
return
} else {
throw new RangeError(value + ' was too large to fit in MessagePack 64-bit integer format, use' +
' useBigIntExtension or set largeBigIntToFloat to convert to float-64')
}
}
position += 8;
} else if (type === 'undefined') {
if (this.encodeUndefinedAsNil)
target[position++] = 0xc0;
else {
target[position++] = 0xd4; // a number of implementations use fixext1 with type 0, data 0 to denote undefined, so we follow suite
target[position++] = 0;
target[position++] = 0;
}
} else {
throw new Error('Unknown type: ' + type)
}
};
const writePlainObject = (this.variableMapSize || this.coercibleKeyAsNumber) ? (object) => {
// this method is slightly slower, but generates "preferred serialization" (optimally small for smaller objects)
let keys = Object.keys(object);
let length = keys.length;
if (length < 0x10) {
target[position++] = 0x80 | length;
} else if (length < 0x10000) {
target[position++] = 0xde;
target[position++] = length >> 8;
target[position++] = length & 0xff;
} else {
target[position++] = 0xdf;
targetView.setUint32(position, length);
position += 4;
}
let key;
if (this.coercibleKeyAsNumber) {
for (let i = 0; i < length; i++) {
key = keys[i];
let num = Number(key);
pack(isNaN(num) ? key : num);
pack(object[key]);
}
} else {
for (let i = 0; i < length; i++) {
pack(key = keys[i]);
pack(object[key]);
}
}
} :
(object, safePrototype) => {
target[position++] = 0xde; // always using map 16, so we can preallocate and set the length afterwards
let objectOffset = position - start;
position += 2;
let size = 0;
for (let key in object) {
if (safePrototype || object.hasOwnProperty(key)) {
pack(key);
pack(object[key]);
size++;
}
}
target[objectOffset++ + start] = size >> 8;
target[objectOffset + start] = size & 0xff;
};
const writeRecord = this.useRecords === false ? writePlainObject :
(options.progressiveRecords && !useTwoByteRecords) ? // this is about 2% faster for highly stable structures, since it only requires one for-in loop (but much more expensive when new structure needs to be written)
(object, safePrototype) => {
let nextTransition, transition = structures.transitions || (structures.transitions = Object.create(null));
let objectOffset = position++ - start;
let wroteKeys;
for (let key in object) {
if (safePrototype || object.hasOwnProperty(key)) {
nextTransition = transition[key];
if (nextTransition)
transition = nextTransition;
else {
// record doesn't exist, create full new record and insert it
let keys = Object.keys(object);
let lastTransition = transition;
transition = structures.transitions;
let newTransitions = 0;
for (let i = 0, l = keys.length; i < l; i++) {
let key = keys[i];
nextTransition = transition[key];
if (!nextTransition) {
nextTransition = transition[key] = Object.create(null);
newTransitions++;
}
transition = nextTransition;
}
if (objectOffset + start + 1 == position) {
// first key, so we don't need to insert, we can just write record directly
position--;
newRecord(transition, keys, newTransitions);
} else // otherwise we need to insert the record, moving existing data after the record
insertNewRecord(transition, keys, objectOffset, newTransitions);
wroteKeys = true;
transition = lastTransition[key];
}
pack(object[key]);
}
}
if (!wroteKeys) {
let recordId = transition[RECORD_SYMBOL];
if (recordId)
target[objectOffset + start] = recordId;
else
insertNewRecord(transition, Object.keys(object), objectOffset, 0);
}
} :
(object, safePrototype) => {
let nextTransition, transition = structures.transitions || (structures.transitions = Object.create(null));
let newTransitions = 0;
for (let key in object) if (safePrototype || object.hasOwnProperty(key)) {
nextTransition = transition[key];
if (!nextTransition) {
nextTransition = transition[key] = Object.create(null);
newTransitions++;
}
transition = nextTransition;
}
let recordId = transition[RECORD_SYMBOL];
if (recordId) {
if (recordId >= 0x60 && useTwoByteRecords) {
target[position++] = ((recordId -= 0x60) & 0x1f) + 0x60;
target[position++] = recordId >> 5;
} else
target[position++] = recordId;
} else {
newRecord(transition, transition.__keys__ || Object.keys(object), newTransitions);
}
// now write the values
for (let key in object)
if (safePrototype || object.hasOwnProperty(key)) {
pack(object[key]);
}
};
// craete reference to useRecords if useRecords is a function
const checkUseRecords = typeof this.useRecords == 'function' && this.useRecords;
const writeObject = checkUseRecords ? (object, safePrototype) => {
checkUseRecords(object) ? writeRecord(object,safePrototype) : writePlainObject(object,safePrototype);
} : writeRecord;
const makeRoom = (end) => {
let newSize;
if (end > 0x1000000) {
// special handling for really large buffers
if ((end - start) > MAX_BUFFER_SIZE)
throw new Error('Packed buffer would be larger than maximum buffer size')
newSize = Math.min(MAX_BUFFER_SIZE,
Math.round(Math.max((end - start) * (end > 0x4000000 ? 1.25 : 2), 0x400000) / 0x1000) * 0x1000);
} else // faster handling for smaller buffers
newSize = ((Math.max((end - start) << 2, target.length - 1) >> 12) + 1) << 12;
let newBuffer = new ByteArrayAllocate(newSize);
targetView = newBuffer.dataView || (newBuffer.dataView = new DataView(newBuffer.buffer, 0, newSize));
end = Math.min(end, target.length);
if (target.copy)
target.copy(newBuffer, 0, start, end);
else
newBuffer.set(target.slice(start, end));
position -= start;
start = 0;
safeEnd = newBuffer.length - 10;
return target = newBuffer
};
const newRecord = (transition, keys, newTransitions) => {
let recordId = structures.nextId;
if (!recordId)
recordId = 0x40;
if (recordId < sharedLimitId && this.shouldShareStructure && !this.shouldShareStructure(keys)) {
recordId = structures.nextOwnId;
if (!(recordId < maxStructureId))
recordId = sharedLimitId;
structures.nextOwnId = recordId + 1;
} else {
if (recordId >= maxStructureId)// cycle back around
recordId = sharedLimitId;
structures.nextId = recordId + 1;
}
let highByte = keys.highByte = recordId >= 0x60 && useTwoByteRecords ? (recordId - 0x60) >> 5 : -1;
transition[RECORD_SYMBOL] = recordId;
transition.__keys__ = keys;
structures[recordId - 0x40] = keys;
if (recordId < sharedLimitId) {
keys.isShared = true;
structures.sharedLength = recordId - 0x3f;
hasSharedUpdate = true;
if (highByte >= 0) {
target[position++] = (recordId & 0x1f) + 0x60;
target[position++] = highByte;
} else {
target[position++] = recordId;
}
} else {
if (highByte >= 0) {
target[position++] = 0xd5; // fixext 2
target[position++] = 0x72; // "r" record defintion extension type
target[position++] = (recordId & 0x1f) + 0x60;
target[position++] = highByte;
} else {
target[position++] = 0xd4; // fixext 1
target[position++] = 0x72; // "r" record defintion extension type
target[position++] = recordId;
}
if (newTransitions)
transitionsCount += serializationsSinceTransitionRebuild * newTransitions;
// record the removal of the id, we can maintain our shared structure
if (recordIdsToRemove.length >= maxOwnStructures)
recordIdsToRemove.shift()[RECORD_SYMBOL] = 0; // we are cycling back through, and have to remove old ones
recordIdsToRemove.push(transition);
pack(keys);
}
};
const insertNewRecord = (transition, keys, insertionOffset, newTransitions) => {
let mainTarget = target;
let mainPosition = position;
let mainSafeEnd = safeEnd;
let mainStart = start;
target = keysTarget;
position = 0;
start = 0;
if (!target)
keysTarget = target = new ByteArrayAllocate(8192);
safeEnd = target.length - 10;
newRecord(transition, keys, newTransitions);
keysTarget = target;
let keysPosition = position;
target = mainTarget;
position = mainPosition;
safeEnd = mainSafeEnd;
start = mainStart;
if (keysPosition > 1) {
let newEnd = position + keysPosition - 1;
if (newEnd > safeEnd)
makeRoom(newEnd);
let insertionPosition = insertionOffset + start;
target.copyWithin(insertionPosition + keysPosition, insertionPosition + 1, position);
target.set(keysTarget.slice(0, keysPosition), insertionPosition);
position = newEnd;
} else {
target[insertionOffset + start] = keysTarget[0];
}
};
const writeStruct = (object, safePrototype) => {
let newPosition = writeStructSlots(object, target, start, position, structures, makeRoom, (value, newPosition, notifySharedUpdate) => {
if (notifySharedUpdate)
return hasSharedUpdate = true;
position = newPosition;
let startTarget = target;
pack(value);
resetStructures();
if (startTarget !== target) {
return { position, targetView, target }; // indicate the buffer was re-allocated
}
return position;
}, this);
if (newPosition === 0) // bail and go to a msgpack object
return writeObject(object, true);
position = newPosition;
};
}
useBuffer(buffer) {
// this means we are finished using our own buffer and we can write over it safely
target = buffer;
targetView = new DataView(target.buffer, target.byteOffset, target.byteLength);
position = 0;
}
clearSharedData() {
if (this.structures)
this.structures = [];
if (this.typedStructs)
this.typedStructs = [];
}
}
extensionClasses = [ Date, Set, Error, RegExp, ArrayBuffer, Object.getPrototypeOf(Uint8Array.prototype).constructor /*TypedArray*/, C1Type ];
extensions = [{
pack(date, allocateForWrite, pack) {
let seconds = date.getTime() / 1000;
if ((this.useTimestamp32 || date.getMilliseconds() === 0) && seconds >= 0 && seconds < 0x100000000) {
// Timestamp 32
let { target, targetView, position} = allocateForWrite(6);
target[position++] = 0xd6;
target[position++] = 0xff;
targetView.setUint32(position, seconds);
} else if (seconds > 0 && seconds < 0x100000000) {
// Timestamp 64
let { target, targetView, position} = allocateForWrite(10);
target[position++] = 0xd7;
target[position++] = 0xff;
targetView.setUint32(position, date.getMilliseconds() * 4000000 + ((seconds / 1000 / 0x100000000) >> 0));
targetView.setUint32(position + 4, seconds);
} else if (isNaN(seconds)) {
if (this.onInvalidDate) {
allocateForWrite(0);
return pack(this.onInvalidDate())
}
// Intentionally invalid timestamp
let { target, targetView, position} = allocateForWrite(3);
target[position++] = 0xd4;
target[position++] = 0xff;
target[position++] = 0xff;
} else {
// Timestamp 96
let { target, targetView, position} = allocateForWrite(15);
target[position++] = 0xc7;
target[position++] = 12;
target[position++] = 0xff;
targetView.setUint32(position, date.getMilliseconds() * 1000000);
targetView.setBigInt64(position + 4, BigInt(Math.floor(seconds)));
}
}
}, {
pack(set, allocateForWrite, pack) {
if (this.setAsEmptyObject) {
allocateForWrite(0);
return pack({})
}
let array = Array.from(set);
let { target, position} = allocateForWrite(this.moreTypes ? 3 : 0);
if (this.moreTypes) {
target[position++] = 0xd4;
target[position++] = 0x73; // 's' for Set
target[position++] = 0;
}
pack(array);
}
}, {
pack(error, allocateForWrite, pack) {
let { target, position} = allocateForWrite(this.moreTypes ? 3 : 0);
if (this.moreTypes) {
target[position++] = 0xd4;
target[position++] = 0x65; // 'e' for error
target[position++] = 0;
}
pack([ error.name, error.message ]);
}
}, {
pack(regex, allocateForWrite, pack) {
let { target, position} = allocateForWrite(this.moreTypes ? 3 : 0);
if (this.moreTypes) {
target[position++] = 0xd4;
target[position++] = 0x78; // 'x' for regeXp
target[position++] = 0;
}
pack([ regex.source, regex.flags ]);
}
}, {
pack(arrayBuffer, allocateForWrite) {
if (this.moreTypes)
writeExtBuffer(arrayBuffer, 0x10, allocateForWrite);
else
writeBuffer(hasNodeBuffer$1 ? Buffer.from(arrayBuffer) : new Uint8Array(arrayBuffer), allocateForWrite);
}
}, {
pack(typedArray, allocateForWrite) {
let constructor = typedArray.constructor;
if (constructor !== ByteArray && this.moreTypes)
writeExtBuffer(typedArray, typedArrays.indexOf(constructor.name), allocateForWrite);
else
writeBuffer(typedArray, allocateForWrite);
}
}, {
pack(c1, allocateForWrite) { // specific 0xC1 object
let { target, position} = allocateForWrite(1);
target[position] = 0xc1;
}
}];
function writeExtBuffer(typedArray, type, allocateForWrite, encode) {
let length = typedArray.byteLength;
if (length + 1 < 0x100) {
var { target, position } = allocateForWrite(4 + length);
target[position++] = 0xc7;
target[position++] = length + 1;
} else if (length + 1 < 0x10000) {
var { target, position } = allocateForWrite(5 + length);
target[position++] = 0xc8;
target[position++] = (length + 1) >> 8;
target[position++] = (length + 1) & 0xff;
} else {
var { target, position, targetView } = allocateForWrite(7 + length);
target[position++] = 0xc9;
targetView.setUint32(position, length + 1); // plus one for the type byte
position += 4;
}
target[position++] = 0x74; // "t" for typed array
target[position++] = type;
target.set(new Uint8Array(typedArray.buffer, typedArray.byteOffset, typedArray.byteLength), position);
}
function writeBuffer(buffer, allocateForWrite) {
let length = buffer.byteLength;
var target, position;
if (length < 0x100) {
var { target, position } = allocateForWrite(length + 2);
target[position++] = 0xc4;
target[position++] = length;
} else if (length < 0x10000) {
var { target, position } = allocateForWrite(length + 3);
target[position++] = 0xc5;
target[position++] = length >> 8;
target[position++] = length & 0xff;
} else {
var { target, position, targetView } = allocateForWrite(length + 5);
target[position++] = 0xc6;
targetView.setUint32(position, length);
position += 4;
}
target.set(buffer, position);
}
function writeExtensionData(result, target, position, type) {
let length = result.length;
switch (length) {
case 1:
target[position++] = 0xd4;
break
case 2:
target[position++] = 0xd5;
break
case 4:
target[position++] = 0xd6;
break
case 8:
target[position++] = 0xd7;
break
case 16:
target[position++] = 0xd8;
break
default:
if (length < 0x100) {
target[position++] = 0xc7;
target[position++] = length;
} else if (length < 0x10000) {
target[position++] = 0xc8;
target[position++] = length >> 8;
target[position++] = length & 0xff;
} else {
target[position++] = 0xc9;
target[position++] = length >> 24;
target[position++] = (length >> 16) & 0xff;
target[position++] = (length >> 8) & 0xff;
target[position++] = length & 0xff;
}
}
target[position++] = type;
target.set(result, position);
position += length;
return position
}
function insertIds(serialized, idsToInsert) {
// insert the ids that need to be referenced for structured clones
let nextId;
let distanceToMove = idsToInsert.length * 6;
let lastEnd = serialized.length - distanceToMove;
while (nextId = idsToInsert.pop()) {
let offset = nextId.offset;
let id = nextId.id;
serialized.copyWithin(offset + distanceToMove, offset, lastEnd);
distanceToMove -= 6;
let position = offset + distanceToMove;
serialized[position++] = 0xd6;
serialized[position++] = 0x69; // 'i'
serialized[position++] = id >> 24;
serialized[position++] = (id >> 16) & 0xff;
serialized[position++] = (id >> 8) & 0xff;
serialized[position++] = id & 0xff;
lastEnd = offset;
}
return serialized
}
function writeBundles(start, pack, incrementPosition) {
if (bundledStrings.length > 0) {
targetView.setUint32(bundledStrings.position + start, position + incrementPosition - bundledStrings.position - start);
bundledStrings.stringsPosition = position - start;
let writeStrings = bundledStrings;
bundledStrings = null;
pack(writeStrings[0]);
pack(writeStrings[1]);
}
}
function addExtension(extension) {
if (extension.Class) {
if (!extension.pack && !extension.write)
throw new Error('Extension has no pack or write function')
if (extension.pack && !extension.type)
throw new Error('Extension has no type (numeric code to identify the extension)')
extensionClasses.unshift(extension.Class);
extensions.unshift(extension);
}
addExtension$1(extension);
}
function prepareStructures$1(structures, packr) {
structures.isCompatible = (existingStructures) => {
let compatible = !existingStructures || ((packr.lastNamedStructuresLength || 0) === existingStructures.length);
if (!compatible) // we want to merge these existing structures immediately since we already have it and we are in the right transaction
packr._mergeStructures(existingStructures);
return compatible;
};
return structures
}
function setWriteStructSlots(writeSlots, makeStructures) {
writeStructSlots = writeSlots;
prepareStructures$1 = makeStructures;
}
let defaultPackr = new Packr({ useRecords: false });
const pack = defaultPackr.pack;
const encode = defaultPackr.pack;
const Encoder = Packr;
const { NEVER, ALWAYS, DECIMAL_ROUND, DECIMAL_FIT } = FLOAT32_OPTIONS;
const REUSE_BUFFER_MODE = 512;
const RESET_BUFFER_MODE = 1024;
const RESERVE_START_SPACE = 2048;
const ASCII = 3; // the MIBenum from https://www.iana.org/assignments/character-sets/character-sets.xhtml (and other character encodings could be referenced by MIBenum)
const NUMBER = 0;
const UTF8 = 2;
const OBJECT_DATA = 1;
const DATE = 16;
const TYPE_NAMES = ['num', 'object', 'string', 'ascii'];
TYPE_NAMES[DATE] = 'date';
const float32Headers = [false, true, true, false, false, true, true, false];
let evalSupported;
try {
new Function('');
evalSupported = true;
} catch(error) {
// if eval variants are not supported, do not create inline object readers ever
}
let updatedPosition;
const hasNodeBuffer = typeof Buffer !== 'undefined';
let textEncoder, currentSource;
try {
textEncoder = new TextEncoder();
} catch (error) {}
const encodeUtf8 = hasNodeBuffer ? function(target, string, position) {
return target.utf8Write(string, position, 0xffffffff)
} : (textEncoder && textEncoder.encodeInto) ?
function(target, string, position) {
return textEncoder.encodeInto(string, target.subarray(position)).written
} : false;
setWriteStructSlots(writeStruct, prepareStructures);
function writeStruct(object, target, encodingStart, position, structures, makeRoom, pack, packr) {
let typedStructs = packr.typedStructs || (packr.typedStructs = []);
// note that we rely on pack.js to load stored structures before we get to this point
let targetView = target.dataView;
let refsStartPosition = (typedStructs.lastStringStart || 100) + position;
let safeEnd = target.length - 10;
let start = position;
if (position > safeEnd) {
target = makeRoom(position);
targetView = target.dataView;
position -= encodingStart;
start -= encodingStart;
refsStartPosition -= encodingStart;
encodingStart = 0;
safeEnd = target.length - 10;
}
let refOffset, refPosition = refsStartPosition;
let transition = typedStructs.transitions || (typedStructs.transitions = Object.create(null));
let nextId = typedStructs.nextId || typedStructs.length;
let headerSize =
nextId < 0xf ? 1 :
nextId < 0xf0 ? 2 :
nextId < 0xf000 ? 3 :
nextId < 0xf00000 ? 4 : 0;
if (headerSize === 0)
return 0;
position += headerSize;
let queuedReferences = [];
let usedAscii0;
let keyIndex = 0;
for (let key in object) {
let value = object[key];
let nextTransition = transition[key];
if (!nextTransition) {
transition[key] = nextTransition = {
key,
parent: transition,
enumerationOffset: 0,
ascii0: null,
ascii8: null,
num8: null,
string16: null,
object16: null,
num32: null,
float64: null,
date64: null
};
}
if (position > safeEnd) {
target = makeRoom(position);
targetView = target.dataView;
position -= encodingStart;
start -= encodingStart;
refsStartPosition -= encodingStart;
refPosition -= encodingStart;
encodingStart = 0;
safeEnd = target.length - 10;
}
switch (typeof value) {
case 'number':
let number = value;
// first check to see if we are using a lot of ids and should default to wide/common format
if (nextId < 200 || !nextTransition.num64) {
if (number >> 0 === number && number < 0x20000000 && number > -0x1f000000) {
if (number < 0xf6 && number >= 0 && (nextTransition.num8 && !(nextId > 200 && nextTransition.num32) || number < 0x20 && !nextTransition.num32)) {
transition = nextTransition.num8 || createTypeTransition(nextTransition, NUMBER, 1);
target[position++] = number;
} else {
transition = nextTransition.num32 || createTypeTransition(nextTransition, NUMBER, 4);
targetView.setUint32(position, number, true);
position += 4;
}
break;
} else if (number < 0x100000000 && number >= -0x80000000) {
targetView.setFloat32(position, number, true);
if (float32Headers[target[position + 3] >>> 5]) {
let xShifted;
// this checks for rounding of numbers that were encoded in 32-bit float to nearest significant decimal digit that could be preserved
if (((xShifted = number * mult10[((target[position + 3] & 0x7f) << 1) | (target[position + 2] >> 7)]) >> 0) === xShifted) {
transition = nextTransition.num32 || createTypeTransition(nextTransition, NUMBER, 4);
position += 4;
break;
}
}
}
}
transition = nextTransition.num64 || createTypeTransition(nextTransition, NUMBER, 8);
targetView.setFloat64(position, number, true);
position += 8;
break;
case 'string':
let strLength = value.length;
refOffset = refPosition - refsStartPosition;
if ((strLength << 2) + refPosition > safeEnd) {
target = makeRoom((strLength << 2) + refPosition);
targetView = target.dataView;
position -= encodingStart;
start -= encodingStart;
refsStartPosition -= encodingStart;
refPosition -= encodingStart;
encodingStart = 0;
safeEnd = target.length - 10;
}
if (strLength > ((0xff00 + refOffset) >> 2)) {
queuedReferences.push(key, value, position - start);
break;
}
let isNotAscii;
let strStart = refPosition;
if (strLength < 0x40) {
let i, c1, c2;
for (i = 0; i < strLength; i++) {
c1 = value.charCodeAt(i);
if (c1 < 0x80) {
target[refPosition++] = c1;
} else if (c1 < 0x800) {
isNotAscii = true;
target[refPosition++] = c1 >> 6 | 0xc0;
target[refPosition++] = c1 & 0x3f | 0x80;
} else if (
(c1 & 0xfc00) === 0xd800 &&
((c2 = value.charCodeAt(i + 1)) & 0xfc00) === 0xdc00
) {
isNotAscii = true;
c1 = 0x10000 + ((c1 & 0x03ff) << 10) + (c2 & 0x03ff);
i++;
target[refPosition++] = c1 >> 18 | 0xf0;
target[refPosition++] = c1 >> 12 & 0x3f | 0x80;
target[refPosition++] = c1 >> 6 & 0x3f | 0x80;
target[refPosition++] = c1 & 0x3f | 0x80;
} else {
isNotAscii = true;
target[refPosition++] = c1 >> 12 | 0xe0;
target[refPosition++] = c1 >> 6 & 0x3f | 0x80;
target[refPosition++] = c1 & 0x3f | 0x80;
}
}
} else {
refPosition += encodeUtf8(target, value, refPosition);
isNotAscii = refPosition - strStart > strLength;
}
if (refOffset < 0xa0 || (refOffset < 0xf6 && (nextTransition.ascii8 || nextTransition.string8))) {
// short strings
if (isNotAscii) {
if (!(transition = nextTransition.string8)) {
if (typedStructs.length > 10 && (transition = nextTransition.ascii8)) {
// we can safely change ascii to utf8 in place since they are compatible
transition.__type = UTF8;
nextTransition.ascii8 = null;
nextTransition.string8 = transition;
pack(null, 0, true); // special call to notify that structures have been updated
} else {
transition = createTypeTransition(nextTransition, UTF8, 1);
}
}
} else if (refOffset === 0 && !usedAscii0) {
usedAscii0 = true;
transition = nextTransition.ascii0 || createTypeTransition(nextTransition, ASCII, 0);
break; // don't increment position
}// else ascii:
else if (!(transition = nextTransition.ascii8) && !(typedStructs.length > 10 && (transition = nextTransition.string8)))
transition = createTypeTransition(nextTransition, ASCII, 1);
target[position++] = refOffset;
} else {
// TODO: Enable ascii16 at some point, but get the logic right
//if (isNotAscii)
transition = nextTransition.string16 || createTypeTransition(nextTransition, UTF8, 2);
//else
//transition = nextTransition.ascii16 || createTypeTransition(nextTransition, ASCII, 2);
targetView.setUint16(position, refOffset, true);
position += 2;
}
break;
case 'object':
if (value) {
if (value.constructor === Date) {
transition = nextTransition.date64 || createTypeTransition(nextTransition, DATE, 8);
targetView.setFloat64(position, value.getTime(), true);
position += 8;
} else {
queuedReferences.push(key, value, keyIndex);
}
break;
} else { // null
nextTransition = anyType(nextTransition, position, targetView, -10); // match CBOR with this
if (nextTransition) {
transition = nextTransition;
position = updatedPosition;
} else queuedReferences.push(key, value, keyIndex);
}
break;
case 'boolean':
transition = nextTransition.num8 || nextTransition.ascii8 || createTypeTransition(nextTransition, NUMBER, 1);
target[position++] = value ? 0xf9 : 0xf8; // match CBOR with these
break;
case 'undefined':
nextTransition = anyType(nextTransition, position, targetView, -9); // match CBOR with this
if (nextTransition) {
transition = nextTransition;
position = updatedPosition;
} else queuedReferences.push(key, value, keyIndex);
break;
default:
queuedReferences.push(key, value, keyIndex);
}
keyIndex++;
}
for (let i = 0, l = queuedReferences.length; i < l;) {
let key = queuedReferences[i++];
let value = queuedReferences[i++];
let propertyIndex = queuedReferences[i++];
let nextTransition = transition[key];
if (!nextTransition) {
transition[key] = nextTransition = {
key,
parent: transition,
enumerationOffset: propertyIndex - keyIndex,
ascii0: null,
ascii8: null,
num8: null,
string16: null,
object16: null,
num32: null,
float64: null
};
}
let newPosition;
if (value) {
/*if (typeof value === 'string') { // TODO: we could re-enable long strings
if (position + value.length * 3 > safeEnd) {
target = makeRoom(position + value.length * 3);
position -= start;
targetView = target.dataView;
start = 0;
}
newPosition = position + target.utf8Write(value, position, 0xffffffff);
} else { */
let size;
refOffset = refPosition - refsStartPosition;
if (refOffset < 0xff00) {
transition = nextTransition.object16;
if (transition)
size = 2;
else if ((transition = nextTransition.object32))
size = 4;
else {
transition = createTypeTransition(nextTransition, OBJECT_DATA, 2);
size = 2;
}
} else {
transition = nextTransition.object32 || createTypeTransition(nextTransition, OBJECT_DATA, 4);
size = 4;
}
newPosition = pack(value, refPosition);
//}
if (typeof newPosition === 'object') {
// re-allocated
refPosition = newPosition.position;
targetView = newPosition.targetView;
target = newPosition.target;
refsStartPosition -= encodingStart;
position -= encodingStart;
start -= encodingStart;
encodingStart = 0;
} else
refPosition = newPosition;
if (size === 2) {
targetView.setUint16(position, refOffset, true);
position += 2;
} else {
targetView.setUint32(position, refOffset, true);
position += 4;
}
} else { // null or undefined
transition = nextTransition.object16 || createTypeTransition(nextTransition, OBJECT_DATA, 2);
targetView.setInt16(position, value === null ? -10 : -9, true);
position += 2;
}
keyIndex++;
}
let recordId = transition[RECORD_SYMBOL];
if (recordId == null) {
recordId = packr.typedStructs.length;
let structure = [];
let nextTransition = transition;
let key, type;
while ((type = nextTransition.__type) !== undefined) {
let size = nextTransition.__size;
nextTransition = nextTransition.__parent;
key = nextTransition.key;
let property = [type, size, key];
if (nextTransition.enumerationOffset)
property.push(nextTransition.enumerationOffset);
structure.push(property);
nextTransition = nextTransition.parent;
}
structure.reverse();
transition[RECORD_SYMBOL] = recordId;
packr.typedStructs[recordId] = structure;
pack(null, 0, true); // special call to notify that structures have been updated
}
switch (headerSize) {
case 1:
if (recordId >= 0x10) return 0;
target[start] = recordId + 0x20;
break;
case 2:
if (recordId >= 0x100) return 0;
target[start] = 0x38;
target[start + 1] = recordId;
break;
case 3:
if (recordId >= 0x10000) return 0;
target[start] = 0x39;
targetView.setUint16(start + 1, recordId, true);
break;
case 4:
if (recordId >= 0x1000000) return 0;
targetView.setUint32(start, (recordId << 8) + 0x3a, true);
break;
}
if (position < refsStartPosition) {
if (refsStartPosition === refPosition)
return position; // no refs
// adjust positioning
target.copyWithin(position, refsStartPosition, refPosition);
refPosition += position - refsStartPosition;
typedStructs.lastStringStart = position - start;
} else if (position > refsStartPosition) {
if (refsStartPosition === refPosition)
return position; // no refs
typedStructs.lastStringStart = position - start;
return writeStruct(object, target, encodingStart, start, structures, makeRoom, pack, packr);
}
return refPosition;
}
function anyType(transition, position, targetView, value) {
let nextTransition;
if ((nextTransition = transition.ascii8 || transition.num8)) {
targetView.setInt8(position, value, true);
updatedPosition = position + 1;
return nextTransition;
}
if ((nextTransition = transition.string16 || transition.object16)) {
targetView.setInt16(position, value, true);
updatedPosition = position + 2;
return nextTransition;
}
if (nextTransition = transition.num32) {
targetView.setUint32(position, 0xe0000100 + value, true);
updatedPosition = position + 4;
return nextTransition;
}
// transition.float64
if (nextTransition = transition.num64) {
targetView.setFloat64(position, NaN, true);
targetView.setInt8(position, value);
updatedPosition = position + 8;
return nextTransition;
}
updatedPosition = position;
// TODO: can we do an "any" type where we defer the decision?
return;
}
function createTypeTransition(transition, type, size) {
let typeName = TYPE_NAMES[type] + (size << 3);
let newTransition = transition[typeName] || (transition[typeName] = Object.create(null));
newTransition.__type = type;
newTransition.__size = size;
newTransition.__parent = transition;
return newTransition;
}
function onLoadedStructures(sharedData) {
if (!(sharedData instanceof Map))
return sharedData;
let typed = sharedData.get('typed') || [];
if (Object.isFrozen(typed))
typed = typed.map(structure => structure.slice(0));
let named = sharedData.get('named');
let transitions = Object.create(null);
for (let i = 0, l = typed.length; i < l; i++) {
let structure = typed[i];
let transition = transitions;
for (let [type, size, key] of structure) {
let nextTransition = transition[key];
if (!nextTransition) {
transition[key] = nextTransition = {
key,
parent: transition,
enumerationOffset: 0,
ascii0: null,
ascii8: null,
num8: null,
string16: null,
object16: null,
num32: null,
float64: null,
date64: null,
};
}
transition = createTypeTransition(nextTransition, type, size);
}
transition[RECORD_SYMBOL] = i;
}
typed.transitions = transitions;
this.typedStructs = typed;
this.lastTypedStructuresLength = typed.length;
return named;
}
var sourceSymbol = Symbol.for('source');
function readStruct(src, position, srcEnd, unpackr) {
let recordId = src[position++] - 0x20;
if (recordId >= 24) {
switch(recordId) {
case 24: recordId = src[position++]; break;
// little endian:
case 25: recordId = src[position++] + (src[position++] << 8); break;
case 26: recordId = src[position++] + (src[position++] << 8) + (src[position++] << 16); break;
case 27: recordId = src[position++] + (src[position++] << 8) + (src[position++] << 16) + (src[position++] << 24); break;
}
}
let structure = unpackr.typedStructs && unpackr.typedStructs[recordId];
if (!structure) {
// copy src buffer because getStructures will override it
src = Uint8Array.prototype.slice.call(src, position, srcEnd);
srcEnd -= position;
position = 0;
unpackr._mergeStructures(unpackr.getStructures());
if (!unpackr.typedStructs)
throw new Error('Could not find any shared typed structures');
unpackr.lastTypedStructuresLength = unpackr.typedStructs.length;
structure = unpackr.typedStructs[recordId];
if (!structure)
throw new Error('Could not find typed structure ' + recordId);
}
var construct = structure.construct;
if (!construct) {
construct = structure.construct = function LazyObject() {
};
var prototype = construct.prototype;
let properties = [];
let currentOffset = 0;
let lastRefProperty;
for (let i = 0, l = structure.length; i < l; i++) {
let definition = structure[i];
let [ type, size, key, enumerationOffset ] = definition;
if (key === '__proto__')
key = '__proto_';
let property = {
key,
offset: currentOffset,
};
if (enumerationOffset)
properties.splice(i + enumerationOffset, 0, property);
else
properties.push(property);
let getRef;
switch(size) { // TODO: Move into a separate function
case 0: getRef = () => 0; break;
case 1:
getRef = (source, position) => {
let ref = source.bytes[position + property.offset];
return ref >= 0xf6 ? toConstant(ref) : ref;
};
break;
case 2:
getRef = (source, position) => {
let src = source.bytes;
let dataView = src.dataView || (src.dataView = new DataView(src.buffer, src.byteOffset, src.byteLength));
let ref = dataView.getUint16(position + property.offset, true);
return ref >= 0xff00 ? toConstant(ref & 0xff) : ref;
};
break;
case 4:
getRef = (source, position) => {
let src = source.bytes;
let dataView = src.dataView || (src.dataView = new DataView(src.buffer, src.byteOffset, src.byteLength));
let ref = dataView.getUint32(position + property.offset, true);
return ref >= 0xffffff00 ? toConstant(ref & 0xff) : ref;
};
break;
}
property.getRef = getRef;
currentOffset += size;
let get;
switch(type) {
case ASCII:
if (lastRefProperty && !lastRefProperty.next)
lastRefProperty.next = property;
lastRefProperty = property;
property.multiGetCount = 0;
get = function(source) {
let src = source.bytes;
let position = source.position;
let refStart = currentOffset + position;
let ref = getRef(source, position);
if (typeof ref !== 'number') return ref;
let end, next = property.next;
while(next) {
end = next.getRef(source, position);
if (typeof end === 'number')
break;
else
end = null;
next = next.next;
}
if (end == null)
end = source.bytesEnd - refStart;
if (source.srcString) {
return source.srcString.slice(ref, end);
}
/*if (property.multiGetCount > 0) {
let asciiEnd;
next = firstRefProperty;
let dataView = src.dataView || (src.dataView = new DataView(src.buffer, src.byteOffset, src.byteLength));
do {
asciiEnd = dataView.getUint16(source.position + next.offset, true);
if (asciiEnd < 0xff00)
break;
else
asciiEnd = null;
} while((next = next.next));
if (asciiEnd == null)
asciiEnd = source.bytesEnd - refStart
source.srcString = src.toString('latin1', refStart, refStart + asciiEnd);
return source.srcString.slice(ref, end);
}
if (source.prevStringGet) {
source.prevStringGet.multiGetCount += 2;
} else {
source.prevStringGet = property;
property.multiGetCount--;
}*/
return readString(src, ref + refStart, end - ref);
//return src.toString('latin1', ref + refStart, end + refStart);
};
break;
case UTF8: case OBJECT_DATA:
if (lastRefProperty && !lastRefProperty.next)
lastRefProperty.next = property;
lastRefProperty = property;
get = function(source) {
let position = source.position;
let refStart = currentOffset + position;
let ref = getRef(source, position);
if (typeof ref !== 'number') return ref;
let src = source.bytes;
let end, next = property.next;
while(next) {
end = next.getRef(source, position);
if (typeof end === 'number')
break;
else
end = null;
next = next.next;
}
if (end == null)
end = source.bytesEnd - refStart;
if (type === UTF8) {
return src.toString('utf8', ref + refStart, end + refStart);
} else {
currentSource = source;
try {
return unpackr.unpack(src, { start: ref + refStart, end: end + refStart });
} finally {
currentSource = null;
}
}
};
break;
case NUMBER:
switch(size) {
case 4:
get = function (source) {
let src = source.bytes;
let dataView = src.dataView || (src.dataView = new DataView(src.buffer, src.byteOffset, src.byteLength));
let position = source.position + property.offset;
let value = dataView.getInt32(position, true);
if (value < 0x20000000) {
if (value > -0x1f000000)
return value;
if (value > -0x20000000)
return toConstant(value & 0xff);
}
let fValue = dataView.getFloat32(position, true);
// this does rounding of numbers that were encoded in 32-bit float to nearest significant decimal digit that could be preserved
let multiplier = mult10[((src[position + 3] & 0x7f) << 1) | (src[position + 2] >> 7)];
return ((multiplier * fValue + (fValue > 0 ? 0.5 : -0.5)) >> 0) / multiplier;
};
break;
case 8:
get = function (source) {
let src = source.bytes;
let dataView = src.dataView || (src.dataView = new DataView(src.buffer, src.byteOffset, src.byteLength));
let value = dataView.getFloat64(source.position + property.offset, true);
if (isNaN(value)) {
let byte = src[source.position + property.offset];
if (byte >= 0xf6)
return toConstant(byte);
}
return value;
};
break;
case 1:
get = function (source) {
let src = source.bytes;
let value = src[source.position + property.offset];
return value < 0xf6 ? value : toConstant(value);
};
break;
}
break;
case DATE:
get = function (source) {
let src = source.bytes;
let dataView = src.dataView || (src.dataView = new DataView(src.buffer, src.byteOffset, src.byteLength));
return new Date(dataView.getFloat64(source.position + property.offset, true));
};
break;
}
property.get = get;
}
// TODO: load the srcString for faster string decoding on toJSON
if (evalSupported) {
let objectLiteralProperties = [];
let args = [];
let i = 0;
let hasInheritedProperties;
for (let property of properties) { // assign in enumeration order
if (unpackr.alwaysLazyProperty && unpackr.alwaysLazyProperty(property.key)) {
// these properties are not eagerly evaluated and this can be used for creating properties
// that are not serialized as JSON
hasInheritedProperties = true;
continue;
}
Object.defineProperty(prototype, property.key, { get: withSource(property.get), enumerable: true });
let valueFunction = 'v' + i++;
args.push(valueFunction);
objectLiteralProperties.push('[' + JSON.stringify(property.key) + ']:' + valueFunction + '(s)');
}
if (hasInheritedProperties) {
objectLiteralProperties.push('__proto__:this');
}
let toObject = (new Function(...args, 'return function(s){return{' + objectLiteralProperties.join(',') + '}}')).apply(null, properties.map(prop => prop.get));
Object.defineProperty(prototype, 'toJSON', {
value(omitUnderscoredProperties) {
return toObject.call(this, this[sourceSymbol]);
}
});
} else {
Object.defineProperty(prototype, 'toJSON', {
value(omitUnderscoredProperties) {
// return an enumerable object with own properties to JSON stringify
let resolved = {};
for (let i = 0, l = properties.length; i < l; i++) {
// TODO: check alwaysLazyProperty
let key = properties[i].key;
resolved[key] = this[key];
}
return resolved;
},
// not enumerable or anything
});
}
}
var instance = new construct();
instance[sourceSymbol] = {
bytes: src,
position,
srcString: '',
bytesEnd: srcEnd
};
return instance;
}
function toConstant(code) {
switch(code) {
case 0xf6: return null;
case 0xf7: return undefined;
case 0xf8: return false;
case 0xf9: return true;
}
throw new Error('Unknown constant');
}
function withSource(get) {
return function() {
return get(this[sourceSymbol]);
}
}
function saveState() {
if (currentSource) {
currentSource.bytes = Uint8Array.prototype.slice.call(currentSource.bytes, currentSource.position, currentSource.bytesEnd);
currentSource.position = 0;
currentSource.bytesEnd = currentSource.bytes.length;
}
}
function prepareStructures(structures, packr) {
if (packr.typedStructs) {
let structMap = new Map();
structMap.set('named', structures);
structMap.set('typed', packr.typedStructs);
structures = structMap;
}
let lastTypedStructuresLength = packr.lastTypedStructuresLength || 0;
structures.isCompatible = existing => {
let compatible = true;
if (existing instanceof Map) {
let named = existing.get('named') || [];
if (named.length !== (packr.lastNamedStructuresLength || 0))
compatible = false;
let typed = existing.get('typed') || [];
if (typed.length !== lastTypedStructuresLength)
compatible = false;
} else if (existing instanceof Array || Array.isArray(existing)) {
if (existing.length !== (packr.lastNamedStructuresLength || 0))
compatible = false;
}
if (!compatible)
packr._mergeStructures(existing);
return compatible;
};
packr.lastTypedStructuresLength = packr.typedStructs && packr.typedStructs.length;
return structures;
}
setReadStruct(readStruct, onLoadedStructures, saveState);
class PackrStream extends stream.Transform {
constructor(options) {
if (!options)
options = {};
options.writableObjectMode = true;
super(options);
options.sequential = true;
this.packr = options.packr || new Packr(options);
}
_transform(value, encoding, callback) {
this.push(this.packr.pack(value));
callback();
}
}
class UnpackrStream extends stream.Transform {
constructor(options) {
if (!options)
options = {};
options.objectMode = true;
super(options);
options.structures = [];
this.unpackr = options.unpackr || new Unpackr(options);
}
_transform(chunk, encoding, callback) {
if (this.incompleteBuffer) {
chunk = Buffer.concat([this.incompleteBuffer, chunk]);
this.incompleteBuffer = null;
}
let values;
try {
values = this.unpackr.unpackMultiple(chunk);
} catch(error) {
if (error.incomplete) {
this.incompleteBuffer = chunk.slice(error.lastPosition);
values = error.values;
}
else
throw error
} finally {
for (let value of values || []) {
if (value === null)
value = this.getNullValue();
this.push(value);
}
}
if (callback) callback();
}
getNullValue() {
return Symbol.for(null)
}
}
/**
* Given an Iterable first argument, returns an Iterable where each value is packed as a Buffer
* If the argument is only Async Iterable, the return value will be an Async Iterable.
* @param {Iterable|Iterator|AsyncIterable|AsyncIterator} objectIterator - iterable source, like a Readable object stream, an array, Set, or custom object
* @param {options} [options] - msgpackr pack options
* @returns {IterableIterator|Promise.<AsyncIterableIterator>}
*/
function packIter (objectIterator, options = {}) {
if (!objectIterator || typeof objectIterator !== 'object') {
throw new Error('first argument must be an Iterable, Async Iterable, or a Promise for an Async Iterable')
} else if (typeof objectIterator[Symbol.iterator] === 'function') {
return packIterSync(objectIterator, options)
} else if (typeof objectIterator.then === 'function' || typeof objectIterator[Symbol.asyncIterator] === 'function') {
return packIterAsync(objectIterator, options)
} else {
throw new Error('first argument must be an Iterable, Async Iterable, Iterator, Async Iterator, or a Promise')
}
}
function * packIterSync (objectIterator, options) {
const packr = new Packr(options);
for (const value of objectIterator) {
yield packr.pack(value);
}
}
async function * packIterAsync (objectIterator, options) {
const packr = new Packr(options);
for await (const value of objectIterator) {
yield packr.pack(value);
}
}
/**
* Given an Iterable/Iterator input which yields buffers, returns an IterableIterator which yields sync decoded objects
* Or, given an Async Iterable/Iterator which yields promises resolving in buffers, returns an AsyncIterableIterator.
* @param {Iterable|Iterator|AsyncIterable|AsyncIterableIterator} bufferIterator
* @param {object} [options] - unpackr options
* @returns {IterableIterator|Promise.<AsyncIterableIterator}
*/
function unpackIter (bufferIterator, options = {}) {
if (!bufferIterator || typeof bufferIterator !== 'object') {
throw new Error('first argument must be an Iterable, Async Iterable, Iterator, Async Iterator, or a promise')
}
const unpackr = new Unpackr(options);
let incomplete;
const parser = (chunk) => {
let yields;
// if there's incomplete data from previous chunk, concatinate and try again
if (incomplete) {
chunk = Buffer.concat([incomplete, chunk]);
incomplete = undefined;
}
try {
yields = unpackr.unpackMultiple(chunk);
} catch (err) {
if (err.incomplete) {
incomplete = chunk.slice(err.lastPosition);
yields = err.values;
} else {
throw err
}
}
return yields
};
if (typeof bufferIterator[Symbol.iterator] === 'function') {
return (function * iter () {
for (const value of bufferIterator) {
yield * parser(value);
}
})()
} else if (typeof bufferIterator[Symbol.asyncIterator] === 'function') {
return (async function * iter () {
for await (const value of bufferIterator) {
yield * parser(value);
}
})()
}
}
const decodeIter = unpackIter;
const encodeIter = packIter;
const useRecords = false;
const mapsAsObjects = true;
const nativeAccelerationDisabled = process.env.MSGPACKR_NATIVE_ACCELERATION_DISABLED !== undefined && process.env.MSGPACKR_NATIVE_ACCELERATION_DISABLED.toLowerCase() === 'true';
if (!nativeAccelerationDisabled) {
let extractor;
try {
if (typeof require == 'function')
extractor = require('msgpackr-extract');
else
extractor = module$1.createRequire((typeof document === 'undefined' ? new (require('u' + 'rl').URL)('file:' + __filename).href : (document.currentScript && document.currentScript.src || new URL('node.cjs', document.baseURI).href)))('msgpackr-extract');
if (extractor)
setExtractor(extractor.extractStrings);
} catch (error) {
// native module is optional
}
}
exports.ALWAYS = ALWAYS;
exports.C1 = C1;
exports.DECIMAL_FIT = DECIMAL_FIT;
exports.DECIMAL_ROUND = DECIMAL_ROUND;
exports.Decoder = Decoder;
exports.DecoderStream = UnpackrStream;
exports.Encoder = Encoder;
exports.EncoderStream = PackrStream;
exports.FLOAT32_OPTIONS = FLOAT32_OPTIONS;
exports.NEVER = NEVER;
exports.Packr = Packr;
exports.PackrStream = PackrStream;
exports.Unpackr = Unpackr;
exports.UnpackrStream = UnpackrStream;
exports.addExtension = addExtension;
exports.clearSource = clearSource;
exports.decode = decode;
exports.decodeIter = decodeIter;
exports.encode = encode;
exports.encodeIter = encodeIter;
exports.mapsAsObjects = mapsAsObjects;
exports.pack = pack;
exports.roundFloat32 = roundFloat32;
exports.unpack = unpack;
exports.unpackMultiple = unpackMultiple;
exports.useRecords = useRecords;
//# sourceMappingURL=node.cjs.map