import { Box3, Line3, Plane, Sphere, Triangle, Vector3 } from 'three'; import { Capsule } from '../math/Capsule.js'; const _v1 = new Vector3(); const _v2 = new Vector3(); const _point1 = new Vector3(); const _point2 = new Vector3(); const _plane = new Plane(); const _line1 = new Line3(); const _line2 = new Line3(); const _sphere = new Sphere(); const _capsule = new Capsule(); const _temp1 = new Vector3(); const _temp2 = new Vector3(); const _temp3 = new Vector3(); const EPS = 1e-10; function lineToLineClosestPoints( line1, line2, target1 = null, target2 = null ) { const r = _temp1.copy( line1.end ).sub( line1.start ); const s = _temp2.copy( line2.end ).sub( line2.start ); const w = _temp3.copy( line2.start ).sub( line1.start ); const a = r.dot( s ), b = r.dot( r ), c = s.dot( s ), d = s.dot( w ), e = r.dot( w ); let t1, t2; const divisor = b * c - a * a; if ( Math.abs( divisor ) < EPS ) { const d1 = - d / c; const d2 = ( a - d ) / c; if ( Math.abs( d1 - 0.5 ) < Math.abs( d2 - 0.5 ) ) { t1 = 0; t2 = d1; } else { t1 = 1; t2 = d2; } } else { t1 = ( d * a + e * c ) / divisor; t2 = ( t1 * a - d ) / c; } t2 = Math.max( 0, Math.min( 1, t2 ) ); t1 = Math.max( 0, Math.min( 1, t1 ) ); if ( target1 ) { target1.copy( r ).multiplyScalar( t1 ).add( line1.start ); } if ( target2 ) { target2.copy( s ).multiplyScalar( t2 ).add( line2.start ); } } class Octree { constructor( box ) { this.box = box; this.bounds = new Box3(); this.subTrees = []; this.triangles = []; } addTriangle( triangle ) { this.bounds.min.x = Math.min( this.bounds.min.x, triangle.a.x, triangle.b.x, triangle.c.x ); this.bounds.min.y = Math.min( this.bounds.min.y, triangle.a.y, triangle.b.y, triangle.c.y ); this.bounds.min.z = Math.min( this.bounds.min.z, triangle.a.z, triangle.b.z, triangle.c.z ); this.bounds.max.x = Math.max( this.bounds.max.x, triangle.a.x, triangle.b.x, triangle.c.x ); this.bounds.max.y = Math.max( this.bounds.max.y, triangle.a.y, triangle.b.y, triangle.c.y ); this.bounds.max.z = Math.max( this.bounds.max.z, triangle.a.z, triangle.b.z, triangle.c.z ); this.triangles.push( triangle ); return this; } calcBox() { this.box = this.bounds.clone(); // offset small amount to account for regular grid this.box.min.x -= 0.01; this.box.min.y -= 0.01; this.box.min.z -= 0.01; return this; } split( level ) { if ( ! this.box ) return; const subTrees = []; const halfsize = _v2.copy( this.box.max ).sub( this.box.min ).multiplyScalar( 0.5 ); for ( let x = 0; x < 2; x ++ ) { for ( let y = 0; y < 2; y ++ ) { for ( let z = 0; z < 2; z ++ ) { const box = new Box3(); const v = _v1.set( x, y, z ); box.min.copy( this.box.min ).add( v.multiply( halfsize ) ); box.max.copy( box.min ).add( halfsize ); subTrees.push( new Octree( box ) ); } } } let triangle; while ( triangle = this.triangles.pop() ) { for ( let i = 0; i < subTrees.length; i ++ ) { if ( subTrees[ i ].box.intersectsTriangle( triangle ) ) { subTrees[ i ].triangles.push( triangle ); } } } for ( let i = 0; i < subTrees.length; i ++ ) { const len = subTrees[ i ].triangles.length; if ( len > 8 && level < 16 ) { subTrees[ i ].split( level + 1 ); } if ( len !== 0 ) { this.subTrees.push( subTrees[ i ] ); } } return this; } build() { this.calcBox(); this.split( 0 ); return this; } getRayTriangles( ray, triangles ) { for ( let i = 0; i < this.subTrees.length; i ++ ) { const subTree = this.subTrees[ i ]; if ( ! ray.intersectsBox( subTree.box ) ) continue; if ( subTree.triangles.length > 0 ) { for ( let j = 0; j < subTree.triangles.length; j ++ ) { if ( triangles.indexOf( subTree.triangles[ j ] ) === - 1 ) triangles.push( subTree.triangles[ j ] ); } } else { subTree.getRayTriangles( ray, triangles ); } } return triangles; } triangleCapsuleIntersect( capsule, triangle ) { triangle.getPlane( _plane ); const d1 = _plane.distanceToPoint( capsule.start ) - capsule.radius; const d2 = _plane.distanceToPoint( capsule.end ) - capsule.radius; if ( ( d1 > 0 && d2 > 0 ) || ( d1 < - capsule.radius && d2 < - capsule.radius ) ) { return false; } const delta = Math.abs( d1 / ( Math.abs( d1 ) + Math.abs( d2 ) ) ); const intersectPoint = _v1.copy( capsule.start ).lerp( capsule.end, delta ); if ( triangle.containsPoint( intersectPoint ) ) { return { normal: _plane.normal.clone(), point: intersectPoint.clone(), depth: Math.abs( Math.min( d1, d2 ) ) }; } const r2 = capsule.radius * capsule.radius; const line1 = _line1.set( capsule.start, capsule.end ); const lines = [ [ triangle.a, triangle.b ], [ triangle.b, triangle.c ], [ triangle.c, triangle.a ] ]; for ( let i = 0; i < lines.length; i ++ ) { const line2 = _line2.set( lines[ i ][ 0 ], lines[ i ][ 1 ] ); lineToLineClosestPoints( line1, line2, _point1, _point2 ); if ( _point1.distanceToSquared( _point2 ) < r2 ) { return { normal: _point1.clone().sub( _point2 ).normalize(), point: _point2.clone(), depth: capsule.radius - _point1.distanceTo( _point2 ) }; } } return false; } triangleSphereIntersect( sphere, triangle ) { triangle.getPlane( _plane ); if ( ! sphere.intersectsPlane( _plane ) ) return false; const depth = Math.abs( _plane.distanceToSphere( sphere ) ); const r2 = sphere.radius * sphere.radius - depth * depth; const plainPoint = _plane.projectPoint( sphere.center, _v1 ); if ( triangle.containsPoint( sphere.center ) ) { return { normal: _plane.normal.clone(), point: plainPoint.clone(), depth: Math.abs( _plane.distanceToSphere( sphere ) ) }; } const lines = [ [ triangle.a, triangle.b ], [ triangle.b, triangle.c ], [ triangle.c, triangle.a ] ]; for ( let i = 0; i < lines.length; i ++ ) { _line1.set( lines[ i ][ 0 ], lines[ i ][ 1 ] ); _line1.closestPointToPoint( plainPoint, true, _v2 ); const d = _v2.distanceToSquared( sphere.center ); if ( d < r2 ) { return { normal: sphere.center.clone().sub( _v2 ).normalize(), point: _v2.clone(), depth: sphere.radius - Math.sqrt( d ) }; } } return false; } getSphereTriangles( sphere, triangles ) { for ( let i = 0; i < this.subTrees.length; i ++ ) { const subTree = this.subTrees[ i ]; if ( ! sphere.intersectsBox( subTree.box ) ) continue; if ( subTree.triangles.length > 0 ) { for ( let j = 0; j < subTree.triangles.length; j ++ ) { if ( triangles.indexOf( subTree.triangles[ j ] ) === - 1 ) triangles.push( subTree.triangles[ j ] ); } } else { subTree.getSphereTriangles( sphere, triangles ); } } } getCapsuleTriangles( capsule, triangles ) { for ( let i = 0; i < this.subTrees.length; i ++ ) { const subTree = this.subTrees[ i ]; if ( ! capsule.intersectsBox( subTree.box ) ) continue; if ( subTree.triangles.length > 0 ) { for ( let j = 0; j < subTree.triangles.length; j ++ ) { if ( triangles.indexOf( subTree.triangles[ j ] ) === - 1 ) triangles.push( subTree.triangles[ j ] ); } } else { subTree.getCapsuleTriangles( capsule, triangles ); } } } sphereIntersect( sphere ) { _sphere.copy( sphere ); const triangles = []; let result, hit = false; this.getSphereTriangles( sphere, triangles ); for ( let i = 0; i < triangles.length; i ++ ) { if ( result = this.triangleSphereIntersect( _sphere, triangles[ i ] ) ) { hit = true; _sphere.center.add( result.normal.multiplyScalar( result.depth ) ); } } if ( hit ) { const collisionVector = _sphere.center.clone().sub( sphere.center ); const depth = collisionVector.length(); return { normal: collisionVector.normalize(), depth: depth }; } return false; } capsuleIntersect( capsule ) { _capsule.copy( capsule ); const triangles = []; let result, hit = false; this.getCapsuleTriangles( _capsule, triangles ); for ( let i = 0; i < triangles.length; i ++ ) { if ( result = this.triangleCapsuleIntersect( _capsule, triangles[ i ] ) ) { hit = true; _capsule.translate( result.normal.multiplyScalar( result.depth ) ); } } if ( hit ) { const collisionVector = _capsule.getCenter( new Vector3() ).sub( capsule.getCenter( _v1 ) ); const depth = collisionVector.length(); return { normal: collisionVector.normalize(), depth: depth }; } return false; } rayIntersect( ray ) { if ( ray.direction.length() === 0 ) return; const triangles = []; let triangle, position, distance = 1e100; this.getRayTriangles( ray, triangles ); for ( let i = 0; i < triangles.length; i ++ ) { const result = ray.intersectTriangle( triangles[ i ].a, triangles[ i ].b, triangles[ i ].c, true, _v1 ); if ( result ) { const newdistance = result.sub( ray.origin ).length(); if ( distance > newdistance ) { position = result.clone().add( ray.origin ); distance = newdistance; triangle = triangles[ i ]; } } } return distance < 1e100 ? { distance: distance, triangle: triangle, position: position } : false; } fromGraphNode( group ) { group.updateWorldMatrix( true, true ); group.traverse( ( obj ) => { if ( obj.isMesh === true ) { let geometry, isTemp = false; if ( obj.geometry.index !== null ) { isTemp = true; geometry = obj.geometry.toNonIndexed(); } else { geometry = obj.geometry; } const positionAttribute = geometry.getAttribute( 'position' ); for ( let i = 0; i < positionAttribute.count; i += 3 ) { const v1 = new Vector3().fromBufferAttribute( positionAttribute, i ); const v2 = new Vector3().fromBufferAttribute( positionAttribute, i + 1 ); const v3 = new Vector3().fromBufferAttribute( positionAttribute, i + 2 ); v1.applyMatrix4( obj.matrixWorld ); v2.applyMatrix4( obj.matrixWorld ); v3.applyMatrix4( obj.matrixWorld ); this.addTriangle( new Triangle( v1, v2, v3 ) ); } if ( isTemp ) { geometry.dispose(); } } } ); this.build(); return this; } clear() { this.box = null; this.bounds.makeEmpty(); this.subTrees.length = 0; this.triangles.length = 0; return this; } } export { Octree };