import { FileLoader, Loader, Matrix4, Vector3 } from 'three'; import * as fflate from '../libs/fflate.module.js'; import { Volume } from '../misc/Volume.js'; class NRRDLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { const scope = this; const loader = new FileLoader( scope.manager ); loader.setPath( scope.path ); loader.setResponseType( 'arraybuffer' ); loader.setRequestHeader( scope.requestHeader ); loader.setWithCredentials( scope.withCredentials ); loader.load( url, function ( data ) { try { onLoad( scope.parse( data ) ); } catch ( e ) { if ( onError ) { onError( e ); } else { console.error( e ); } scope.manager.itemError( url ); } }, onProgress, onError ); } /** * * @param {boolean} segmentation is a option for user to choose */ setSegmentation( segmentation ) { this.segmentation = segmentation; } parse( data ) { // this parser is largely inspired from the XTK NRRD parser : https://github.com/xtk/X let _data = data; let _dataPointer = 0; const _nativeLittleEndian = new Int8Array( new Int16Array( [ 1 ] ).buffer )[ 0 ] > 0; const _littleEndian = true; const headerObject = {}; function scan( type, chunks ) { let _chunkSize = 1; let _array_type = Uint8Array; switch ( type ) { // 1 byte data types case 'uchar': break; case 'schar': _array_type = Int8Array; break; // 2 byte data types case 'ushort': _array_type = Uint16Array; _chunkSize = 2; break; case 'sshort': _array_type = Int16Array; _chunkSize = 2; break; // 4 byte data types case 'uint': _array_type = Uint32Array; _chunkSize = 4; break; case 'sint': _array_type = Int32Array; _chunkSize = 4; break; case 'float': _array_type = Float32Array; _chunkSize = 4; break; case 'complex': _array_type = Float64Array; _chunkSize = 8; break; case 'double': _array_type = Float64Array; _chunkSize = 8; break; } // increase the data pointer in-place let _bytes = new _array_type( _data.slice( _dataPointer, _dataPointer += chunks * _chunkSize ) ); // if required, flip the endianness of the bytes if ( _nativeLittleEndian != _littleEndian ) { // we need to flip here since the format doesn't match the native endianness _bytes = flipEndianness( _bytes, _chunkSize ); } // return the byte array return _bytes; } //Flips typed array endianness in-place. Based on https://github.com/kig/DataStream.js/blob/master/DataStream.js. function flipEndianness( array, chunkSize ) { const u8 = new Uint8Array( array.buffer, array.byteOffset, array.byteLength ); for ( let i = 0; i < array.byteLength; i += chunkSize ) { for ( let j = i + chunkSize - 1, k = i; j > k; j --, k ++ ) { const tmp = u8[ k ]; u8[ k ] = u8[ j ]; u8[ j ] = tmp; } } return array; } //parse the header function parseHeader( header ) { let data, field, fn, i, l, m, _i, _len; const lines = header.split( /\r?\n/ ); for ( _i = 0, _len = lines.length; _i < _len; _i ++ ) { l = lines[ _i ]; if ( l.match( /NRRD\d+/ ) ) { headerObject.isNrrd = true; } else if ( ! l.match( /^#/ ) && ( m = l.match( /(.*):(.*)/ ) ) ) { field = m[ 1 ].trim(); data = m[ 2 ].trim(); fn = _fieldFunctions[ field ]; if ( fn ) { fn.call( headerObject, data ); } else { headerObject[ field ] = data; } } } if ( ! headerObject.isNrrd ) { throw new Error( 'Not an NRRD file' ); } if ( headerObject.encoding === 'bz2' || headerObject.encoding === 'bzip2' ) { throw new Error( 'Bzip is not supported' ); } if ( ! headerObject.vectors ) { //if no space direction is set, let's use the identity headerObject.vectors = [ ]; headerObject.vectors.push( [ 1, 0, 0 ] ); headerObject.vectors.push( [ 0, 1, 0 ] ); headerObject.vectors.push( [ 0, 0, 1 ] ); //apply spacing if defined if ( headerObject.spacings ) { for ( i = 0; i <= 2; i ++ ) { if ( ! isNaN( headerObject.spacings[ i ] ) ) { for ( let j = 0; j <= 2; j ++ ) { headerObject.vectors[ i ][ j ] *= headerObject.spacings[ i ]; } } } } } } //parse the data when registred as one of this type : 'text', 'ascii', 'txt' function parseDataAsText( data, start, end ) { let number = ''; start = start || 0; end = end || data.length; let value; //length of the result is the product of the sizes const lengthOfTheResult = headerObject.sizes.reduce( function ( previous, current ) { return previous * current; }, 1 ); let base = 10; if ( headerObject.encoding === 'hex' ) { base = 16; } const result = new headerObject.__array( lengthOfTheResult ); let resultIndex = 0; let parsingFunction = parseInt; if ( headerObject.__array === Float32Array || headerObject.__array === Float64Array ) { parsingFunction = parseFloat; } for ( let i = start; i < end; i ++ ) { value = data[ i ]; //if value is not a space if ( ( value < 9 || value > 13 ) && value !== 32 ) { number += String.fromCharCode( value ); } else { if ( number !== '' ) { result[ resultIndex ] = parsingFunction( number, base ); resultIndex ++; } number = ''; } } if ( number !== '' ) { result[ resultIndex ] = parsingFunction( number, base ); resultIndex ++; } return result; } const _bytes = scan( 'uchar', data.byteLength ); const _length = _bytes.length; let _header = null; let _data_start = 0; let i; for ( i = 1; i < _length; i ++ ) { if ( _bytes[ i - 1 ] == 10 && _bytes[ i ] == 10 ) { // we found two line breaks in a row // now we know what the header is _header = this.parseChars( _bytes, 0, i - 2 ); // this is were the data starts _data_start = i + 1; break; } } // parse the header parseHeader( _header ); _data = _bytes.subarray( _data_start ); // the data without header if ( headerObject.encoding.substring( 0, 2 ) === 'gz' ) { // we need to decompress the datastream // here we start the unzipping and get a typed Uint8Array back _data = fflate.gunzipSync( new Uint8Array( _data ) ); } else if ( headerObject.encoding === 'ascii' || headerObject.encoding === 'text' || headerObject.encoding === 'txt' || headerObject.encoding === 'hex' ) { _data = parseDataAsText( _data ); } else if ( headerObject.encoding === 'raw' ) { //we need to copy the array to create a new array buffer, else we retrieve the original arraybuffer with the header const _copy = new Uint8Array( _data.length ); for ( let i = 0; i < _data.length; i ++ ) { _copy[ i ] = _data[ i ]; } _data = _copy; } // .. let's use the underlying array buffer _data = _data.buffer; const volume = new Volume(); volume.header = headerObject; volume.segmentation = this.segmentation; // // parse the (unzipped) data to a datastream of the correct type // volume.data = new headerObject.__array( _data ); // get the min and max intensities const min_max = volume.computeMinMax(); const min = min_max[ 0 ]; const max = min_max[ 1 ]; // attach the scalar range to the volume volume.windowLow = min; volume.windowHigh = max; // get the image dimensions volume.dimensions = [ headerObject.sizes[ 0 ], headerObject.sizes[ 1 ], headerObject.sizes[ 2 ] ]; volume.xLength = volume.dimensions[ 0 ]; volume.yLength = volume.dimensions[ 1 ]; volume.zLength = volume.dimensions[ 2 ]; // Identify axis order in the space-directions matrix from the header if possible. if ( headerObject.vectors ) { const xIndex = headerObject.vectors.findIndex( vector => vector[ 0 ] !== 0 ); const yIndex = headerObject.vectors.findIndex( vector => vector[ 1 ] !== 0 ); const zIndex = headerObject.vectors.findIndex( vector => vector[ 2 ] !== 0 ); const axisOrder = []; if ( xIndex !== yIndex && xIndex !== zIndex && yIndex !== zIndex ) { axisOrder[ xIndex ] = 'x'; axisOrder[ yIndex ] = 'y'; axisOrder[ zIndex ] = 'z'; } else { axisOrder[ 0 ] = 'x'; axisOrder[ 1 ] = 'y'; axisOrder[ 2 ] = 'z'; } volume.axisOrder = axisOrder; } else { volume.axisOrder = [ 'x', 'y', 'z' ]; } // spacing const spacingX = new Vector3().fromArray( headerObject.vectors[ 0 ] ).length(); const spacingY = new Vector3().fromArray( headerObject.vectors[ 1 ] ).length(); const spacingZ = new Vector3().fromArray( headerObject.vectors[ 2 ] ).length(); volume.spacing = [ spacingX, spacingY, spacingZ ]; // Create IJKtoRAS matrix volume.matrix = new Matrix4(); const transitionMatrix = new Matrix4(); if ( headerObject.space === 'left-posterior-superior' ) { transitionMatrix.set( - 1, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); } else if ( headerObject.space === 'left-anterior-superior' ) { transitionMatrix.set( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 1 ); } if ( ! headerObject.vectors ) { volume.matrix.set( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); } else { const v = headerObject.vectors; const ijk_to_transition = new Matrix4().set( v[ 0 ][ 0 ], v[ 1 ][ 0 ], v[ 2 ][ 0 ], 0, v[ 0 ][ 1 ], v[ 1 ][ 1 ], v[ 2 ][ 1 ], 0, v[ 0 ][ 2 ], v[ 1 ][ 2 ], v[ 2 ][ 2 ], 0, 0, 0, 0, 1 ); const transition_to_ras = new Matrix4().multiplyMatrices( ijk_to_transition, transitionMatrix ); volume.matrix = transition_to_ras; } volume.inverseMatrix = new Matrix4(); volume.inverseMatrix.copy( volume.matrix ).invert(); volume.RASDimensions = [ Math.floor( volume.xLength * spacingX ), Math.floor( volume.yLength * spacingY ), Math.floor( volume.zLength * spacingZ ) ]; // .. and set the default threshold // only if the threshold was not already set if ( volume.lowerThreshold === - Infinity ) { volume.lowerThreshold = min; } if ( volume.upperThreshold === Infinity ) { volume.upperThreshold = max; } return volume; } parseChars( array, start, end ) { // without borders, use the whole array if ( start === undefined ) { start = 0; } if ( end === undefined ) { end = array.length; } let output = ''; // create and append the chars let i = 0; for ( i = start; i < end; ++ i ) { output += String.fromCharCode( array[ i ] ); } return output; } } const _fieldFunctions = { type: function ( data ) { switch ( data ) { case 'uchar': case 'unsigned char': case 'uint8': case 'uint8_t': this.__array = Uint8Array; break; case 'signed char': case 'int8': case 'int8_t': this.__array = Int8Array; break; case 'short': case 'short int': case 'signed short': case 'signed short int': case 'int16': case 'int16_t': this.__array = Int16Array; break; case 'ushort': case 'unsigned short': case 'unsigned short int': case 'uint16': case 'uint16_t': this.__array = Uint16Array; break; case 'int': case 'signed int': case 'int32': case 'int32_t': this.__array = Int32Array; break; case 'uint': case 'unsigned int': case 'uint32': case 'uint32_t': this.__array = Uint32Array; break; case 'float': this.__array = Float32Array; break; case 'double': this.__array = Float64Array; break; default: throw new Error( 'Unsupported NRRD data type: ' + data ); } return this.type = data; }, endian: function ( data ) { return this.endian = data; }, encoding: function ( data ) { return this.encoding = data; }, dimension: function ( data ) { return this.dim = parseInt( data, 10 ); }, sizes: function ( data ) { let i; return this.sizes = ( function () { const _ref = data.split( /\s+/ ); const _results = []; for ( let _i = 0, _len = _ref.length; _i < _len; _i ++ ) { i = _ref[ _i ]; _results.push( parseInt( i, 10 ) ); } return _results; } )(); }, space: function ( data ) { return this.space = data; }, 'space origin': function ( data ) { return this.space_origin = data.split( '(' )[ 1 ].split( ')' )[ 0 ].split( ',' ); }, 'space directions': function ( data ) { let f, v; const parts = data.match( /\(.*?\)/g ); return this.vectors = ( function () { const _results = []; for ( let _i = 0, _len = parts.length; _i < _len; _i ++ ) { v = parts[ _i ]; _results.push( ( function () { const _ref = v.slice( 1, - 1 ).split( /,/ ); const _results2 = []; for ( let _j = 0, _len2 = _ref.length; _j < _len2; _j ++ ) { f = _ref[ _j ]; _results2.push( parseFloat( f ) ); } return _results2; } )() ); } return _results; } )(); }, spacings: function ( data ) { let f; const parts = data.split( /\s+/ ); return this.spacings = ( function () { const _results = []; for ( let _i = 0, _len = parts.length; _i < _len; _i ++ ) { f = parts[ _i ]; _results.push( parseFloat( f ) ); } return _results; } )(); } }; export { NRRDLoader };