import { AddOperation, AnimationClip, Bone, BufferGeometry, Color, CustomBlending, TangentSpaceNormalMap, DoubleSide, DstAlphaFactor, Euler, FileLoader, Float32BufferAttribute, FrontSide, Interpolant, Loader, LoaderUtils, UniformsUtils, ShaderMaterial, MultiplyOperation, NearestFilter, NumberKeyframeTrack, OneMinusSrcAlphaFactor, Quaternion, QuaternionKeyframeTrack, RepeatWrapping, Skeleton, SkinnedMesh, SrcAlphaFactor, SRGBColorSpace, TextureLoader, Uint16BufferAttribute, Vector3, VectorKeyframeTrack, RGB_S3TC_DXT1_Format, RGB_PVRTC_4BPPV1_Format, RGB_PVRTC_2BPPV1_Format, RGB_ETC1_Format, RGB_ETC2_Format } from 'three'; import { MMDToonShader } from '../shaders/MMDToonShader.js'; import { TGALoader } from '../loaders/TGALoader.js'; import { MMDParser } from '../libs/mmdparser.module.js'; /** * Dependencies * - mmd-parser https://github.com/takahirox/mmd-parser * - TGALoader * - OutlineEffect * * MMDLoader creates Three.js Objects from MMD resources as * PMD, PMX, VMD, and VPD files. * * PMD/PMX is a model data format, VMD is a motion data format * VPD is a posing data format used in MMD(Miku Miku Dance). * * MMD official site * - https://sites.google.com/view/evpvp/ * * PMD, VMD format (in Japanese) * - http://blog.goo.ne.jp/torisu_tetosuki/e/209ad341d3ece2b1b4df24abf619d6e4 * * PMX format * - https://gist.github.com/felixjones/f8a06bd48f9da9a4539f * * TODO * - light motion in vmd support. * - SDEF support. * - uv/material/bone morphing support. * - more precise grant skinning support. * - shadow support. */ /** * @param {THREE.LoadingManager} manager */ class MMDLoader extends Loader { constructor( manager ) { super( manager ); this.loader = new FileLoader( this.manager ); this.parser = null; // lazy generation this.meshBuilder = new MeshBuilder( this.manager ); this.animationBuilder = new AnimationBuilder(); } /** * @param {string} animationPath * @return {MMDLoader} */ setAnimationPath( animationPath ) { this.animationPath = animationPath; return this; } // Load MMD assets as Three.js Object /** * Loads Model file (.pmd or .pmx) as a SkinnedMesh. * * @param {string} url - url to Model(.pmd or .pmx) file * @param {function} onLoad * @param {function} onProgress * @param {function} onError */ load( url, onLoad, onProgress, onError ) { const builder = this.meshBuilder.setCrossOrigin( this.crossOrigin ); // resource path let resourcePath; if ( this.resourcePath !== '' ) { resourcePath = this.resourcePath; } else if ( this.path !== '' ) { resourcePath = this.path; } else { resourcePath = LoaderUtils.extractUrlBase( url ); } const modelExtension = this._extractExtension( url ).toLowerCase(); // Should I detect by seeing header? if ( modelExtension !== 'pmd' && modelExtension !== 'pmx' ) { if ( onError ) onError( new Error( 'THREE.MMDLoader: Unknown model file extension .' + modelExtension + '.' ) ); return; } this[ modelExtension === 'pmd' ? 'loadPMD' : 'loadPMX' ]( url, function ( data ) { onLoad( builder.build( data, resourcePath, onProgress, onError ) ); }, onProgress, onError ); } /** * Loads Motion file(s) (.vmd) as a AnimationClip. * If two or more files are specified, they'll be merged. * * @param {string|Array} url - url(s) to animation(.vmd) file(s) * @param {SkinnedMesh|THREE.Camera} object - tracks will be fitting to this object * @param {function} onLoad * @param {function} onProgress * @param {function} onError */ loadAnimation( url, object, onLoad, onProgress, onError ) { const builder = this.animationBuilder; this.loadVMD( url, function ( vmd ) { onLoad( object.isCamera ? builder.buildCameraAnimation( vmd ) : builder.build( vmd, object ) ); }, onProgress, onError ); } /** * Loads mode file and motion file(s) as an object containing * a SkinnedMesh and a AnimationClip. * Tracks of AnimationClip are fitting to the model. * * @param {string} modelUrl - url to Model(.pmd or .pmx) file * @param {string|Array{string}} vmdUrl - url(s) to animation(.vmd) file * @param {function} onLoad * @param {function} onProgress * @param {function} onError */ loadWithAnimation( modelUrl, vmdUrl, onLoad, onProgress, onError ) { const scope = this; this.load( modelUrl, function ( mesh ) { scope.loadAnimation( vmdUrl, mesh, function ( animation ) { onLoad( { mesh: mesh, animation: animation } ); }, onProgress, onError ); }, onProgress, onError ); } // Load MMD assets as Object data parsed by MMDParser /** * Loads .pmd file as an Object. * * @param {string} url - url to .pmd file * @param {function} onLoad * @param {function} onProgress * @param {function} onError */ loadPMD( url, onLoad, onProgress, onError ) { const parser = this._getParser(); this.loader .setMimeType( undefined ) .setPath( this.path ) .setResponseType( 'arraybuffer' ) .setRequestHeader( this.requestHeader ) .setWithCredentials( this.withCredentials ) .load( url, function ( buffer ) { try { onLoad( parser.parsePmd( buffer, true ) ); } catch ( e ) { if ( onError ) onError( e ); } }, onProgress, onError ); } /** * Loads .pmx file as an Object. * * @param {string} url - url to .pmx file * @param {function} onLoad * @param {function} onProgress * @param {function} onError */ loadPMX( url, onLoad, onProgress, onError ) { const parser = this._getParser(); this.loader .setMimeType( undefined ) .setPath( this.path ) .setResponseType( 'arraybuffer' ) .setRequestHeader( this.requestHeader ) .setWithCredentials( this.withCredentials ) .load( url, function ( buffer ) { try { onLoad( parser.parsePmx( buffer, true ) ); } catch ( e ) { if ( onError ) onError( e ); } }, onProgress, onError ); } /** * Loads .vmd file as an Object. If two or more files are specified * they'll be merged. * * @param {string|Array} url - url(s) to .vmd file(s) * @param {function} onLoad * @param {function} onProgress * @param {function} onError */ loadVMD( url, onLoad, onProgress, onError ) { const urls = Array.isArray( url ) ? url : [ url ]; const vmds = []; const vmdNum = urls.length; const parser = this._getParser(); this.loader .setMimeType( undefined ) .setPath( this.animationPath ) .setResponseType( 'arraybuffer' ) .setRequestHeader( this.requestHeader ) .setWithCredentials( this.withCredentials ); for ( let i = 0, il = urls.length; i < il; i ++ ) { this.loader.load( urls[ i ], function ( buffer ) { try { vmds.push( parser.parseVmd( buffer, true ) ); if ( vmds.length === vmdNum ) onLoad( parser.mergeVmds( vmds ) ); } catch ( e ) { if ( onError ) onError( e ); } }, onProgress, onError ); } } /** * Loads .vpd file as an Object. * * @param {string} url - url to .vpd file * @param {boolean} isUnicode * @param {function} onLoad * @param {function} onProgress * @param {function} onError */ loadVPD( url, isUnicode, onLoad, onProgress, onError ) { const parser = this._getParser(); this.loader .setMimeType( isUnicode ? undefined : 'text/plain; charset=shift_jis' ) .setPath( this.animationPath ) .setResponseType( 'text' ) .setRequestHeader( this.requestHeader ) .setWithCredentials( this.withCredentials ) .load( url, function ( text ) { try { onLoad( parser.parseVpd( text, true ) ); } catch ( e ) { if ( onError ) onError( e ); } }, onProgress, onError ); } // private methods _extractExtension( url ) { const index = url.lastIndexOf( '.' ); return index < 0 ? '' : url.slice( index + 1 ); } _getParser() { if ( this.parser === null ) { this.parser = new MMDParser.Parser(); } return this.parser; } } // Utilities /* * base64 encoded defalut toon textures toon00.bmp - toon10.bmp. * We don't need to request external toon image files. */ const DEFAULT_TOON_TEXTURES = [ '', '', '', '', '', '', '', '', '', '', '' ]; const NON_ALPHA_CHANNEL_FORMATS = [ RGB_S3TC_DXT1_Format, RGB_PVRTC_4BPPV1_Format, RGB_PVRTC_2BPPV1_Format, RGB_ETC1_Format, RGB_ETC2_Format ]; // Builders. They build Three.js object from Object data parsed by MMDParser. /** * @param {THREE.LoadingManager} manager */ class MeshBuilder { constructor( manager ) { this.crossOrigin = 'anonymous'; this.geometryBuilder = new GeometryBuilder(); this.materialBuilder = new MaterialBuilder( manager ); } /** * @param {string} crossOrigin * @return {MeshBuilder} */ setCrossOrigin( crossOrigin ) { this.crossOrigin = crossOrigin; return this; } /** * @param {Object} data - parsed PMD/PMX data * @param {string} resourcePath * @param {function} onProgress * @param {function} onError * @return {SkinnedMesh} */ build( data, resourcePath, onProgress, onError ) { const geometry = this.geometryBuilder.build( data ); const material = this.materialBuilder .setCrossOrigin( this.crossOrigin ) .setResourcePath( resourcePath ) .build( data, geometry, onProgress, onError ); const mesh = new SkinnedMesh( geometry, material ); const skeleton = new Skeleton( initBones( mesh ) ); mesh.bind( skeleton ); // console.log( mesh ); // for console debug return mesh; } } // TODO: Try to remove this function function initBones( mesh ) { const geometry = mesh.geometry; const bones = []; if ( geometry && geometry.bones !== undefined ) { // first, create array of 'Bone' objects from geometry data for ( let i = 0, il = geometry.bones.length; i < il; i ++ ) { const gbone = geometry.bones[ i ]; // create new 'Bone' object const bone = new Bone(); bones.push( bone ); // apply values bone.name = gbone.name; bone.position.fromArray( gbone.pos ); bone.quaternion.fromArray( gbone.rotq ); if ( gbone.scl !== undefined ) bone.scale.fromArray( gbone.scl ); } // second, create bone hierarchy for ( let i = 0, il = geometry.bones.length; i < il; i ++ ) { const gbone = geometry.bones[ i ]; if ( ( gbone.parent !== - 1 ) && ( gbone.parent !== null ) && ( bones[ gbone.parent ] !== undefined ) ) { // subsequent bones in the hierarchy bones[ gbone.parent ].add( bones[ i ] ); } else { // topmost bone, immediate child of the skinned mesh mesh.add( bones[ i ] ); } } } // now the bones are part of the scene graph and children of the skinned mesh. // let's update the corresponding matrices mesh.updateMatrixWorld( true ); return bones; } // class GeometryBuilder { /** * @param {Object} data - parsed PMD/PMX data * @return {BufferGeometry} */ build( data ) { // for geometry const positions = []; const uvs = []; const normals = []; const indices = []; const groups = []; const bones = []; const skinIndices = []; const skinWeights = []; const morphTargets = []; const morphPositions = []; const iks = []; const grants = []; const rigidBodies = []; const constraints = []; // for work let offset = 0; const boneTypeTable = {}; // positions, normals, uvs, skinIndices, skinWeights for ( let i = 0; i < data.metadata.vertexCount; i ++ ) { const v = data.vertices[ i ]; for ( let j = 0, jl = v.position.length; j < jl; j ++ ) { positions.push( v.position[ j ] ); } for ( let j = 0, jl = v.normal.length; j < jl; j ++ ) { normals.push( v.normal[ j ] ); } for ( let j = 0, jl = v.uv.length; j < jl; j ++ ) { uvs.push( v.uv[ j ] ); } for ( let j = 0; j < 4; j ++ ) { skinIndices.push( v.skinIndices.length - 1 >= j ? v.skinIndices[ j ] : 0.0 ); } for ( let j = 0; j < 4; j ++ ) { skinWeights.push( v.skinWeights.length - 1 >= j ? v.skinWeights[ j ] : 0.0 ); } } // indices for ( let i = 0; i < data.metadata.faceCount; i ++ ) { const face = data.faces[ i ]; for ( let j = 0, jl = face.indices.length; j < jl; j ++ ) { indices.push( face.indices[ j ] ); } } // groups for ( let i = 0; i < data.metadata.materialCount; i ++ ) { const material = data.materials[ i ]; groups.push( { offset: offset * 3, count: material.faceCount * 3 } ); offset += material.faceCount; } // bones for ( let i = 0; i < data.metadata.rigidBodyCount; i ++ ) { const body = data.rigidBodies[ i ]; let value = boneTypeTable[ body.boneIndex ]; // keeps greater number if already value is set without any special reasons value = value === undefined ? body.type : Math.max( body.type, value ); boneTypeTable[ body.boneIndex ] = value; } for ( let i = 0; i < data.metadata.boneCount; i ++ ) { const boneData = data.bones[ i ]; const bone = { index: i, transformationClass: boneData.transformationClass, parent: boneData.parentIndex, name: boneData.name, pos: boneData.position.slice( 0, 3 ), rotq: [ 0, 0, 0, 1 ], scl: [ 1, 1, 1 ], rigidBodyType: boneTypeTable[ i ] !== undefined ? boneTypeTable[ i ] : - 1 }; if ( bone.parent !== - 1 ) { bone.pos[ 0 ] -= data.bones[ bone.parent ].position[ 0 ]; bone.pos[ 1 ] -= data.bones[ bone.parent ].position[ 1 ]; bone.pos[ 2 ] -= data.bones[ bone.parent ].position[ 2 ]; } bones.push( bone ); } // iks // TODO: remove duplicated codes between PMD and PMX if ( data.metadata.format === 'pmd' ) { for ( let i = 0; i < data.metadata.ikCount; i ++ ) { const ik = data.iks[ i ]; const param = { target: ik.target, effector: ik.effector, iteration: ik.iteration, maxAngle: ik.maxAngle * 4, links: [] }; for ( let j = 0, jl = ik.links.length; j < jl; j ++ ) { const link = {}; link.index = ik.links[ j ].index; link.enabled = true; if ( data.bones[ link.index ].name.indexOf( 'ひざ' ) >= 0 ) { link.limitation = new Vector3( 1.0, 0.0, 0.0 ); } param.links.push( link ); } iks.push( param ); } } else { for ( let i = 0; i < data.metadata.boneCount; i ++ ) { const ik = data.bones[ i ].ik; if ( ik === undefined ) continue; const param = { target: i, effector: ik.effector, iteration: ik.iteration, maxAngle: ik.maxAngle, links: [] }; for ( let j = 0, jl = ik.links.length; j < jl; j ++ ) { const link = {}; link.index = ik.links[ j ].index; link.enabled = true; if ( ik.links[ j ].angleLimitation === 1 ) { // Revert if rotationMin/Max doesn't work well // link.limitation = new Vector3( 1.0, 0.0, 0.0 ); const rotationMin = ik.links[ j ].lowerLimitationAngle; const rotationMax = ik.links[ j ].upperLimitationAngle; // Convert Left to Right coordinate by myself because // MMDParser doesn't convert. It's a MMDParser's bug const tmp1 = - rotationMax[ 0 ]; const tmp2 = - rotationMax[ 1 ]; rotationMax[ 0 ] = - rotationMin[ 0 ]; rotationMax[ 1 ] = - rotationMin[ 1 ]; rotationMin[ 0 ] = tmp1; rotationMin[ 1 ] = tmp2; link.rotationMin = new Vector3().fromArray( rotationMin ); link.rotationMax = new Vector3().fromArray( rotationMax ); } param.links.push( link ); } iks.push( param ); // Save the reference even from bone data for efficiently // simulating PMX animation system bones[ i ].ik = param; } } // grants if ( data.metadata.format === 'pmx' ) { // bone index -> grant entry map const grantEntryMap = {}; for ( let i = 0; i < data.metadata.boneCount; i ++ ) { const boneData = data.bones[ i ]; const grant = boneData.grant; if ( grant === undefined ) continue; const param = { index: i, parentIndex: grant.parentIndex, ratio: grant.ratio, isLocal: grant.isLocal, affectRotation: grant.affectRotation, affectPosition: grant.affectPosition, transformationClass: boneData.transformationClass }; grantEntryMap[ i ] = { parent: null, children: [], param: param, visited: false }; } const rootEntry = { parent: null, children: [], param: null, visited: false }; // Build a tree representing grant hierarchy for ( const boneIndex in grantEntryMap ) { const grantEntry = grantEntryMap[ boneIndex ]; const parentGrantEntry = grantEntryMap[ grantEntry.parentIndex ] || rootEntry; grantEntry.parent = parentGrantEntry; parentGrantEntry.children.push( grantEntry ); } // Sort grant parameters from parents to children because // grant uses parent's transform that parent's grant is already applied // so grant should be applied in order from parents to children function traverse( entry ) { if ( entry.param ) { grants.push( entry.param ); // Save the reference even from bone data for efficiently // simulating PMX animation system bones[ entry.param.index ].grant = entry.param; } entry.visited = true; for ( let i = 0, il = entry.children.length; i < il; i ++ ) { const child = entry.children[ i ]; // Cut off a loop if exists. (Is a grant loop invalid?) if ( ! child.visited ) traverse( child ); } } traverse( rootEntry ); } // morph function updateAttributes( attribute, morph, ratio ) { for ( let i = 0; i < morph.elementCount; i ++ ) { const element = morph.elements[ i ]; let index; if ( data.metadata.format === 'pmd' ) { index = data.morphs[ 0 ].elements[ element.index ].index; } else { index = element.index; } attribute.array[ index * 3 + 0 ] += element.position[ 0 ] * ratio; attribute.array[ index * 3 + 1 ] += element.position[ 1 ] * ratio; attribute.array[ index * 3 + 2 ] += element.position[ 2 ] * ratio; } } for ( let i = 0; i < data.metadata.morphCount; i ++ ) { const morph = data.morphs[ i ]; const params = { name: morph.name }; const attribute = new Float32BufferAttribute( data.metadata.vertexCount * 3, 3 ); attribute.name = morph.name; for ( let j = 0; j < data.metadata.vertexCount * 3; j ++ ) { attribute.array[ j ] = positions[ j ]; } if ( data.metadata.format === 'pmd' ) { if ( i !== 0 ) { updateAttributes( attribute, morph, 1.0 ); } } else { if ( morph.type === 0 ) { // group for ( let j = 0; j < morph.elementCount; j ++ ) { const morph2 = data.morphs[ morph.elements[ j ].index ]; const ratio = morph.elements[ j ].ratio; if ( morph2.type === 1 ) { updateAttributes( attribute, morph2, ratio ); } else { // TODO: implement } } } else if ( morph.type === 1 ) { // vertex updateAttributes( attribute, morph, 1.0 ); } else if ( morph.type === 2 ) { // bone // TODO: implement } else if ( morph.type === 3 ) { // uv // TODO: implement } else if ( morph.type === 4 ) { // additional uv1 // TODO: implement } else if ( morph.type === 5 ) { // additional uv2 // TODO: implement } else if ( morph.type === 6 ) { // additional uv3 // TODO: implement } else if ( morph.type === 7 ) { // additional uv4 // TODO: implement } else if ( morph.type === 8 ) { // material // TODO: implement } } morphTargets.push( params ); morphPositions.push( attribute ); } // rigid bodies from rigidBodies field. for ( let i = 0; i < data.metadata.rigidBodyCount; i ++ ) { const rigidBody = data.rigidBodies[ i ]; const params = {}; for ( const key in rigidBody ) { params[ key ] = rigidBody[ key ]; } /* * RigidBody position parameter in PMX seems global position * while the one in PMD seems offset from corresponding bone. * So unify being offset. */ if ( data.metadata.format === 'pmx' ) { if ( params.boneIndex !== - 1 ) { const bone = data.bones[ params.boneIndex ]; params.position[ 0 ] -= bone.position[ 0 ]; params.position[ 1 ] -= bone.position[ 1 ]; params.position[ 2 ] -= bone.position[ 2 ]; } } rigidBodies.push( params ); } // constraints from constraints field. for ( let i = 0; i < data.metadata.constraintCount; i ++ ) { const constraint = data.constraints[ i ]; const params = {}; for ( const key in constraint ) { params[ key ] = constraint[ key ]; } const bodyA = rigidBodies[ params.rigidBodyIndex1 ]; const bodyB = rigidBodies[ params.rigidBodyIndex2 ]; // Refer to http://www20.atpages.jp/katwat/wp/?p=4135 if ( bodyA.type !== 0 && bodyB.type === 2 ) { if ( bodyA.boneIndex !== - 1 && bodyB.boneIndex !== - 1 && data.bones[ bodyB.boneIndex ].parentIndex === bodyA.boneIndex ) { bodyB.type = 1; } } constraints.push( params ); } // build BufferGeometry. const geometry = new BufferGeometry(); geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) ); geometry.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); geometry.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); geometry.setAttribute( 'skinIndex', new Uint16BufferAttribute( skinIndices, 4 ) ); geometry.setAttribute( 'skinWeight', new Float32BufferAttribute( skinWeights, 4 ) ); geometry.setIndex( indices ); for ( let i = 0, il = groups.length; i < il; i ++ ) { geometry.addGroup( groups[ i ].offset, groups[ i ].count, i ); } geometry.bones = bones; geometry.morphTargets = morphTargets; geometry.morphAttributes.position = morphPositions; geometry.morphTargetsRelative = false; geometry.userData.MMD = { bones: bones, iks: iks, grants: grants, rigidBodies: rigidBodies, constraints: constraints, format: data.metadata.format }; geometry.computeBoundingSphere(); return geometry; } } // /** * @param {THREE.LoadingManager} manager */ class MaterialBuilder { constructor( manager ) { this.manager = manager; this.textureLoader = new TextureLoader( this.manager ); this.tgaLoader = null; // lazy generation this.crossOrigin = 'anonymous'; this.resourcePath = undefined; } /** * @param {string} crossOrigin * @return {MaterialBuilder} */ setCrossOrigin( crossOrigin ) { this.crossOrigin = crossOrigin; return this; } /** * @param {string} resourcePath * @return {MaterialBuilder} */ setResourcePath( resourcePath ) { this.resourcePath = resourcePath; return this; } /** * @param {Object} data - parsed PMD/PMX data * @param {BufferGeometry} geometry - some properties are dependend on geometry * @param {function} onProgress * @param {function} onError * @return {Array} */ build( data, geometry /*, onProgress, onError */ ) { const materials = []; const textures = {}; this.textureLoader.setCrossOrigin( this.crossOrigin ); // materials for ( let i = 0; i < data.metadata.materialCount; i ++ ) { const material = data.materials[ i ]; const params = { userData: { MMD: {} } }; if ( material.name !== undefined ) params.name = material.name; /* * Color * * MMD MMDToonMaterial * ambient - emissive * a * (a = 1.0 without map texture or 0.2 with map texture) * * MMDToonMaterial doesn't have ambient. Set it to emissive instead. * It'll be too bright if material has map texture so using coef 0.2. */ params.diffuse = new Color().setRGB( material.diffuse[ 0 ], material.diffuse[ 1 ], material.diffuse[ 2 ], SRGBColorSpace ); params.opacity = material.diffuse[ 3 ]; params.specular = new Color().setRGB( ...material.specular, SRGBColorSpace ); params.shininess = material.shininess; params.emissive = new Color().setRGB( ...material.ambient, SRGBColorSpace ); params.transparent = params.opacity !== 1.0; // params.fog = true; // blend params.blending = CustomBlending; params.blendSrc = SrcAlphaFactor; params.blendDst = OneMinusSrcAlphaFactor; params.blendSrcAlpha = SrcAlphaFactor; params.blendDstAlpha = DstAlphaFactor; // side if ( data.metadata.format === 'pmx' && ( material.flag & 0x1 ) === 1 ) { params.side = DoubleSide; } else { params.side = params.opacity === 1.0 ? FrontSide : DoubleSide; } if ( data.metadata.format === 'pmd' ) { // map, matcap if ( material.fileName ) { const fileName = material.fileName; const fileNames = fileName.split( '*' ); // fileNames[ 0 ]: mapFileName // fileNames[ 1 ]: matcapFileName( optional ) params.map = this._loadTexture( fileNames[ 0 ], textures ); if ( fileNames.length > 1 ) { const extension = fileNames[ 1 ].slice( - 4 ).toLowerCase(); params.matcap = this._loadTexture( fileNames[ 1 ], textures ); params.matcapCombine = extension === '.sph' ? MultiplyOperation : AddOperation; } } // gradientMap const toonFileName = ( material.toonIndex === - 1 ) ? 'toon00.bmp' : data.toonTextures[ material.toonIndex ].fileName; params.gradientMap = this._loadTexture( toonFileName, textures, { isToonTexture: true, isDefaultToonTexture: this._isDefaultToonTexture( toonFileName ) } ); // parameters for OutlineEffect params.userData.outlineParameters = { thickness: material.edgeFlag === 1 ? 0.003 : 0.0, color: [ 0, 0, 0 ], alpha: 1.0, visible: material.edgeFlag === 1 }; } else { // map if ( material.textureIndex !== - 1 ) { params.map = this._loadTexture( data.textures[ material.textureIndex ], textures ); // Since PMX spec don't have standard to list map files except color map and env map, // we need to save file name for further mapping, like matching normal map file names after model loaded. // ref: https://gist.github.com/felixjones/f8a06bd48f9da9a4539f#texture params.userData.MMD.mapFileName = data.textures[ material.textureIndex ]; } // matcap TODO: support m.envFlag === 3 if ( material.envTextureIndex !== - 1 && ( material.envFlag === 1 || material.envFlag == 2 ) ) { params.matcap = this._loadTexture( data.textures[ material.envTextureIndex ], textures ); // Same as color map above, keep file name in userData for further usage. params.userData.MMD.matcapFileName = data.textures[ material.envTextureIndex ]; params.matcapCombine = material.envFlag === 1 ? MultiplyOperation : AddOperation; } // gradientMap let toonFileName, isDefaultToon; if ( material.toonIndex === - 1 || material.toonFlag !== 0 ) { toonFileName = 'toon' + ( '0' + ( material.toonIndex + 1 ) ).slice( - 2 ) + '.bmp'; isDefaultToon = true; } else { toonFileName = data.textures[ material.toonIndex ]; isDefaultToon = false; } params.gradientMap = this._loadTexture( toonFileName, textures, { isToonTexture: true, isDefaultToonTexture: isDefaultToon } ); // parameters for OutlineEffect params.userData.outlineParameters = { thickness: material.edgeSize / 300, // TODO: better calculation? color: material.edgeColor.slice( 0, 3 ), alpha: material.edgeColor[ 3 ], visible: ( material.flag & 0x10 ) !== 0 && material.edgeSize > 0.0 }; } if ( params.map !== undefined ) { if ( ! params.transparent ) { this._checkImageTransparency( params.map, geometry, i ); } params.emissive.multiplyScalar( 0.2 ); } materials.push( new MMDToonMaterial( params ) ); } if ( data.metadata.format === 'pmx' ) { // set transparent true if alpha morph is defined. function checkAlphaMorph( elements, materials ) { for ( let i = 0, il = elements.length; i < il; i ++ ) { const element = elements[ i ]; if ( element.index === - 1 ) continue; const material = materials[ element.index ]; if ( material.opacity !== element.diffuse[ 3 ] ) { material.transparent = true; } } } for ( let i = 0, il = data.morphs.length; i < il; i ++ ) { const morph = data.morphs[ i ]; const elements = morph.elements; if ( morph.type === 0 ) { for ( let j = 0, jl = elements.length; j < jl; j ++ ) { const morph2 = data.morphs[ elements[ j ].index ]; if ( morph2.type !== 8 ) continue; checkAlphaMorph( morph2.elements, materials ); } } else if ( morph.type === 8 ) { checkAlphaMorph( elements, materials ); } } } return materials; } // private methods _getTGALoader() { if ( this.tgaLoader === null ) { if ( TGALoader === undefined ) { throw new Error( 'THREE.MMDLoader: Import TGALoader' ); } this.tgaLoader = new TGALoader( this.manager ); } return this.tgaLoader; } _isDefaultToonTexture( name ) { if ( name.length !== 10 ) return false; return /toon(10|0[0-9])\.bmp/.test( name ); } _loadTexture( filePath, textures, params, onProgress, onError ) { params = params || {}; const scope = this; let fullPath; if ( params.isDefaultToonTexture === true ) { let index; try { index = parseInt( filePath.match( /toon([0-9]{2})\.bmp$/ )[ 1 ] ); } catch ( e ) { console.warn( 'THREE.MMDLoader: ' + filePath + ' seems like a ' + 'not right default texture path. Using toon00.bmp instead.' ); index = 0; } fullPath = DEFAULT_TOON_TEXTURES[ index ]; } else { fullPath = this.resourcePath + filePath; } if ( textures[ fullPath ] !== undefined ) return textures[ fullPath ]; let loader = this.manager.getHandler( fullPath ); if ( loader === null ) { loader = ( filePath.slice( - 4 ).toLowerCase() === '.tga' ) ? this._getTGALoader() : this.textureLoader; } const texture = loader.load( fullPath, function ( t ) { // MMD toon texture is Axis-Y oriented // but Three.js gradient map is Axis-X oriented. // So here replaces the toon texture image with the rotated one. if ( params.isToonTexture === true ) { t.image = scope._getRotatedImage( t.image ); t.magFilter = NearestFilter; t.minFilter = NearestFilter; } t.flipY = false; t.wrapS = RepeatWrapping; t.wrapT = RepeatWrapping; t.colorSpace = SRGBColorSpace; for ( let i = 0; i < texture.readyCallbacks.length; i ++ ) { texture.readyCallbacks[ i ]( texture ); } delete texture.readyCallbacks; }, onProgress, onError ); texture.readyCallbacks = []; textures[ fullPath ] = texture; return texture; } _getRotatedImage( image ) { const canvas = document.createElement( 'canvas' ); const context = canvas.getContext( '2d' ); const width = image.width; const height = image.height; canvas.width = width; canvas.height = height; context.clearRect( 0, 0, width, height ); context.translate( width / 2.0, height / 2.0 ); context.rotate( 0.5 * Math.PI ); // 90.0 * Math.PI / 180.0 context.translate( - width / 2.0, - height / 2.0 ); context.drawImage( image, 0, 0 ); return context.getImageData( 0, 0, width, height ); } // Check if the partial image area used by the texture is transparent. _checkImageTransparency( map, geometry, groupIndex ) { map.readyCallbacks.push( function ( texture ) { // Is there any efficient ways? function createImageData( image ) { const canvas = document.createElement( 'canvas' ); canvas.width = image.width; canvas.height = image.height; const context = canvas.getContext( '2d' ); context.drawImage( image, 0, 0 ); return context.getImageData( 0, 0, canvas.width, canvas.height ); } function detectImageTransparency( image, uvs, indices ) { const width = image.width; const height = image.height; const data = image.data; const threshold = 253; if ( data.length / ( width * height ) !== 4 ) return false; for ( let i = 0; i < indices.length; i += 3 ) { const centerUV = { x: 0.0, y: 0.0 }; for ( let j = 0; j < 3; j ++ ) { const index = indices[ i * 3 + j ]; const uv = { x: uvs[ index * 2 + 0 ], y: uvs[ index * 2 + 1 ] }; if ( getAlphaByUv( image, uv ) < threshold ) return true; centerUV.x += uv.x; centerUV.y += uv.y; } centerUV.x /= 3; centerUV.y /= 3; if ( getAlphaByUv( image, centerUV ) < threshold ) return true; } return false; } /* * This method expects * texture.flipY = false * texture.wrapS = RepeatWrapping * texture.wrapT = RepeatWrapping * TODO: more precise */ function getAlphaByUv( image, uv ) { const width = image.width; const height = image.height; let x = Math.round( uv.x * width ) % width; let y = Math.round( uv.y * height ) % height; if ( x < 0 ) x += width; if ( y < 0 ) y += height; const index = y * width + x; return image.data[ index * 4 + 3 ]; } if ( texture.isCompressedTexture === true ) { if ( NON_ALPHA_CHANNEL_FORMATS.includes( texture.format ) ) { map.transparent = false; } else { // any other way to check transparency of CompressedTexture? map.transparent = true; } return; } const imageData = texture.image.data !== undefined ? texture.image : createImageData( texture.image ); const group = geometry.groups[ groupIndex ]; if ( detectImageTransparency( imageData, geometry.attributes.uv.array, geometry.index.array.slice( group.start, group.start + group.count ) ) ) { map.transparent = true; } } ); } } // class AnimationBuilder { /** * @param {Object} vmd - parsed VMD data * @param {SkinnedMesh} mesh - tracks will be fitting to mesh * @return {AnimationClip} */ build( vmd, mesh ) { // combine skeletal and morph animations const tracks = this.buildSkeletalAnimation( vmd, mesh ).tracks; const tracks2 = this.buildMorphAnimation( vmd, mesh ).tracks; for ( let i = 0, il = tracks2.length; i < il; i ++ ) { tracks.push( tracks2[ i ] ); } return new AnimationClip( '', - 1, tracks ); } /** * @param {Object} vmd - parsed VMD data * @param {SkinnedMesh} mesh - tracks will be fitting to mesh * @return {AnimationClip} */ buildSkeletalAnimation( vmd, mesh ) { function pushInterpolation( array, interpolation, index ) { array.push( interpolation[ index + 0 ] / 127 ); // x1 array.push( interpolation[ index + 8 ] / 127 ); // x2 array.push( interpolation[ index + 4 ] / 127 ); // y1 array.push( interpolation[ index + 12 ] / 127 ); // y2 } const tracks = []; const motions = {}; const bones = mesh.skeleton.bones; const boneNameDictionary = {}; for ( let i = 0, il = bones.length; i < il; i ++ ) { boneNameDictionary[ bones[ i ].name ] = true; } for ( let i = 0; i < vmd.metadata.motionCount; i ++ ) { const motion = vmd.motions[ i ]; const boneName = motion.boneName; if ( boneNameDictionary[ boneName ] === undefined ) continue; motions[ boneName ] = motions[ boneName ] || []; motions[ boneName ].push( motion ); } for ( const key in motions ) { const array = motions[ key ]; array.sort( function ( a, b ) { return a.frameNum - b.frameNum; } ); const times = []; const positions = []; const rotations = []; const pInterpolations = []; const rInterpolations = []; const basePosition = mesh.skeleton.getBoneByName( key ).position.toArray(); for ( let i = 0, il = array.length; i < il; i ++ ) { const time = array[ i ].frameNum / 30; const position = array[ i ].position; const rotation = array[ i ].rotation; const interpolation = array[ i ].interpolation; times.push( time ); for ( let j = 0; j < 3; j ++ ) positions.push( basePosition[ j ] + position[ j ] ); for ( let j = 0; j < 4; j ++ ) rotations.push( rotation[ j ] ); for ( let j = 0; j < 3; j ++ ) pushInterpolation( pInterpolations, interpolation, j ); pushInterpolation( rInterpolations, interpolation, 3 ); } const targetName = '.bones[' + key + ']'; tracks.push( this._createTrack( targetName + '.position', VectorKeyframeTrack, times, positions, pInterpolations ) ); tracks.push( this._createTrack( targetName + '.quaternion', QuaternionKeyframeTrack, times, rotations, rInterpolations ) ); } return new AnimationClip( '', - 1, tracks ); } /** * @param {Object} vmd - parsed VMD data * @param {SkinnedMesh} mesh - tracks will be fitting to mesh * @return {AnimationClip} */ buildMorphAnimation( vmd, mesh ) { const tracks = []; const morphs = {}; const morphTargetDictionary = mesh.morphTargetDictionary; for ( let i = 0; i < vmd.metadata.morphCount; i ++ ) { const morph = vmd.morphs[ i ]; const morphName = morph.morphName; if ( morphTargetDictionary[ morphName ] === undefined ) continue; morphs[ morphName ] = morphs[ morphName ] || []; morphs[ morphName ].push( morph ); } for ( const key in morphs ) { const array = morphs[ key ]; array.sort( function ( a, b ) { return a.frameNum - b.frameNum; } ); const times = []; const values = []; for ( let i = 0, il = array.length; i < il; i ++ ) { times.push( array[ i ].frameNum / 30 ); values.push( array[ i ].weight ); } tracks.push( new NumberKeyframeTrack( '.morphTargetInfluences[' + morphTargetDictionary[ key ] + ']', times, values ) ); } return new AnimationClip( '', - 1, tracks ); } /** * @param {Object} vmd - parsed VMD data * @return {AnimationClip} */ buildCameraAnimation( vmd ) { function pushVector3( array, vec ) { array.push( vec.x ); array.push( vec.y ); array.push( vec.z ); } function pushQuaternion( array, q ) { array.push( q.x ); array.push( q.y ); array.push( q.z ); array.push( q.w ); } function pushInterpolation( array, interpolation, index ) { array.push( interpolation[ index * 4 + 0 ] / 127 ); // x1 array.push( interpolation[ index * 4 + 1 ] / 127 ); // x2 array.push( interpolation[ index * 4 + 2 ] / 127 ); // y1 array.push( interpolation[ index * 4 + 3 ] / 127 ); // y2 } const cameras = vmd.cameras === undefined ? [] : vmd.cameras.slice(); cameras.sort( function ( a, b ) { return a.frameNum - b.frameNum; } ); const times = []; const centers = []; const quaternions = []; const positions = []; const fovs = []; const cInterpolations = []; const qInterpolations = []; const pInterpolations = []; const fInterpolations = []; const quaternion = new Quaternion(); const euler = new Euler(); const position = new Vector3(); const center = new Vector3(); for ( let i = 0, il = cameras.length; i < il; i ++ ) { const motion = cameras[ i ]; const time = motion.frameNum / 30; const pos = motion.position; const rot = motion.rotation; const distance = motion.distance; const fov = motion.fov; const interpolation = motion.interpolation; times.push( time ); position.set( 0, 0, - distance ); center.set( pos[ 0 ], pos[ 1 ], pos[ 2 ] ); euler.set( - rot[ 0 ], - rot[ 1 ], - rot[ 2 ] ); quaternion.setFromEuler( euler ); position.add( center ); position.applyQuaternion( quaternion ); pushVector3( centers, center ); pushQuaternion( quaternions, quaternion ); pushVector3( positions, position ); fovs.push( fov ); for ( let j = 0; j < 3; j ++ ) { pushInterpolation( cInterpolations, interpolation, j ); } pushInterpolation( qInterpolations, interpolation, 3 ); // use the same parameter for x, y, z axis. for ( let j = 0; j < 3; j ++ ) { pushInterpolation( pInterpolations, interpolation, 4 ); } pushInterpolation( fInterpolations, interpolation, 5 ); } const tracks = []; // I expect an object whose name 'target' exists under THREE.Camera tracks.push( this._createTrack( 'target.position', VectorKeyframeTrack, times, centers, cInterpolations ) ); tracks.push( this._createTrack( '.quaternion', QuaternionKeyframeTrack, times, quaternions, qInterpolations ) ); tracks.push( this._createTrack( '.position', VectorKeyframeTrack, times, positions, pInterpolations ) ); tracks.push( this._createTrack( '.fov', NumberKeyframeTrack, times, fovs, fInterpolations ) ); return new AnimationClip( '', - 1, tracks ); } // private method _createTrack( node, typedKeyframeTrack, times, values, interpolations ) { /* * optimizes here not to let KeyframeTrackPrototype optimize * because KeyframeTrackPrototype optimizes times and values but * doesn't optimize interpolations. */ if ( times.length > 2 ) { times = times.slice(); values = values.slice(); interpolations = interpolations.slice(); const stride = values.length / times.length; const interpolateStride = interpolations.length / times.length; let index = 1; for ( let aheadIndex = 2, endIndex = times.length; aheadIndex < endIndex; aheadIndex ++ ) { for ( let i = 0; i < stride; i ++ ) { if ( values[ index * stride + i ] !== values[ ( index - 1 ) * stride + i ] || values[ index * stride + i ] !== values[ aheadIndex * stride + i ] ) { index ++; break; } } if ( aheadIndex > index ) { times[ index ] = times[ aheadIndex ]; for ( let i = 0; i < stride; i ++ ) { values[ index * stride + i ] = values[ aheadIndex * stride + i ]; } for ( let i = 0; i < interpolateStride; i ++ ) { interpolations[ index * interpolateStride + i ] = interpolations[ aheadIndex * interpolateStride + i ]; } } } times.length = index + 1; values.length = ( index + 1 ) * stride; interpolations.length = ( index + 1 ) * interpolateStride; } const track = new typedKeyframeTrack( node, times, values ); track.createInterpolant = function InterpolantFactoryMethodCubicBezier( result ) { return new CubicBezierInterpolation( this.times, this.values, this.getValueSize(), result, new Float32Array( interpolations ) ); }; return track; } } // interpolation class CubicBezierInterpolation extends Interpolant { constructor( parameterPositions, sampleValues, sampleSize, resultBuffer, params ) { super( parameterPositions, sampleValues, sampleSize, resultBuffer ); this.interpolationParams = params; } interpolate_( i1, t0, t, t1 ) { const result = this.resultBuffer; const values = this.sampleValues; const stride = this.valueSize; const params = this.interpolationParams; const offset1 = i1 * stride; const offset0 = offset1 - stride; // No interpolation if next key frame is in one frame in 30fps. // This is from MMD animation spec. // '1.5' is for precision loss. times are Float32 in Three.js Animation system. const weight1 = ( ( t1 - t0 ) < 1 / 30 * 1.5 ) ? 0.0 : ( t - t0 ) / ( t1 - t0 ); if ( stride === 4 ) { // Quaternion const x1 = params[ i1 * 4 + 0 ]; const x2 = params[ i1 * 4 + 1 ]; const y1 = params[ i1 * 4 + 2 ]; const y2 = params[ i1 * 4 + 3 ]; const ratio = this._calculate( x1, x2, y1, y2, weight1 ); Quaternion.slerpFlat( result, 0, values, offset0, values, offset1, ratio ); } else if ( stride === 3 ) { // Vector3 for ( let i = 0; i !== stride; ++ i ) { const x1 = params[ i1 * 12 + i * 4 + 0 ]; const x2 = params[ i1 * 12 + i * 4 + 1 ]; const y1 = params[ i1 * 12 + i * 4 + 2 ]; const y2 = params[ i1 * 12 + i * 4 + 3 ]; const ratio = this._calculate( x1, x2, y1, y2, weight1 ); result[ i ] = values[ offset0 + i ] * ( 1 - ratio ) + values[ offset1 + i ] * ratio; } } else { // Number const x1 = params[ i1 * 4 + 0 ]; const x2 = params[ i1 * 4 + 1 ]; const y1 = params[ i1 * 4 + 2 ]; const y2 = params[ i1 * 4 + 3 ]; const ratio = this._calculate( x1, x2, y1, y2, weight1 ); result[ 0 ] = values[ offset0 ] * ( 1 - ratio ) + values[ offset1 ] * ratio; } return result; } _calculate( x1, x2, y1, y2, x ) { /* * Cubic Bezier curves * https://en.wikipedia.org/wiki/B%C3%A9zier_curve#Cubic_B.C3.A9zier_curves * * B(t) = ( 1 - t ) ^ 3 * P0 * + 3 * ( 1 - t ) ^ 2 * t * P1 * + 3 * ( 1 - t ) * t^2 * P2 * + t ^ 3 * P3 * ( 0 <= t <= 1 ) * * MMD uses Cubic Bezier curves for bone and camera animation interpolation. * http://d.hatena.ne.jp/edvakf/20111016/1318716097 * * x = ( 1 - t ) ^ 3 * x0 * + 3 * ( 1 - t ) ^ 2 * t * x1 * + 3 * ( 1 - t ) * t^2 * x2 * + t ^ 3 * x3 * y = ( 1 - t ) ^ 3 * y0 * + 3 * ( 1 - t ) ^ 2 * t * y1 * + 3 * ( 1 - t ) * t^2 * y2 * + t ^ 3 * y3 * ( x0 = 0, y0 = 0 ) * ( x3 = 1, y3 = 1 ) * ( 0 <= t, x1, x2, y1, y2 <= 1 ) * * Here solves this equation with Bisection method, * https://en.wikipedia.org/wiki/Bisection_method * gets t, and then calculate y. * * f(t) = 3 * ( 1 - t ) ^ 2 * t * x1 * + 3 * ( 1 - t ) * t^2 * x2 * + t ^ 3 - x = 0 * * (Another option: Newton's method * https://en.wikipedia.org/wiki/Newton%27s_method) */ let c = 0.5; let t = c; let s = 1.0 - t; const loop = 15; const eps = 1e-5; const math = Math; let sst3, stt3, ttt; for ( let i = 0; i < loop; i ++ ) { sst3 = 3.0 * s * s * t; stt3 = 3.0 * s * t * t; ttt = t * t * t; const ft = ( sst3 * x1 ) + ( stt3 * x2 ) + ( ttt ) - x; if ( math.abs( ft ) < eps ) break; c /= 2.0; t += ( ft < 0 ) ? c : - c; s = 1.0 - t; } return ( sst3 * y1 ) + ( stt3 * y2 ) + ttt; } } class MMDToonMaterial extends ShaderMaterial { constructor( parameters ) { super(); this.isMMDToonMaterial = true; this.type = 'MMDToonMaterial'; this._matcapCombine = AddOperation; this.emissiveIntensity = 1.0; this.normalMapType = TangentSpaceNormalMap; this.combine = MultiplyOperation; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.flatShading = false; this.lights = true; this.vertexShader = MMDToonShader.vertexShader; this.fragmentShader = MMDToonShader.fragmentShader; this.defines = Object.assign( {}, MMDToonShader.defines ); Object.defineProperty( this, 'matcapCombine', { get: function () { return this._matcapCombine; }, set: function ( value ) { this._matcapCombine = value; switch ( value ) { case MultiplyOperation: this.defines.MATCAP_BLENDING_MULTIPLY = true; delete this.defines.MATCAP_BLENDING_ADD; break; default: case AddOperation: this.defines.MATCAP_BLENDING_ADD = true; delete this.defines.MATCAP_BLENDING_MULTIPLY; break; } }, } ); this.uniforms = UniformsUtils.clone( MMDToonShader.uniforms ); // merged from MeshToon/Phong/MatcapMaterial const exposePropertyNames = [ 'specular', 'opacity', 'diffuse', 'map', 'matcap', 'gradientMap', 'lightMap', 'lightMapIntensity', 'aoMap', 'aoMapIntensity', 'emissive', 'emissiveMap', 'bumpMap', 'bumpScale', 'normalMap', 'normalScale', 'displacemantBias', 'displacemantMap', 'displacemantScale', 'specularMap', 'alphaMap', 'reflectivity', 'refractionRatio', ]; for ( const propertyName of exposePropertyNames ) { Object.defineProperty( this, propertyName, { get: function () { return this.uniforms[ propertyName ].value; }, set: function ( value ) { this.uniforms[ propertyName ].value = value; }, } ); } // Special path for shininess to handle zero shininess properly this._shininess = 30; Object.defineProperty( this, 'shininess', { get: function () { return this._shininess; }, set: function ( value ) { this._shininess = value; this.uniforms.shininess.value = Math.max( this._shininess, 1e-4 ); // To prevent pow( 0.0, 0.0 ) }, } ); Object.defineProperty( this, 'color', Object.getOwnPropertyDescriptor( this, 'diffuse' ) ); this.setValues( parameters ); } copy( source ) { super.copy( source ); this.matcapCombine = source.matcapCombine; this.emissiveIntensity = source.emissiveIntensity; this.normalMapType = source.normalMapType; this.combine = source.combine; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.flatShading = source.flatShading; return this; } } export { MMDLoader };