'use strict'; const { toFixed } = require('../lib/svgo/tools'); /** * @typedef {{ name: string, data: number[] }} TransformItem * @typedef {{ * convertToShorts: boolean, * floatPrecision: number, * transformPrecision: number, * matrixToTransform: boolean, * shortTranslate: boolean, * shortScale: boolean, * shortRotate: boolean, * removeUseless: boolean, * collapseIntoOne: boolean, * leadingZero: boolean, * negativeExtraSpace: boolean, * }} TransformParams */ const transformTypes = new Set([ 'matrix', 'rotate', 'scale', 'skewX', 'skewY', 'translate', ]); const regTransformSplit = /\s*(matrix|translate|scale|rotate|skewX|skewY)\s*\(\s*(.+?)\s*\)[\s,]*/; const regNumericValues = /[-+]?(?:\d*\.\d+|\d+\.?)(?:[eE][-+]?\d+)?/g; /** * Convert transform string to JS representation. * * @param {string} transformString * @returns {TransformItem[]} Object representation of transform, or an empty array if it was malformed. */ exports.transform2js = (transformString) => { /** @type {TransformItem[]} */ const transforms = []; /** @type {?TransformItem} */ let currentTransform = null; // split value into ['', 'translate', '10 50', '', 'scale', '2', '', 'rotate', '-45', ''] for (const item of transformString.split(regTransformSplit)) { if (!item) { continue; } if (transformTypes.has(item)) { currentTransform = { name: item, data: [] }; transforms.push(currentTransform); } else { let num; // then split it into [10, 50] and collect as context.data while ((num = regNumericValues.exec(item))) { num = Number(num); if (currentTransform != null) { currentTransform.data.push(num); } } } } return currentTransform == null || currentTransform.data.length == 0 ? [] : transforms; }; /** * Multiply transforms into one. * * @param {TransformItem[]} transforms * @returns {TransformItem} */ exports.transformsMultiply = (transforms) => { const matrixData = transforms.map((transform) => { if (transform.name === 'matrix') { return transform.data; } return transformToMatrix(transform); }); const matrixTransform = { name: 'matrix', data: matrixData.length > 0 ? matrixData.reduce(multiplyTransformMatrices) : [], }; return matrixTransform; }; /** * Math utilities in radians. */ const mth = { /** * @param {number} deg * @returns {number} */ rad: (deg) => { return (deg * Math.PI) / 180; }, /** * @param {number} rad * @returns {number} */ deg: (rad) => { return (rad * 180) / Math.PI; }, /** * @param {number} deg * @returns {number} */ cos: (deg) => { return Math.cos(mth.rad(deg)); }, /** * @param {number} val * @param {number} floatPrecision * @returns {number} */ acos: (val, floatPrecision) => { return toFixed(mth.deg(Math.acos(val)), floatPrecision); }, /** * @param {number} deg * @returns {number} */ sin: (deg) => { return Math.sin(mth.rad(deg)); }, /** * @param {number} val * @param {number} floatPrecision * @returns {number} */ asin: (val, floatPrecision) => { return toFixed(mth.deg(Math.asin(val)), floatPrecision); }, /** * @param {number} deg * @returns {number} */ tan: (deg) => { return Math.tan(mth.rad(deg)); }, /** * @param {number} val * @param {number} floatPrecision * @returns {number} */ atan: (val, floatPrecision) => { return toFixed(mth.deg(Math.atan(val)), floatPrecision); }, }; /** * Decompose matrix into simple transforms. * * @param {TransformItem} transform * @param {TransformParams} params * @returns {TransformItem[]} * @see https://frederic-wang.fr/decomposition-of-2d-transform-matrices.html */ exports.matrixToTransform = (transform, params) => { const floatPrecision = params.floatPrecision; const data = transform.data; const transforms = []; // [..., ..., ..., ..., tx, ty] → translate(tx, ty) if (data[4] || data[5]) { transforms.push({ name: 'translate', data: data.slice(4, data[5] ? 6 : 5), }); } let sx = toFixed(Math.hypot(data[0], data[1]), params.transformPrecision); let sy = toFixed( (data[0] * data[3] - data[1] * data[2]) / sx, params.transformPrecision, ); const colsSum = data[0] * data[2] + data[1] * data[3]; const rowsSum = data[0] * data[1] + data[2] * data[3]; const scaleBefore = rowsSum !== 0 || sx === sy; // [sx, 0, tan(a)·sy, sy, 0, 0] → skewX(a)·scale(sx, sy) if (!data[1] && data[2]) { transforms.push({ name: 'skewX', data: [mth.atan(data[2] / sy, floatPrecision)], }); // [sx, sx·tan(a), 0, sy, 0, 0] → skewY(a)·scale(sx, sy) } else if (data[1] && !data[2]) { transforms.push({ name: 'skewY', data: [mth.atan(data[1] / data[0], floatPrecision)], }); sx = data[0]; sy = data[3]; // [sx·cos(a), sx·sin(a), sy·-sin(a), sy·cos(a), x, y] → rotate(a[, cx, cy])·(scale or skewX) or // [sx·cos(a), sy·sin(a), sx·-sin(a), sy·cos(a), x, y] → scale(sx, sy)·rotate(a[, cx, cy]) (if !scaleBefore) } else if (!colsSum || (sx === 1 && sy === 1) || !scaleBefore) { if (!scaleBefore) { sx = Math.hypot(data[0], data[2]); sy = Math.hypot(data[1], data[3]); if (toFixed(data[0], params.transformPrecision) < 0) { sx = -sx; } if ( data[3] < 0 || (Math.sign(data[1]) === Math.sign(data[2]) && toFixed(data[3], params.transformPrecision) === 0) ) { sy = -sy; } transforms.push({ name: 'scale', data: [sx, sy] }); } const angle = Math.min(Math.max(-1, data[0] / sx), 1); const rotate = [ mth.acos(angle, floatPrecision) * ((scaleBefore ? 1 : sy) * data[1] < 0 ? -1 : 1), ]; if (rotate[0]) { transforms.push({ name: 'rotate', data: rotate }); } if (rowsSum && colsSum) transforms.push({ name: 'skewX', data: [mth.atan(colsSum / (sx * sx), floatPrecision)], }); // rotate(a, cx, cy) can consume translate() within optional arguments cx, cy (rotation point) if (rotate[0] && (data[4] || data[5])) { transforms.shift(); const oneOverCos = 1 - data[0] / sx; const sin = data[1] / (scaleBefore ? sx : sy); const x = data[4] * (scaleBefore ? 1 : sy); const y = data[5] * (scaleBefore ? 1 : sx); const denom = (oneOverCos ** 2 + sin ** 2) * (scaleBefore ? 1 : sx * sy); rotate.push( (oneOverCos * x - sin * y) / denom, (oneOverCos * y + sin * x) / denom, ); } // Too many transformations, return original matrix if it isn't just a scale/translate } else if (data[1] || data[2]) { return [transform]; } if ((scaleBefore && (sx != 1 || sy != 1)) || !transforms.length) { transforms.push({ name: 'scale', data: sx == sy ? [sx] : [sx, sy], }); } return transforms; }; /** * Convert transform to the matrix data. * * @type {(transform: TransformItem) => number[] } */ const transformToMatrix = (transform) => { if (transform.name === 'matrix') { return transform.data; } switch (transform.name) { case 'translate': // [1, 0, 0, 1, tx, ty] return [1, 0, 0, 1, transform.data[0], transform.data[1] || 0]; case 'scale': // [sx, 0, 0, sy, 0, 0] return [ transform.data[0], 0, 0, transform.data[1] || transform.data[0], 0, 0, ]; case 'rotate': // [cos(a), sin(a), -sin(a), cos(a), x, y] var cos = mth.cos(transform.data[0]), sin = mth.sin(transform.data[0]), cx = transform.data[1] || 0, cy = transform.data[2] || 0; return [ cos, sin, -sin, cos, (1 - cos) * cx + sin * cy, (1 - cos) * cy - sin * cx, ]; case 'skewX': // [1, 0, tan(a), 1, 0, 0] return [1, 0, mth.tan(transform.data[0]), 1, 0, 0]; case 'skewY': // [1, tan(a), 0, 1, 0, 0] return [1, mth.tan(transform.data[0]), 0, 1, 0, 0]; default: throw Error(`Unknown transform ${transform.name}`); } }; /** * Applies transformation to an arc. To do so, we represent ellipse as a matrix, multiply it * by the transformation matrix and use a singular value decomposition to represent in a form * rotate(θ)·scale(a b)·rotate(φ). This gives us new ellipse params a, b and θ. * SVD is being done with the formulae provided by Wolffram|Alpha (svd {{m0, m2}, {m1, m3}}) * * @type {( * cursor: [x: number, y: number], * arc: number[], * transform: number[] * ) => number[]} */ exports.transformArc = (cursor, arc, transform) => { const x = arc[5] - cursor[0]; const y = arc[6] - cursor[1]; let a = arc[0]; let b = arc[1]; const rot = (arc[2] * Math.PI) / 180; const cos = Math.cos(rot); const sin = Math.sin(rot); // skip if radius is 0 if (a > 0 && b > 0) { let h = Math.pow(x * cos + y * sin, 2) / (4 * a * a) + Math.pow(y * cos - x * sin, 2) / (4 * b * b); if (h > 1) { h = Math.sqrt(h); a *= h; b *= h; } } const ellipse = [a * cos, a * sin, -b * sin, b * cos, 0, 0]; const m = multiplyTransformMatrices(transform, ellipse); // Decompose the new ellipse matrix const lastCol = m[2] * m[2] + m[3] * m[3]; const squareSum = m[0] * m[0] + m[1] * m[1] + lastCol; const root = Math.hypot(m[0] - m[3], m[1] + m[2]) * Math.hypot(m[0] + m[3], m[1] - m[2]); if (!root) { // circle arc[0] = arc[1] = Math.sqrt(squareSum / 2); arc[2] = 0; } else { const majorAxisSqr = (squareSum + root) / 2; const minorAxisSqr = (squareSum - root) / 2; const major = Math.abs(majorAxisSqr - lastCol) > 1e-6; const sub = (major ? majorAxisSqr : minorAxisSqr) - lastCol; const rowsSum = m[0] * m[2] + m[1] * m[3]; const term1 = m[0] * sub + m[2] * rowsSum; const term2 = m[1] * sub + m[3] * rowsSum; arc[0] = Math.sqrt(majorAxisSqr); arc[1] = Math.sqrt(minorAxisSqr); arc[2] = (((major ? term2 < 0 : term1 > 0) ? -1 : 1) * Math.acos((major ? term1 : term2) / Math.hypot(term1, term2)) * 180) / Math.PI; } if (transform[0] < 0 !== transform[3] < 0) { // Flip the sweep flag if coordinates are being flipped horizontally XOR vertically arc[4] = 1 - arc[4]; } return arc; }; /** * Multiply transformation matrices. * * @type {(a: number[], b: number[]) => number[]} */ const multiplyTransformMatrices = (a, b) => { return [ a[0] * b[0] + a[2] * b[1], a[1] * b[0] + a[3] * b[1], a[0] * b[2] + a[2] * b[3], a[1] * b[2] + a[3] * b[3], a[0] * b[4] + a[2] * b[5] + a[4], a[1] * b[4] + a[3] * b[5] + a[5], ]; };