animate/Python/untitled-2.py

58 lines
2.0 KiB
Python
Raw Normal View History

2022-03-14 02:27:48 +00:00
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
def mandelbrot(x, y, threshold):
"""Calculates whether the number c = x + i*y belongs to the
Mandelbrot set. In order to belong, the sequence z[i + 1] = z[i]**2 + c
must not diverge after 'threshold' number of steps. The sequence diverges
if the absolute value of z[i+1] is greater than 4.
:param float x: the x component of the initial complex number
:param float y: the y component of the initial complex number
:param int threshold: the number of iterations to considered it converged
"""
# initial conditions
c = complex(x, y)
z = complex(0, 0)
for i in range(threshold):
z = z**2 + c
if abs(z) > 4.: # it diverged
return i
return threshold - 1 # it didn't diverge
x_start, y_start = -2, -1.5 # an interesting region starts here
width, height = 3, 3 # for 3 units up and right
density_per_unit = 250 # how many pixles per unit
# real and imaginary axis
re = np.linspace(x_start, x_start + width, width * density_per_unit )
im = np.linspace(y_start, y_start + height, height * density_per_unit)
fig = plt.figure(figsize=(10, 10)) # instantiate a figure to draw
ax = plt.axes() # create an axes object
def animate(i):
print(i)
ax.clear() # clear axes object
ax.set_xticks([]) # clear x-axis ticks
ax.set_yticks([]) # clear y-axis ticks
X = np.empty((len(re), len(im))) # re-initialize the array-like image
threshold = round(1.25**(i + 1)) # calculate the current threshold
# iterations for the current threshold
for i in range(len(re)):
for j in range(len(im)):
X[i, j] = mandelbrot(re[i], im[j], threshold)
# associate colors to the iterations with an iterpolation
img = ax.imshow(X.T, interpolation="bicubic", cmap='Reds')
return [img]
anim = animation.FuncAnimation(fig, animate, frames=45, interval=16, blit=True)
anim.save('mandelbrot.gif',writer='imagemagick')
print("Done")