animate/webGl/my-threejs-test/node_modules/three/examples/jsm/objects/Water2.js

362 lines
8.5 KiB
JavaScript
Raw Normal View History

2024-06-24 09:24:00 +00:00
import {
Clock,
Color,
Matrix4,
Mesh,
RepeatWrapping,
ShaderMaterial,
TextureLoader,
UniformsLib,
UniformsUtils,
Vector2,
Vector4
} from 'three';
import { Reflector } from '../objects/Reflector.js';
import { Refractor } from '../objects/Refractor.js';
/**
* References:
* https://alex.vlachos.com/graphics/Vlachos-SIGGRAPH10-WaterFlow.pdf
* http://graphicsrunner.blogspot.de/2010/08/water-using-flow-maps.html
*
*/
class Water extends Mesh {
constructor( geometry, options = {} ) {
super( geometry );
this.isWater = true;
this.type = 'Water';
const scope = this;
const color = ( options.color !== undefined ) ? new Color( options.color ) : new Color( 0xFFFFFF );
const textureWidth = options.textureWidth !== undefined ? options.textureWidth : 512;
const textureHeight = options.textureHeight !== undefined ? options.textureHeight : 512;
const clipBias = options.clipBias !== undefined ? options.clipBias : 0;
const flowDirection = options.flowDirection !== undefined ? options.flowDirection : new Vector2( 1, 0 );
const flowSpeed = options.flowSpeed !== undefined ? options.flowSpeed : 0.03;
const reflectivity = options.reflectivity !== undefined ? options.reflectivity : 0.02;
const scale = options.scale !== undefined ? options.scale : 1;
const shader = options.shader !== undefined ? options.shader : Water.WaterShader;
const textureLoader = new TextureLoader();
const flowMap = options.flowMap || undefined;
const normalMap0 = options.normalMap0 || textureLoader.load( 'textures/water/Water_1_M_Normal.jpg' );
const normalMap1 = options.normalMap1 || textureLoader.load( 'textures/water/Water_2_M_Normal.jpg' );
const cycle = 0.15; // a cycle of a flow map phase
const halfCycle = cycle * 0.5;
const textureMatrix = new Matrix4();
const clock = new Clock();
// internal components
if ( Reflector === undefined ) {
console.error( 'THREE.Water: Required component Reflector not found.' );
return;
}
if ( Refractor === undefined ) {
console.error( 'THREE.Water: Required component Refractor not found.' );
return;
}
const reflector = new Reflector( geometry, {
textureWidth: textureWidth,
textureHeight: textureHeight,
clipBias: clipBias
} );
const refractor = new Refractor( geometry, {
textureWidth: textureWidth,
textureHeight: textureHeight,
clipBias: clipBias
} );
reflector.matrixAutoUpdate = false;
refractor.matrixAutoUpdate = false;
// material
this.material = new ShaderMaterial( {
name: shader.name,
uniforms: UniformsUtils.merge( [
UniformsLib[ 'fog' ],
shader.uniforms
] ),
vertexShader: shader.vertexShader,
fragmentShader: shader.fragmentShader,
transparent: true,
fog: true
} );
if ( flowMap !== undefined ) {
this.material.defines.USE_FLOWMAP = '';
this.material.uniforms[ 'tFlowMap' ] = {
type: 't',
value: flowMap
};
} else {
this.material.uniforms[ 'flowDirection' ] = {
type: 'v2',
value: flowDirection
};
}
// maps
normalMap0.wrapS = normalMap0.wrapT = RepeatWrapping;
normalMap1.wrapS = normalMap1.wrapT = RepeatWrapping;
this.material.uniforms[ 'tReflectionMap' ].value = reflector.getRenderTarget().texture;
this.material.uniforms[ 'tRefractionMap' ].value = refractor.getRenderTarget().texture;
this.material.uniforms[ 'tNormalMap0' ].value = normalMap0;
this.material.uniforms[ 'tNormalMap1' ].value = normalMap1;
// water
this.material.uniforms[ 'color' ].value = color;
this.material.uniforms[ 'reflectivity' ].value = reflectivity;
this.material.uniforms[ 'textureMatrix' ].value = textureMatrix;
// inital values
this.material.uniforms[ 'config' ].value.x = 0; // flowMapOffset0
this.material.uniforms[ 'config' ].value.y = halfCycle; // flowMapOffset1
this.material.uniforms[ 'config' ].value.z = halfCycle; // halfCycle
this.material.uniforms[ 'config' ].value.w = scale; // scale
// functions
function updateTextureMatrix( camera ) {
textureMatrix.set(
0.5, 0.0, 0.0, 0.5,
0.0, 0.5, 0.0, 0.5,
0.0, 0.0, 0.5, 0.5,
0.0, 0.0, 0.0, 1.0
);
textureMatrix.multiply( camera.projectionMatrix );
textureMatrix.multiply( camera.matrixWorldInverse );
textureMatrix.multiply( scope.matrixWorld );
}
function updateFlow() {
const delta = clock.getDelta();
const config = scope.material.uniforms[ 'config' ];
config.value.x += flowSpeed * delta; // flowMapOffset0
config.value.y = config.value.x + halfCycle; // flowMapOffset1
// Important: The distance between offsets should be always the value of "halfCycle".
// Moreover, both offsets should be in the range of [ 0, cycle ].
// This approach ensures a smooth water flow and avoids "reset" effects.
if ( config.value.x >= cycle ) {
config.value.x = 0;
config.value.y = halfCycle;
} else if ( config.value.y >= cycle ) {
config.value.y = config.value.y - cycle;
}
}
//
this.onBeforeRender = function ( renderer, scene, camera ) {
updateTextureMatrix( camera );
updateFlow();
scope.visible = false;
reflector.matrixWorld.copy( scope.matrixWorld );
refractor.matrixWorld.copy( scope.matrixWorld );
reflector.onBeforeRender( renderer, scene, camera );
refractor.onBeforeRender( renderer, scene, camera );
scope.visible = true;
};
}
}
Water.WaterShader = {
name: 'WaterShader',
uniforms: {
'color': {
type: 'c',
value: null
},
'reflectivity': {
type: 'f',
value: 0
},
'tReflectionMap': {
type: 't',
value: null
},
'tRefractionMap': {
type: 't',
value: null
},
'tNormalMap0': {
type: 't',
value: null
},
'tNormalMap1': {
type: 't',
value: null
},
'textureMatrix': {
type: 'm4',
value: null
},
'config': {
type: 'v4',
value: new Vector4()
}
},
vertexShader: /* glsl */`
#include <common>
#include <fog_pars_vertex>
#include <logdepthbuf_pars_vertex>
uniform mat4 textureMatrix;
varying vec4 vCoord;
varying vec2 vUv;
varying vec3 vToEye;
void main() {
vUv = uv;
vCoord = textureMatrix * vec4( position, 1.0 );
vec4 worldPosition = modelMatrix * vec4( position, 1.0 );
vToEye = cameraPosition - worldPosition.xyz;
vec4 mvPosition = viewMatrix * worldPosition; // used in fog_vertex
gl_Position = projectionMatrix * mvPosition;
#include <logdepthbuf_vertex>
#include <fog_vertex>
}`,
fragmentShader: /* glsl */`
#include <common>
#include <fog_pars_fragment>
#include <logdepthbuf_pars_fragment>
uniform sampler2D tReflectionMap;
uniform sampler2D tRefractionMap;
uniform sampler2D tNormalMap0;
uniform sampler2D tNormalMap1;
#ifdef USE_FLOWMAP
uniform sampler2D tFlowMap;
#else
uniform vec2 flowDirection;
#endif
uniform vec3 color;
uniform float reflectivity;
uniform vec4 config;
varying vec4 vCoord;
varying vec2 vUv;
varying vec3 vToEye;
void main() {
#include <logdepthbuf_fragment>
float flowMapOffset0 = config.x;
float flowMapOffset1 = config.y;
float halfCycle = config.z;
float scale = config.w;
vec3 toEye = normalize( vToEye );
// determine flow direction
vec2 flow;
#ifdef USE_FLOWMAP
flow = texture2D( tFlowMap, vUv ).rg * 2.0 - 1.0;
#else
flow = flowDirection;
#endif
flow.x *= - 1.0;
// sample normal maps (distort uvs with flowdata)
vec4 normalColor0 = texture2D( tNormalMap0, ( vUv * scale ) + flow * flowMapOffset0 );
vec4 normalColor1 = texture2D( tNormalMap1, ( vUv * scale ) + flow * flowMapOffset1 );
// linear interpolate to get the final normal color
float flowLerp = abs( halfCycle - flowMapOffset0 ) / halfCycle;
vec4 normalColor = mix( normalColor0, normalColor1, flowLerp );
// calculate normal vector
vec3 normal = normalize( vec3( normalColor.r * 2.0 - 1.0, normalColor.b, normalColor.g * 2.0 - 1.0 ) );
// calculate the fresnel term to blend reflection and refraction maps
float theta = max( dot( toEye, normal ), 0.0 );
float reflectance = reflectivity + ( 1.0 - reflectivity ) * pow( ( 1.0 - theta ), 5.0 );
// calculate final uv coords
vec3 coord = vCoord.xyz / vCoord.w;
vec2 uv = coord.xy + coord.z * normal.xz * 0.05;
vec4 reflectColor = texture2D( tReflectionMap, vec2( 1.0 - uv.x, uv.y ) );
vec4 refractColor = texture2D( tRefractionMap, uv );
// multiply water color with the mix of both textures
gl_FragColor = vec4( color, 1.0 ) * mix( refractColor, reflectColor, reflectance );
#include <tonemapping_fragment>
#include <colorspace_fragment>
#include <fog_fragment>
}`
};
export { Water };