220 lines
6.7 KiB
JavaScript
220 lines
6.7 KiB
JavaScript
|
import {
|
||
|
BackSide,
|
||
|
BoxGeometry,
|
||
|
Mesh,
|
||
|
ShaderMaterial,
|
||
|
UniformsUtils,
|
||
|
Vector3
|
||
|
} from 'three';
|
||
|
|
||
|
/**
|
||
|
* Based on "A Practical Analytic Model for Daylight"
|
||
|
* aka The Preetham Model, the de facto standard analytic skydome model
|
||
|
* https://www.researchgate.net/publication/220720443_A_Practical_Analytic_Model_for_Daylight
|
||
|
*
|
||
|
* First implemented by Simon Wallner
|
||
|
* http://simonwallner.at/project/atmospheric-scattering/
|
||
|
*
|
||
|
* Improved by Martin Upitis
|
||
|
* http://blenderartists.org/forum/showthread.php?245954-preethams-sky-impementation-HDR
|
||
|
*
|
||
|
* Three.js integration by zz85 http://twitter.com/blurspline
|
||
|
*/
|
||
|
|
||
|
class Sky extends Mesh {
|
||
|
|
||
|
constructor() {
|
||
|
|
||
|
const shader = Sky.SkyShader;
|
||
|
|
||
|
const material = new ShaderMaterial( {
|
||
|
name: shader.name,
|
||
|
uniforms: UniformsUtils.clone( shader.uniforms ),
|
||
|
vertexShader: shader.vertexShader,
|
||
|
fragmentShader: shader.fragmentShader,
|
||
|
side: BackSide,
|
||
|
depthWrite: false
|
||
|
} );
|
||
|
|
||
|
super( new BoxGeometry( 1, 1, 1 ), material );
|
||
|
|
||
|
this.isSky = true;
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
Sky.SkyShader = {
|
||
|
|
||
|
name: 'SkyShader',
|
||
|
|
||
|
uniforms: {
|
||
|
'turbidity': { value: 2 },
|
||
|
'rayleigh': { value: 1 },
|
||
|
'mieCoefficient': { value: 0.005 },
|
||
|
'mieDirectionalG': { value: 0.8 },
|
||
|
'sunPosition': { value: new Vector3() },
|
||
|
'up': { value: new Vector3( 0, 1, 0 ) }
|
||
|
},
|
||
|
|
||
|
vertexShader: /* glsl */`
|
||
|
uniform vec3 sunPosition;
|
||
|
uniform float rayleigh;
|
||
|
uniform float turbidity;
|
||
|
uniform float mieCoefficient;
|
||
|
uniform vec3 up;
|
||
|
|
||
|
varying vec3 vWorldPosition;
|
||
|
varying vec3 vSunDirection;
|
||
|
varying float vSunfade;
|
||
|
varying vec3 vBetaR;
|
||
|
varying vec3 vBetaM;
|
||
|
varying float vSunE;
|
||
|
|
||
|
// constants for atmospheric scattering
|
||
|
const float e = 2.71828182845904523536028747135266249775724709369995957;
|
||
|
const float pi = 3.141592653589793238462643383279502884197169;
|
||
|
|
||
|
// wavelength of used primaries, according to preetham
|
||
|
const vec3 lambda = vec3( 680E-9, 550E-9, 450E-9 );
|
||
|
// this pre-calcuation replaces older TotalRayleigh(vec3 lambda) function:
|
||
|
// (8.0 * pow(pi, 3.0) * pow(pow(n, 2.0) - 1.0, 2.0) * (6.0 + 3.0 * pn)) / (3.0 * N * pow(lambda, vec3(4.0)) * (6.0 - 7.0 * pn))
|
||
|
const vec3 totalRayleigh = vec3( 5.804542996261093E-6, 1.3562911419845635E-5, 3.0265902468824876E-5 );
|
||
|
|
||
|
// mie stuff
|
||
|
// K coefficient for the primaries
|
||
|
const float v = 4.0;
|
||
|
const vec3 K = vec3( 0.686, 0.678, 0.666 );
|
||
|
// MieConst = pi * pow( ( 2.0 * pi ) / lambda, vec3( v - 2.0 ) ) * K
|
||
|
const vec3 MieConst = vec3( 1.8399918514433978E14, 2.7798023919660528E14, 4.0790479543861094E14 );
|
||
|
|
||
|
// earth shadow hack
|
||
|
// cutoffAngle = pi / 1.95;
|
||
|
const float cutoffAngle = 1.6110731556870734;
|
||
|
const float steepness = 1.5;
|
||
|
const float EE = 1000.0;
|
||
|
|
||
|
float sunIntensity( float zenithAngleCos ) {
|
||
|
zenithAngleCos = clamp( zenithAngleCos, -1.0, 1.0 );
|
||
|
return EE * max( 0.0, 1.0 - pow( e, -( ( cutoffAngle - acos( zenithAngleCos ) ) / steepness ) ) );
|
||
|
}
|
||
|
|
||
|
vec3 totalMie( float T ) {
|
||
|
float c = ( 0.2 * T ) * 10E-18;
|
||
|
return 0.434 * c * MieConst;
|
||
|
}
|
||
|
|
||
|
void main() {
|
||
|
|
||
|
vec4 worldPosition = modelMatrix * vec4( position, 1.0 );
|
||
|
vWorldPosition = worldPosition.xyz;
|
||
|
|
||
|
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
|
||
|
gl_Position.z = gl_Position.w; // set z to camera.far
|
||
|
|
||
|
vSunDirection = normalize( sunPosition );
|
||
|
|
||
|
vSunE = sunIntensity( dot( vSunDirection, up ) );
|
||
|
|
||
|
vSunfade = 1.0 - clamp( 1.0 - exp( ( sunPosition.y / 450000.0 ) ), 0.0, 1.0 );
|
||
|
|
||
|
float rayleighCoefficient = rayleigh - ( 1.0 * ( 1.0 - vSunfade ) );
|
||
|
|
||
|
// extinction (absorbtion + out scattering)
|
||
|
// rayleigh coefficients
|
||
|
vBetaR = totalRayleigh * rayleighCoefficient;
|
||
|
|
||
|
// mie coefficients
|
||
|
vBetaM = totalMie( turbidity ) * mieCoefficient;
|
||
|
|
||
|
}`,
|
||
|
|
||
|
fragmentShader: /* glsl */`
|
||
|
varying vec3 vWorldPosition;
|
||
|
varying vec3 vSunDirection;
|
||
|
varying float vSunfade;
|
||
|
varying vec3 vBetaR;
|
||
|
varying vec3 vBetaM;
|
||
|
varying float vSunE;
|
||
|
|
||
|
uniform float mieDirectionalG;
|
||
|
uniform vec3 up;
|
||
|
|
||
|
// constants for atmospheric scattering
|
||
|
const float pi = 3.141592653589793238462643383279502884197169;
|
||
|
|
||
|
const float n = 1.0003; // refractive index of air
|
||
|
const float N = 2.545E25; // number of molecules per unit volume for air at 288.15K and 1013mb (sea level -45 celsius)
|
||
|
|
||
|
// optical length at zenith for molecules
|
||
|
const float rayleighZenithLength = 8.4E3;
|
||
|
const float mieZenithLength = 1.25E3;
|
||
|
// 66 arc seconds -> degrees, and the cosine of that
|
||
|
const float sunAngularDiameterCos = 0.999956676946448443553574619906976478926848692873900859324;
|
||
|
|
||
|
// 3.0 / ( 16.0 * pi )
|
||
|
const float THREE_OVER_SIXTEENPI = 0.05968310365946075;
|
||
|
// 1.0 / ( 4.0 * pi )
|
||
|
const float ONE_OVER_FOURPI = 0.07957747154594767;
|
||
|
|
||
|
float rayleighPhase( float cosTheta ) {
|
||
|
return THREE_OVER_SIXTEENPI * ( 1.0 + pow( cosTheta, 2.0 ) );
|
||
|
}
|
||
|
|
||
|
float hgPhase( float cosTheta, float g ) {
|
||
|
float g2 = pow( g, 2.0 );
|
||
|
float inverse = 1.0 / pow( 1.0 - 2.0 * g * cosTheta + g2, 1.5 );
|
||
|
return ONE_OVER_FOURPI * ( ( 1.0 - g2 ) * inverse );
|
||
|
}
|
||
|
|
||
|
void main() {
|
||
|
|
||
|
vec3 direction = normalize( vWorldPosition - cameraPosition );
|
||
|
|
||
|
// optical length
|
||
|
// cutoff angle at 90 to avoid singularity in next formula.
|
||
|
float zenithAngle = acos( max( 0.0, dot( up, direction ) ) );
|
||
|
float inverse = 1.0 / ( cos( zenithAngle ) + 0.15 * pow( 93.885 - ( ( zenithAngle * 180.0 ) / pi ), -1.253 ) );
|
||
|
float sR = rayleighZenithLength * inverse;
|
||
|
float sM = mieZenithLength * inverse;
|
||
|
|
||
|
// combined extinction factor
|
||
|
vec3 Fex = exp( -( vBetaR * sR + vBetaM * sM ) );
|
||
|
|
||
|
// in scattering
|
||
|
float cosTheta = dot( direction, vSunDirection );
|
||
|
|
||
|
float rPhase = rayleighPhase( cosTheta * 0.5 + 0.5 );
|
||
|
vec3 betaRTheta = vBetaR * rPhase;
|
||
|
|
||
|
float mPhase = hgPhase( cosTheta, mieDirectionalG );
|
||
|
vec3 betaMTheta = vBetaM * mPhase;
|
||
|
|
||
|
vec3 Lin = pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * ( 1.0 - Fex ), vec3( 1.5 ) );
|
||
|
Lin *= mix( vec3( 1.0 ), pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * Fex, vec3( 1.0 / 2.0 ) ), clamp( pow( 1.0 - dot( up, vSunDirection ), 5.0 ), 0.0, 1.0 ) );
|
||
|
|
||
|
// nightsky
|
||
|
float theta = acos( direction.y ); // elevation --> y-axis, [-pi/2, pi/2]
|
||
|
float phi = atan( direction.z, direction.x ); // azimuth --> x-axis [-pi/2, pi/2]
|
||
|
vec2 uv = vec2( phi, theta ) / vec2( 2.0 * pi, pi ) + vec2( 0.5, 0.0 );
|
||
|
vec3 L0 = vec3( 0.1 ) * Fex;
|
||
|
|
||
|
// composition + solar disc
|
||
|
float sundisk = smoothstep( sunAngularDiameterCos, sunAngularDiameterCos + 0.00002, cosTheta );
|
||
|
L0 += ( vSunE * 19000.0 * Fex ) * sundisk;
|
||
|
|
||
|
vec3 texColor = ( Lin + L0 ) * 0.04 + vec3( 0.0, 0.0003, 0.00075 );
|
||
|
|
||
|
vec3 retColor = pow( texColor, vec3( 1.0 / ( 1.2 + ( 1.2 * vSunfade ) ) ) );
|
||
|
|
||
|
gl_FragColor = vec4( retColor, 1.0 );
|
||
|
|
||
|
#include <tonemapping_fragment>
|
||
|
#include <colorspace_fragment>
|
||
|
|
||
|
}`
|
||
|
|
||
|
};
|
||
|
|
||
|
export { Sky };
|