animate/webGl/my-threejs-test/node_modules/lmdb/dependencies/v8/v8-fast-api-calls.h

888 lines
33 KiB
C
Raw Normal View History

2024-06-24 09:24:00 +00:00
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
/**
* This file provides additional API on top of the default one for making
* API calls, which come from embedder C++ functions. The functions are being
* called directly from optimized code, doing all the necessary typechecks
* in the compiler itself, instead of on the embedder side. Hence the "fast"
* in the name. Example usage might look like:
*
* \code
* void FastMethod(int param, bool another_param);
*
* v8::FunctionTemplate::New(isolate, SlowCallback, data,
* signature, length, constructor_behavior
* side_effect_type,
* &v8::CFunction::Make(FastMethod));
* \endcode
*
* By design, fast calls are limited by the following requirements, which
* the embedder should enforce themselves:
* - they should not allocate on the JS heap;
* - they should not trigger JS execution.
* To enforce them, the embedder could use the existing
* v8::Isolate::DisallowJavascriptExecutionScope and a utility similar to
* Blink's NoAllocationScope:
* https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/renderer/platform/heap/thread_state_scopes.h;l=16
*
* Due to these limitations, it's not directly possible to report errors by
* throwing a JS exception or to otherwise do an allocation. There is an
* alternative way of creating fast calls that supports falling back to the
* slow call and then performing the necessary allocation. When one creates
* the fast method by using CFunction::MakeWithFallbackSupport instead of
* CFunction::Make, the fast callback gets as last parameter an output variable,
* through which it can request falling back to the slow call. So one might
* declare their method like:
*
* \code
* void FastMethodWithFallback(int param, FastApiCallbackOptions& options);
* \endcode
*
* If the callback wants to signal an error condition or to perform an
* allocation, it must set options.fallback to true and do an early return from
* the fast method. Then V8 checks the value of options.fallback and if it's
* true, falls back to executing the SlowCallback, which is capable of reporting
* the error (either by throwing a JS exception or logging to the console) or
* doing the allocation. It's the embedder's responsibility to ensure that the
* fast callback is idempotent up to the point where error and fallback
* conditions are checked, because otherwise executing the slow callback might
* produce visible side-effects twice.
*
* An example for custom embedder type support might employ a way to wrap/
* unwrap various C++ types in JSObject instances, e.g:
*
* \code
*
* // Helper method with a check for field count.
* template <typename T, int offset>
* inline T* GetInternalField(v8::Local<v8::Object> wrapper) {
* assert(offset < wrapper->InternalFieldCount());
* return reinterpret_cast<T*>(
* wrapper->GetAlignedPointerFromInternalField(offset));
* }
*
* class CustomEmbedderType {
* public:
* // Returns the raw C object from a wrapper JS object.
* static CustomEmbedderType* Unwrap(v8::Local<v8::Object> wrapper) {
* return GetInternalField<CustomEmbedderType,
* kV8EmbedderWrapperObjectIndex>(wrapper);
* }
* static void FastMethod(v8::Local<v8::Object> receiver_obj, int param) {
* CustomEmbedderType* receiver = static_cast<CustomEmbedderType*>(
* receiver_obj->GetAlignedPointerFromInternalField(
* kV8EmbedderWrapperObjectIndex));
*
* // Type checks are already done by the optimized code.
* // Then call some performance-critical method like:
* // receiver->Method(param);
* }
*
* static void SlowMethod(
* const v8::FunctionCallbackInfo<v8::Value>& info) {
* v8::Local<v8::Object> instance =
* v8::Local<v8::Object>::Cast(info.Holder());
* CustomEmbedderType* receiver = Unwrap(instance);
* // TODO: Do type checks and extract {param}.
* receiver->Method(param);
* }
* };
*
* // TODO(mslekova): Clean-up these constants
* // The constants kV8EmbedderWrapperTypeIndex and
* // kV8EmbedderWrapperObjectIndex describe the offsets for the type info
* // struct and the native object, when expressed as internal field indices
* // within a JSObject. The existance of this helper function assumes that
* // all embedder objects have their JSObject-side type info at the same
* // offset, but this is not a limitation of the API itself. For a detailed
* // use case, see the third example.
* static constexpr int kV8EmbedderWrapperTypeIndex = 0;
* static constexpr int kV8EmbedderWrapperObjectIndex = 1;
*
* // The following setup function can be templatized based on
* // the {embedder_object} argument.
* void SetupCustomEmbedderObject(v8::Isolate* isolate,
* v8::Local<v8::Context> context,
* CustomEmbedderType* embedder_object) {
* isolate->set_embedder_wrapper_type_index(
* kV8EmbedderWrapperTypeIndex);
* isolate->set_embedder_wrapper_object_index(
* kV8EmbedderWrapperObjectIndex);
*
* v8::CFunction c_func =
* MakeV8CFunction(CustomEmbedderType::FastMethod);
*
* Local<v8::FunctionTemplate> method_template =
* v8::FunctionTemplate::New(
* isolate, CustomEmbedderType::SlowMethod, v8::Local<v8::Value>(),
* v8::Local<v8::Signature>(), 1, v8::ConstructorBehavior::kAllow,
* v8::SideEffectType::kHasSideEffect, &c_func);
*
* v8::Local<v8::ObjectTemplate> object_template =
* v8::ObjectTemplate::New(isolate);
* object_template->SetInternalFieldCount(
* kV8EmbedderWrapperObjectIndex + 1);
* object_template->Set(isolate, "method", method_template);
*
* // Instantiate the wrapper JS object.
* v8::Local<v8::Object> object =
* object_template->NewInstance(context).ToLocalChecked();
* object->SetAlignedPointerInInternalField(
* kV8EmbedderWrapperObjectIndex,
* reinterpret_cast<void*>(embedder_object));
*
* // TODO: Expose {object} where it's necessary.
* }
* \endcode
*
* For instance if {object} is exposed via a global "obj" variable,
* one could write in JS:
* function hot_func() {
* obj.method(42);
* }
* and once {hot_func} gets optimized, CustomEmbedderType::FastMethod
* will be called instead of the slow version, with the following arguments:
* receiver := the {embedder_object} from above
* param := 42
*
* Currently supported return types:
* - void
* - bool
* - int32_t
* - uint32_t
* - float32_t
* - float64_t
* Currently supported argument types:
* - pointer to an embedder type
* - JavaScript array of primitive types
* - bool
* - int32_t
* - uint32_t
* - int64_t
* - uint64_t
* - float32_t
* - float64_t
*
* The 64-bit integer types currently have the IDL (unsigned) long long
* semantics: https://heycam.github.io/webidl/#abstract-opdef-converttoint
* In the future we'll extend the API to also provide conversions from/to
* BigInt to preserve full precision.
* The floating point types currently have the IDL (unrestricted) semantics,
* which is the only one used by WebGL. We plan to add support also for
* restricted floats/doubles, similarly to the BigInt conversion policies.
* We also differ from the specific NaN bit pattern that WebIDL prescribes
* (https://heycam.github.io/webidl/#es-unrestricted-float) in that Blink
* passes NaN values as-is, i.e. doesn't normalize them.
*
* To be supported types:
* - TypedArrays and ArrayBuffers
* - arrays of embedder types
*
*
* The API offers a limited support for function overloads:
*
* \code
* void FastMethod_2Args(int param, bool another_param);
* void FastMethod_3Args(int param, bool another_param, int third_param);
*
* v8::CFunction fast_method_2args_c_func =
* MakeV8CFunction(FastMethod_2Args);
* v8::CFunction fast_method_3args_c_func =
* MakeV8CFunction(FastMethod_3Args);
* const v8::CFunction fast_method_overloads[] = {fast_method_2args_c_func,
* fast_method_3args_c_func};
* Local<v8::FunctionTemplate> method_template =
* v8::FunctionTemplate::NewWithCFunctionOverloads(
* isolate, SlowCallback, data, signature, length,
* constructor_behavior, side_effect_type,
* {fast_method_overloads, 2});
* \endcode
*
* In this example a single FunctionTemplate is associated to multiple C++
* functions. The overload resolution is currently only based on the number of
* arguments passed in a call. For example, if this method_template is
* registered with a wrapper JS object as described above, a call with two
* arguments:
* obj.method(42, true);
* will result in a fast call to FastMethod_2Args, while a call with three or
* more arguments:
* obj.method(42, true, 11);
* will result in a fast call to FastMethod_3Args. Instead a call with less than
* two arguments, like:
* obj.method(42);
* would not result in a fast call but would fall back to executing the
* associated SlowCallback.
*/
#ifndef INCLUDE_V8_FAST_API_CALLS_H_
#define INCLUDE_V8_FAST_API_CALLS_H_
#include <stddef.h>
#include <stdint.h>
#include <tuple>
#include <type_traits>
#include "v8-internal.h" // NOLINT(build/include_directory)
#include "v8-local-handle.h" // NOLINT(build/include_directory)
#include "v8-typed-array.h" // NOLINT(build/include_directory)
#include "v8-value.h" // NOLINT(build/include_directory)
#include "v8config.h" // NOLINT(build/include_directory)
namespace v8 {
class Isolate;
class CTypeInfo {
public:
enum class Type : uint8_t {
kVoid,
kBool,
kInt32,
kUint32,
kInt64,
kUint64,
kFloat32,
kFloat64,
kV8Value,
kApiObject, // This will be deprecated once all users have
// migrated from v8::ApiObject to v8::Local<v8::Value>.
};
// kCallbackOptionsType is not part of the Type enum
// because it is only used internally. Use value 255 that is larger
// than any valid Type enum.
static constexpr Type kCallbackOptionsType = Type(255);
enum class SequenceType : uint8_t {
kScalar,
kIsSequence, // sequence<T>
kIsTypedArray, // TypedArray of T or any ArrayBufferView if T
// is void
kIsArrayBuffer // ArrayBuffer
};
enum class Flags : uint8_t {
kNone = 0,
kAllowSharedBit = 1 << 0, // Must be an ArrayBuffer or TypedArray
kEnforceRangeBit = 1 << 1, // T must be integral
kClampBit = 1 << 2, // T must be integral
kIsRestrictedBit = 1 << 3, // T must be float or double
};
explicit constexpr CTypeInfo(
Type type, SequenceType sequence_type = SequenceType::kScalar,
Flags flags = Flags::kNone)
: type_(type), sequence_type_(sequence_type), flags_(flags) {}
typedef uint32_t Identifier;
explicit constexpr CTypeInfo(Identifier identifier)
: CTypeInfo(static_cast<Type>(identifier >> 16),
static_cast<SequenceType>((identifier >> 8) & 255),
static_cast<Flags>(identifier & 255)) {}
constexpr Identifier GetId() const {
return static_cast<uint8_t>(type_) << 16 |
static_cast<uint8_t>(sequence_type_) << 8 |
static_cast<uint8_t>(flags_);
}
constexpr Type GetType() const { return type_; }
constexpr SequenceType GetSequenceType() const { return sequence_type_; }
constexpr Flags GetFlags() const { return flags_; }
static constexpr bool IsIntegralType(Type type) {
return type == Type::kInt32 || type == Type::kUint32 ||
type == Type::kInt64 || type == Type::kUint64;
}
static constexpr bool IsFloatingPointType(Type type) {
return type == Type::kFloat32 || type == Type::kFloat64;
}
static constexpr bool IsPrimitive(Type type) {
return IsIntegralType(type) || IsFloatingPointType(type) ||
type == Type::kBool;
}
private:
Type type_;
SequenceType sequence_type_;
Flags flags_;
};
struct FastApiTypedArrayBase {
public:
// Returns the length in number of elements.
size_t V8_EXPORT length() const { return length_; }
// Checks whether the given index is within the bounds of the collection.
void V8_EXPORT ValidateIndex(size_t index) const;
protected:
size_t length_ = 0;
};
template <typename T>
struct FastApiTypedArray : public FastApiTypedArrayBase {
public:
V8_INLINE T get(size_t index) const {
#ifdef DEBUG
ValidateIndex(index);
#endif // DEBUG
T tmp;
memcpy(&tmp, reinterpret_cast<T*>(data_) + index, sizeof(T));
return tmp;
}
bool getStorageIfAligned(T** elements) const {
if (reinterpret_cast<uintptr_t>(data_) % alignof(T) != 0) {
return false;
}
*elements = reinterpret_cast<T*>(data_);
return true;
}
private:
// This pointer should include the typed array offset applied.
// It's not guaranteed that it's aligned to sizeof(T), it's only
// guaranteed that it's 4-byte aligned, so for 8-byte types we need to
// provide a special implementation for reading from it, which hides
// the possibly unaligned read in the `get` method.
void* data_;
};
// Any TypedArray. It uses kTypedArrayBit with base type void
// Overloaded args of ArrayBufferView and TypedArray are not supported
// (for now) because the generic “any” ArrayBufferView doesnt have its
// own instance type. It could be supported if we specify that
// TypedArray<T> always has precedence over the generic ArrayBufferView,
// but this complicates overload resolution.
struct FastApiArrayBufferView {
void* data;
size_t byte_length;
};
struct FastApiArrayBuffer {
void* data;
size_t byte_length;
};
class V8_EXPORT CFunctionInfo {
public:
// Construct a struct to hold a CFunction's type information.
// |return_info| describes the function's return type.
// |arg_info| is an array of |arg_count| CTypeInfos describing the
// arguments. Only the last argument may be of the special type
// CTypeInfo::kCallbackOptionsType.
CFunctionInfo(const CTypeInfo& return_info, unsigned int arg_count,
const CTypeInfo* arg_info);
const CTypeInfo& ReturnInfo() const { return return_info_; }
// The argument count, not including the v8::FastApiCallbackOptions
// if present.
unsigned int ArgumentCount() const {
return HasOptions() ? arg_count_ - 1 : arg_count_;
}
// |index| must be less than ArgumentCount().
// Note: if the last argument passed on construction of CFunctionInfo
// has type CTypeInfo::kCallbackOptionsType, it is not included in
// ArgumentCount().
const CTypeInfo& ArgumentInfo(unsigned int index) const;
bool HasOptions() const {
// The options arg is always the last one.
return arg_count_ > 0 && arg_info_[arg_count_ - 1].GetType() ==
CTypeInfo::kCallbackOptionsType;
}
private:
const CTypeInfo return_info_;
const unsigned int arg_count_;
const CTypeInfo* arg_info_;
};
class V8_EXPORT CFunction {
public:
constexpr CFunction() : address_(nullptr), type_info_(nullptr) {}
const CTypeInfo& ReturnInfo() const { return type_info_->ReturnInfo(); }
const CTypeInfo& ArgumentInfo(unsigned int index) const {
return type_info_->ArgumentInfo(index);
}
unsigned int ArgumentCount() const { return type_info_->ArgumentCount(); }
const void* GetAddress() const { return address_; }
const CFunctionInfo* GetTypeInfo() const { return type_info_; }
enum class OverloadResolution { kImpossible, kAtRuntime, kAtCompileTime };
// Returns whether an overload between this and the given CFunction can
// be resolved at runtime by the RTTI available for the arguments or at
// compile time for functions with different number of arguments.
OverloadResolution GetOverloadResolution(const CFunction* other) {
// Runtime overload resolution can only deal with functions with the
// same number of arguments. Functions with different arity are handled
// by compile time overload resolution though.
if (ArgumentCount() != other->ArgumentCount()) {
return OverloadResolution::kAtCompileTime;
}
// The functions can only differ by a single argument position.
int diff_index = -1;
for (unsigned int i = 0; i < ArgumentCount(); ++i) {
if (ArgumentInfo(i).GetSequenceType() !=
other->ArgumentInfo(i).GetSequenceType()) {
if (diff_index >= 0) {
return OverloadResolution::kImpossible;
}
diff_index = i;
// We only support overload resolution between sequence types.
if (ArgumentInfo(i).GetSequenceType() ==
CTypeInfo::SequenceType::kScalar ||
other->ArgumentInfo(i).GetSequenceType() ==
CTypeInfo::SequenceType::kScalar) {
return OverloadResolution::kImpossible;
}
}
}
return OverloadResolution::kAtRuntime;
}
template <typename F>
static CFunction Make(F* func) {
return ArgUnwrap<F*>::Make(func);
}
template <typename F>
V8_DEPRECATED("Use CFunctionBuilder instead.")
static CFunction MakeWithFallbackSupport(F* func) {
return ArgUnwrap<F*>::Make(func);
}
CFunction(const void* address, const CFunctionInfo* type_info);
private:
const void* address_;
const CFunctionInfo* type_info_;
template <typename F>
class ArgUnwrap {
static_assert(sizeof(F) != sizeof(F),
"CFunction must be created from a function pointer.");
};
template <typename R, typename... Args>
class ArgUnwrap<R (*)(Args...)> {
public:
static CFunction Make(R (*func)(Args...));
};
};
struct V8_DEPRECATE_SOON("Use v8::Local<v8::Value> instead.") ApiObject {
uintptr_t address;
};
/**
* A struct which may be passed to a fast call callback, like so:
* \code
* void FastMethodWithOptions(int param, FastApiCallbackOptions& options);
* \endcode
*/
struct FastApiCallbackOptions {
/**
* Creates a new instance of FastApiCallbackOptions for testing purpose. The
* returned instance may be filled with mock data.
*/
static FastApiCallbackOptions CreateForTesting(Isolate* isolate) {
return {false, {0}};
}
/**
* If the callback wants to signal an error condition or to perform an
* allocation, it must set options.fallback to true and do an early return
* from the fast method. Then V8 checks the value of options.fallback and if
* it's true, falls back to executing the SlowCallback, which is capable of
* reporting the error (either by throwing a JS exception or logging to the
* console) or doing the allocation. It's the embedder's responsibility to
* ensure that the fast callback is idempotent up to the point where error and
* fallback conditions are checked, because otherwise executing the slow
* callback might produce visible side-effects twice.
*/
bool fallback;
/**
* The `data` passed to the FunctionTemplate constructor, or `undefined`.
* `data_ptr` allows for default constructing FastApiCallbackOptions.
*/
union {
uintptr_t data_ptr;
v8::Value data;
};
};
namespace internal {
// Helper to count the number of occurances of `T` in `List`
template <typename T, typename... List>
struct count : std::integral_constant<int, 0> {};
template <typename T, typename... Args>
struct count<T, T, Args...>
: std::integral_constant<std::size_t, 1 + count<T, Args...>::value> {};
template <typename T, typename U, typename... Args>
struct count<T, U, Args...> : count<T, Args...> {};
template <typename RetBuilder, typename... ArgBuilders>
class CFunctionInfoImpl : public CFunctionInfo {
static constexpr int kOptionsArgCount =
count<FastApiCallbackOptions&, ArgBuilders...>();
static constexpr int kReceiverCount = 1;
static_assert(kOptionsArgCount == 0 || kOptionsArgCount == 1,
"Only one options parameter is supported.");
static_assert(sizeof...(ArgBuilders) >= kOptionsArgCount + kReceiverCount,
"The receiver or the options argument is missing.");
public:
constexpr CFunctionInfoImpl()
: CFunctionInfo(RetBuilder::Build(), sizeof...(ArgBuilders),
arg_info_storage_),
arg_info_storage_{ArgBuilders::Build()...} {
constexpr CTypeInfo::Type kReturnType = RetBuilder::Build().GetType();
static_assert(kReturnType == CTypeInfo::Type::kVoid ||
kReturnType == CTypeInfo::Type::kBool ||
kReturnType == CTypeInfo::Type::kInt32 ||
kReturnType == CTypeInfo::Type::kUint32 ||
kReturnType == CTypeInfo::Type::kFloat32 ||
kReturnType == CTypeInfo::Type::kFloat64,
"64-bit int and api object values are not currently "
"supported return types.");
}
private:
const CTypeInfo arg_info_storage_[sizeof...(ArgBuilders)];
};
template <typename T>
struct TypeInfoHelper {
static_assert(sizeof(T) != sizeof(T), "This type is not supported");
};
#define SPECIALIZE_GET_TYPE_INFO_HELPER_FOR(T, Enum) \
template <> \
struct TypeInfoHelper<T> { \
static constexpr CTypeInfo::Flags Flags() { \
return CTypeInfo::Flags::kNone; \
} \
\
static constexpr CTypeInfo::Type Type() { return CTypeInfo::Type::Enum; } \
static constexpr CTypeInfo::SequenceType SequenceType() { \
return CTypeInfo::SequenceType::kScalar; \
} \
};
template <CTypeInfo::Type type>
struct CTypeInfoTraits {};
#define DEFINE_TYPE_INFO_TRAITS(CType, Enum) \
template <> \
struct CTypeInfoTraits<CTypeInfo::Type::Enum> { \
using ctype = CType; \
};
#define PRIMITIVE_C_TYPES(V) \
V(bool, kBool) \
V(int32_t, kInt32) \
V(uint32_t, kUint32) \
V(int64_t, kInt64) \
V(uint64_t, kUint64) \
V(float, kFloat32) \
V(double, kFloat64)
// Same as above, but includes deprecated types for compatibility.
#define ALL_C_TYPES(V) \
PRIMITIVE_C_TYPES(V) \
V(void, kVoid) \
V(v8::Local<v8::Value>, kV8Value) \
V(v8::Local<v8::Object>, kV8Value) \
V(ApiObject, kApiObject)
// ApiObject was a temporary solution to wrap the pointer to the v8::Value.
// Please use v8::Local<v8::Value> in new code for the arguments and
// v8::Local<v8::Object> for the receiver, as ApiObject will be deprecated.
ALL_C_TYPES(SPECIALIZE_GET_TYPE_INFO_HELPER_FOR)
PRIMITIVE_C_TYPES(DEFINE_TYPE_INFO_TRAITS)
#undef PRIMITIVE_C_TYPES
#undef ALL_C_TYPES
#define SPECIALIZE_GET_TYPE_INFO_HELPER_FOR_TA(T, Enum) \
template <> \
struct TypeInfoHelper<const FastApiTypedArray<T>&> { \
static constexpr CTypeInfo::Flags Flags() { \
return CTypeInfo::Flags::kNone; \
} \
\
static constexpr CTypeInfo::Type Type() { return CTypeInfo::Type::Enum; } \
static constexpr CTypeInfo::SequenceType SequenceType() { \
return CTypeInfo::SequenceType::kIsTypedArray; \
} \
};
#define TYPED_ARRAY_C_TYPES(V) \
V(int32_t, kInt32) \
V(uint32_t, kUint32) \
V(int64_t, kInt64) \
V(uint64_t, kUint64) \
V(float, kFloat32) \
V(double, kFloat64)
TYPED_ARRAY_C_TYPES(SPECIALIZE_GET_TYPE_INFO_HELPER_FOR_TA)
#undef TYPED_ARRAY_C_TYPES
template <>
struct TypeInfoHelper<v8::Local<v8::Array>> {
static constexpr CTypeInfo::Flags Flags() { return CTypeInfo::Flags::kNone; }
static constexpr CTypeInfo::Type Type() { return CTypeInfo::Type::kVoid; }
static constexpr CTypeInfo::SequenceType SequenceType() {
return CTypeInfo::SequenceType::kIsSequence;
}
};
template <>
struct TypeInfoHelper<v8::Local<v8::Uint32Array>> {
static constexpr CTypeInfo::Flags Flags() { return CTypeInfo::Flags::kNone; }
static constexpr CTypeInfo::Type Type() { return CTypeInfo::Type::kUint32; }
static constexpr CTypeInfo::SequenceType SequenceType() {
return CTypeInfo::SequenceType::kIsTypedArray;
}
};
template <>
struct TypeInfoHelper<FastApiCallbackOptions&> {
static constexpr CTypeInfo::Flags Flags() { return CTypeInfo::Flags::kNone; }
static constexpr CTypeInfo::Type Type() {
return CTypeInfo::kCallbackOptionsType;
}
static constexpr CTypeInfo::SequenceType SequenceType() {
return CTypeInfo::SequenceType::kScalar;
}
};
#define STATIC_ASSERT_IMPLIES(COND, ASSERTION, MSG) \
static_assert(((COND) == 0) || (ASSERTION), MSG)
template <typename T, CTypeInfo::Flags... Flags>
class CTypeInfoBuilder {
public:
using BaseType = T;
static constexpr CTypeInfo Build() {
constexpr CTypeInfo::Flags kFlags =
MergeFlags(TypeInfoHelper<T>::Flags(), Flags...);
constexpr CTypeInfo::Type kType = TypeInfoHelper<T>::Type();
constexpr CTypeInfo::SequenceType kSequenceType =
TypeInfoHelper<T>::SequenceType();
STATIC_ASSERT_IMPLIES(
uint8_t(kFlags) & uint8_t(CTypeInfo::Flags::kAllowSharedBit),
(kSequenceType == CTypeInfo::SequenceType::kIsTypedArray ||
kSequenceType == CTypeInfo::SequenceType::kIsArrayBuffer),
"kAllowSharedBit is only allowed for TypedArrays and ArrayBuffers.");
STATIC_ASSERT_IMPLIES(
uint8_t(kFlags) & uint8_t(CTypeInfo::Flags::kEnforceRangeBit),
CTypeInfo::IsIntegralType(kType),
"kEnforceRangeBit is only allowed for integral types.");
STATIC_ASSERT_IMPLIES(
uint8_t(kFlags) & uint8_t(CTypeInfo::Flags::kClampBit),
CTypeInfo::IsIntegralType(kType),
"kClampBit is only allowed for integral types.");
STATIC_ASSERT_IMPLIES(
uint8_t(kFlags) & uint8_t(CTypeInfo::Flags::kIsRestrictedBit),
CTypeInfo::IsFloatingPointType(kType),
"kIsRestrictedBit is only allowed for floating point types.");
STATIC_ASSERT_IMPLIES(kSequenceType == CTypeInfo::SequenceType::kIsSequence,
kType == CTypeInfo::Type::kVoid,
"Sequences are only supported from void type.");
STATIC_ASSERT_IMPLIES(
kSequenceType == CTypeInfo::SequenceType::kIsTypedArray,
CTypeInfo::IsPrimitive(kType) || kType == CTypeInfo::Type::kVoid,
"TypedArrays are only supported from primitive types or void.");
// Return the same type with the merged flags.
return CTypeInfo(TypeInfoHelper<T>::Type(),
TypeInfoHelper<T>::SequenceType(), kFlags);
}
private:
template <typename... Rest>
static constexpr CTypeInfo::Flags MergeFlags(CTypeInfo::Flags flags,
Rest... rest) {
return CTypeInfo::Flags(uint8_t(flags) | uint8_t(MergeFlags(rest...)));
}
static constexpr CTypeInfo::Flags MergeFlags() { return CTypeInfo::Flags(0); }
};
template <typename RetBuilder, typename... ArgBuilders>
class CFunctionBuilderWithFunction {
public:
explicit constexpr CFunctionBuilderWithFunction(const void* fn) : fn_(fn) {}
template <CTypeInfo::Flags... Flags>
constexpr auto Ret() {
return CFunctionBuilderWithFunction<
CTypeInfoBuilder<typename RetBuilder::BaseType, Flags...>,
ArgBuilders...>(fn_);
}
template <unsigned int N, CTypeInfo::Flags... Flags>
constexpr auto Arg() {
// Return a copy of the builder with the Nth arg builder merged with
// template parameter pack Flags.
return ArgImpl<N, Flags...>(
std::make_index_sequence<sizeof...(ArgBuilders)>());
}
auto Build() {
static CFunctionInfoImpl<RetBuilder, ArgBuilders...> instance;
return CFunction(fn_, &instance);
}
private:
template <bool Merge, unsigned int N, CTypeInfo::Flags... Flags>
struct GetArgBuilder;
// Returns the same ArgBuilder as the one at index N, including its flags.
// Flags in the template parameter pack are ignored.
template <unsigned int N, CTypeInfo::Flags... Flags>
struct GetArgBuilder<false, N, Flags...> {
using type =
typename std::tuple_element<N, std::tuple<ArgBuilders...>>::type;
};
// Returns an ArgBuilder with the same base type as the one at index N,
// but merges the flags with the flags in the template parameter pack.
template <unsigned int N, CTypeInfo::Flags... Flags>
struct GetArgBuilder<true, N, Flags...> {
using type = CTypeInfoBuilder<
typename std::tuple_element<N,
std::tuple<ArgBuilders...>>::type::BaseType,
std::tuple_element<N, std::tuple<ArgBuilders...>>::type::Build()
.GetFlags(),
Flags...>;
};
// Return a copy of the CFunctionBuilder, but merges the Flags on
// ArgBuilder index N with the new Flags passed in the template parameter
// pack.
template <unsigned int N, CTypeInfo::Flags... Flags, size_t... I>
constexpr auto ArgImpl(std::index_sequence<I...>) {
return CFunctionBuilderWithFunction<
RetBuilder, typename GetArgBuilder<N == I, I, Flags...>::type...>(fn_);
}
const void* fn_;
};
class CFunctionBuilder {
public:
constexpr CFunctionBuilder() {}
template <typename R, typename... Args>
constexpr auto Fn(R (*fn)(Args...)) {
return CFunctionBuilderWithFunction<CTypeInfoBuilder<R>,
CTypeInfoBuilder<Args>...>(
reinterpret_cast<const void*>(fn));
}
};
} // namespace internal
// static
template <typename R, typename... Args>
CFunction CFunction::ArgUnwrap<R (*)(Args...)>::Make(R (*func)(Args...)) {
return internal::CFunctionBuilder().Fn(func).Build();
}
using CFunctionBuilder = internal::CFunctionBuilder;
static constexpr CTypeInfo kTypeInfoInt32 = CTypeInfo(CTypeInfo::Type::kInt32);
static constexpr CTypeInfo kTypeInfoFloat64 =
CTypeInfo(CTypeInfo::Type::kFloat64);
/**
* Copies the contents of this JavaScript array to a C++ buffer with
* a given max_length. A CTypeInfo is passed as an argument,
* instructing different rules for conversion (e.g. restricted float/double).
* The element type T of the destination array must match the C type
* corresponding to the CTypeInfo (specified by CTypeInfoTraits).
* If the array length is larger than max_length or the array is of
* unsupported type, the operation will fail, returning false. Generally, an
* array which contains objects, undefined, null or anything not convertible
* to the requested destination type, is considered unsupported. The operation
* returns true on success. `type_info` will be used for conversions.
*/
template <const CTypeInfo* type_info, typename T>
V8_DEPRECATE_SOON(
"Use TryToCopyAndConvertArrayToCppBuffer<CTypeInfo::Identifier, T>()")
bool V8_EXPORT V8_WARN_UNUSED_RESULT
TryCopyAndConvertArrayToCppBuffer(Local<Array> src, T* dst,
uint32_t max_length);
template <>
V8_DEPRECATE_SOON(
"Use TryToCopyAndConvertArrayToCppBuffer<CTypeInfo::Identifier, T>()")
inline bool V8_WARN_UNUSED_RESULT
TryCopyAndConvertArrayToCppBuffer<&kTypeInfoInt32, int32_t>(
Local<Array> src, int32_t* dst, uint32_t max_length) {
return false;
}
template <>
V8_DEPRECATE_SOON(
"Use TryToCopyAndConvertArrayToCppBuffer<CTypeInfo::Identifier, T>()")
inline bool V8_WARN_UNUSED_RESULT
TryCopyAndConvertArrayToCppBuffer<&kTypeInfoFloat64, double>(
Local<Array> src, double* dst, uint32_t max_length) {
return false;
}
template <CTypeInfo::Identifier type_info_id, typename T>
bool V8_EXPORT V8_WARN_UNUSED_RESULT TryToCopyAndConvertArrayToCppBuffer(
Local<Array> src, T* dst, uint32_t max_length);
template <>
bool V8_EXPORT V8_WARN_UNUSED_RESULT TryToCopyAndConvertArrayToCppBuffer<
internal::CTypeInfoBuilder<int32_t>::Build().GetId(), int32_t>(
Local<Array> src, int32_t* dst, uint32_t max_length);
template <>
bool V8_EXPORT V8_WARN_UNUSED_RESULT TryToCopyAndConvertArrayToCppBuffer<
internal::CTypeInfoBuilder<uint32_t>::Build().GetId(), uint32_t>(
Local<Array> src, uint32_t* dst, uint32_t max_length);
template <>
bool V8_EXPORT V8_WARN_UNUSED_RESULT TryToCopyAndConvertArrayToCppBuffer<
internal::CTypeInfoBuilder<float>::Build().GetId(), float>(
Local<Array> src, float* dst, uint32_t max_length);
template <>
bool V8_EXPORT V8_WARN_UNUSED_RESULT TryToCopyAndConvertArrayToCppBuffer<
internal::CTypeInfoBuilder<double>::Build().GetId(), double>(
Local<Array> src, double* dst, uint32_t max_length);
} // namespace v8
#endif // INCLUDE_V8_FAST_API_CALLS_H_