mrf24j40/mrf24j.cpp

294 lines
9.2 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* mrf24j.cpp, Karl Palsson, 2011, karlp@tweak.net.au
* modified bsd license / apache license
*/
//#include "WProgram.h" //already in mrf24j.h
#include "mrf24j.h"
// aMaxPHYPacketSize = 127, from the 802.15.4-2006 standard.
static uint8_t rx_buf[127];
// essential for obtaining the data frame only
static int bytes_MHR = 9; // header length = 2 Frame control + 1 sequence number + 2 panid + 2 shortAddr Destination + 2 shortAddr Source
static int bytes_FCS = 2; // FCS length = 2
static int bytes_nodata = bytes_MHR + bytes_FCS; // no_data bytes in PHY payload, header length + FCS
volatile uint8_t flag_got_rx;
volatile uint8_t flag_got_tx;
static rx_info_t rx_info;
static tx_info_t tx_info;
/**
* Constructor MRF24J Object.
* @param pin_reset, @param pin_chip_select, @param pin_interrupt
*/
Mrf24j::Mrf24j(int pin_reset, int pin_chip_select, int pin_interrupt) {
_pin_reset = pin_reset;
_pin_cs = pin_chip_select;
_pin_int = pin_interrupt;
pinMode(_pin_reset, OUTPUT);
pinMode(_pin_cs, OUTPUT);
pinMode(_pin_int, INPUT);
SPI.setBitOrder(MSBFIRST) ;
SPI.setDataMode(SPI_MODE0);
SPI.begin();
}
void Mrf24j::reset(void) {
digitalWrite(_pin_reset, LOW);
delay(10); // just my gut
digitalWrite(_pin_reset, HIGH);
delay(20); // from manual
}
byte Mrf24j::read_short(byte address) {
digitalWrite(_pin_cs, LOW);
// 0 top for short addressing, 0 bottom for read
SPI.transfer(address<<1 & 0b01111110);
byte ret = SPI.transfer(0x00);
digitalWrite(_pin_cs, HIGH);
return ret;
}
byte Mrf24j::read_long(word address) {
digitalWrite(_pin_cs, LOW);
byte ahigh = address >> 3;
byte alow = address << 5;
SPI.transfer(0x80 | ahigh); // high bit for long
SPI.transfer(alow);
byte ret = SPI.transfer(0);
digitalWrite(_pin_cs, HIGH);
return ret;
}
void Mrf24j::write_short(byte address, byte data) {
digitalWrite(_pin_cs, LOW);
// 0 for top short address, 1 bottom for write
SPI.transfer((address<<1 & 0b01111110) | 0x01);
SPI.transfer(data);
digitalWrite(_pin_cs, HIGH);
}
void Mrf24j::write_long(word address, byte data) {
digitalWrite(_pin_cs, LOW);
byte ahigh = address >> 3;
byte alow = address << 5;
SPI.transfer(0x80 | ahigh); // high bit for long
SPI.transfer(alow | 0x10); // last bit for write
SPI.transfer(data);
digitalWrite(_pin_cs, HIGH);
}
word Mrf24j::get_pan(void) {
byte panh = read_short(MRF_PANIDH);
return panh << 8 | read_short(MRF_PANIDL);
}
void Mrf24j::set_pan(word panid) {
write_short(MRF_PANIDH, panid >> 8);
write_short(MRF_PANIDL, panid & 0xff);
}
void Mrf24j::address16_write(word address16) {
write_short(MRF_SADRH, address16 >> 8);
write_short(MRF_SADRL, address16 & 0xff);
}
word Mrf24j::address16_read(void) {
byte a16h = read_short(MRF_SADRH);
return a16h << 8 | read_short(MRF_SADRL);
}
/**
* Simple send 16, with acks, not much of anything.. assumes src16 and local pan only.
* @param data
*/
void Mrf24j::send16(word dest16, char * data) {
byte len = strlen(data); // get the length of the char* array
int i = 0;
write_long(i++, 9); // header length
write_long(i++, 9+len); // data payload length 0x001
//write_long(i++, 9+2+len); //+2 is because module seems to ignore 2 bytes after the header?!. becose 2 FCS bytes appended by TXMAC
// 0 | pan compression | ack | no security | no data pending | data frame[3 bits]
write_long(i++, 0b01100001); // first byte of Frame Control
// 16 bit source, 802.15.4 (2003), 16 bit dest,
write_long(i++, 0b10001000); // second byte of frame control
write_long(i++, 1); // sequence number 1
word panid = get_pan();
write_long(i++, panid & 0xff); // dest panid
write_long(i++, panid >> 8);
write_long(i++, dest16 & 0xff); // dest16 low
write_long(i++, dest16 >> 8); // dest16 high
word src16 = address16_read();
write_long(i++, src16 & 0xff); // src16 low
write_long(i++, src16 >> 8); // src16 high
//i+=2; // All testing seems to indicate that the next two bytes are ignored. again 2 bytes on FCS appended by TXMAC
for (int q = 0; q < len; q++) {
write_long(i++, data[q]);
}
// ack on, and go!
write_short(MRF_TXNCON, (1<<MRF_TXNACKREQ | 1<<MRF_TXNTRIG));
}
void Mrf24j::set_interrupts(void) {
// interrupts for rx and tx normal complete
write_short(MRF_INTCON, 0b11110110);
}
/** use the 802.15.4 channel numbers..
*/
void Mrf24j::set_channel(byte channel) {
write_long(MRF_RFCON0, (((channel - 11) << 4) | 0x03));
}
void Mrf24j::init(void) {
/*
// Seems a bit ridiculous when I use reset pin anyway
write_short(MRF_SOFTRST, 0x7); // from manual
while (read_short(MRF_SOFTRST) & 0x7 != 0) {
; // wait for soft reset to finish
}
*/
write_short(MRF_PACON2, 0x98); // Initialize FIFOEN = 1 and TXONTS = 0x6.
write_short(MRF_TXSTBL, 0x95); // Initialize RFSTBL = 0x9.
write_long(MRF_RFCON0, 0x03); // Initialize RFOPT = 0x03.
write_long(MRF_RFCON1, 0x01); // Initialize VCOOPT = 0x02.
write_long(MRF_RFCON2, 0x80); // Enable PLL (PLLEN = 1).
write_long(MRF_RFCON6, 0x90); // Initialize TXFIL = 1 and 20MRECVR = 1.
write_long(MRF_RFCON7, 0x80); // Initialize SLPCLKSEL = 0x2 (100 kHz Internal oscillator).
write_long(MRF_RFCON8, 0x10); // Initialize RFVCO = 1.
write_long(MRF_SLPCON1, 0x21); // Initialize CLKOUTEN = 1 and SLPCLKDIV = 0x01.
// Configuration for nonbeacon-enabled devices (see Section 3.8 “Beacon-Enabled and
// Nonbeacon-Enabled Networks”):
write_short(MRF_BBREG2, 0x80); // Set CCA mode to ED
write_short(MRF_CCAEDTH, 0x60); // Set CCA ED threshold.
write_short(MRF_BBREG6, 0x40); // Set appended RSSI value to RXFIFO.
set_interrupts();
set_channel(12);
// max power is by default.. just leave it...
//Set transmitter power - See “REGISTER 2-62: RF CONTROL 3 REGISTER (ADDRESS: 0x203)”.
write_long(MRF_RFCON3, 0x00); // transmitter max power
write_long(MRF_TESTMODE, 0x07); // Enables PA/LNA on MRF24J40MB module, otherwise, comment this line.
write_short(MRF_RFCTL, 0x04); // Reset RF state machine.
write_short(MRF_RFCTL, 0x00); // part 2
delay(1); // delay at least 192usec
}
/**
* Call this from within an interrupt handler connected to the MRFs output
* interrupt pin. It handles reading in any data from the module, and letting it
* continue working.
* Only the most recent data is ever kept.
*/
void Mrf24j::interrupt_handler(void) {
uint8_t last_interrupt = read_short(MRF_INTSTAT);
if (last_interrupt & MRF_I_RXIF) {
flag_got_rx++;
// read out the packet data...
noInterrupts();
rx_disable();
uint8_t frame_length = read_long(0x300); // read start of rxfifo for, has 2 bytes more added by FCS. frame_length = m + n + 2
/*
* Uncomment this block, if you want all PHY Payload bytes in the rx_buf buffer
*
// buffer all bytes in PHY Payload
int rb_ptr = 0;
for (int i = 0; i < frame_length; i++) { // from 0x301 to (0x301 + frame_length -1)
rx_buf[rb_ptr++] = read_long(0x301 + i);
}
*/
// buffer data bytes
int rd_ptr = 0;
for (int i = 0; i < rx_datalength(); i++) { // from (0x301 + bytes_MHR) to (0x301 + frame_length - bytes_nodata - 1)
rx_info.rx_data[rd_ptr++] = read_long(0x301 + bytes_MHR + i);
}
rx_info.frame_length = frame_length;
rx_info.lqi = read_long(0x301 + frame_length); // same as datasheet 0x301 + (m + n + 2) <-- frame_length
rx_info.rssi = read_long(0x301 + frame_length + 1); // same as datasheet 0x301 + (m + n + 3) <-- frame_length + 1
rx_enable();
interrupts();
}
if (last_interrupt & MRF_I_TXNIF) {
flag_got_tx++;
uint8_t tmp = read_short(MRF_TXSTAT);
// 1 means it failed, we want 1 to mean it worked.
tx_info.tx_ok = !(tmp & ~(1 << TXNSTAT));
tx_info.retries = tmp >> 6;
tx_info.channel_busy = (tmp & (1 << CCAFAIL));
}
}
/**
* Call this function periodically, it will invoke your nominated handlers
*/
void Mrf24j::check_flags(void (*rx_handler)(void), void (*tx_handler)(void)){
// TODO - we could check whether the flags are > 1 here, indicating data was lost?
if (flag_got_rx) {
flag_got_rx = 0;
rx_handler();
}
if (flag_got_tx) {
flag_got_tx = 0;
tx_handler();
}
}
/**
* Set RX mode to promiscuous, or normal
*/
void Mrf24j::set_promiscuous(boolean enabled) {
if (enabled) {
write_short(MRF_RXMCR, 0x01);
} else {
write_short(MRF_RXMCR, 0x00);
}
}
rx_info_t * Mrf24j::get_rxinfo(void) {
return &rx_info;
}
tx_info_t * Mrf24j::get_txinfo(void) {
return &tx_info;
}
uint8_t * Mrf24j::get_rxbuf(void) {
return rx_buf;
}
int Mrf24j::rx_datalength(void) {
return rx_info.frame_length - bytes_nodata;
}
void Mrf24j::rx_flush(void) {
write_short(MRF_RXFLUSH, 0x01);
}
void Mrf24j::rx_disable(void) {
write_short(MRF_BBREG1, 0x04); // RXDECINV - disable receiver
}
void Mrf24j::rx_enable(void) {
write_short(MRF_BBREG1, 0x00); // RXDECINV - enable receiver
}