641 lines
15 KiB
C
641 lines
15 KiB
C
/*
|
|
* Copyright 2001 Brian S. Dean <bsd@bsdhome.com>
|
|
* All Rights Reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY BRIAN S. DEAN ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BRIAN S. DEAN BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
|
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
|
|
* DAMAGE.
|
|
*
|
|
*/
|
|
|
|
/* $Id$ */
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <string.h>
|
|
|
|
|
|
#include "avr.h"
|
|
#include "pindefs.h"
|
|
#include "ppi.h"
|
|
|
|
|
|
extern char * progname;
|
|
extern char progbuf[];
|
|
|
|
|
|
char * avr_version = "$Id$";
|
|
|
|
|
|
/* Need to add information for 2323, 2343, and 4414 */
|
|
|
|
struct avrpart parts[] = {
|
|
{"AT90S1200", "1200", 20000,
|
|
{{0, 64, 0, 0, 9000, 20000, {0x00, 0xff }, NULL}, /* eeprom */
|
|
{0, 1024, 0, 0, 9000, 20000, {0xff, 0 }, NULL}}}, /* flash */
|
|
|
|
{"AT90S2313", "2313", 20000,
|
|
{{0, 128, 0, 0, 9000, 20000, {0x80, 0x7f }, NULL}, /* eeprom */
|
|
{0, 2048, 0, 0, 9000, 20000, {0x7f, 0 }, NULL}}}, /* flash */
|
|
|
|
{"AT90S2333", "2333", 20000,
|
|
{{0, 128, 0, 0, 9000, 20000, {0x00, 0xff }, NULL}, /* eeprom */
|
|
{0, 2048, 0, 0, 9000, 20000, {0xff, 0 }, NULL}}}, /* flash */
|
|
|
|
{"AT90S4433", "4433", 20000,
|
|
{{0, 256, 0, 0, 9000, 20000, {0x00, 0xff }, NULL}, /* eeprom */
|
|
{0, 4096, 0, 0, 9000, 20000, {0xff, 0 }, NULL}}}, /* flash */
|
|
|
|
{"AT90S4434", "4434", 20000,
|
|
{{0, 256, 0, 0, 9000, 20000, {0x00, 0xff }, NULL}, /* eeprom */
|
|
{0, 4096, 0, 0, 9000, 20000, {0xff, 0 }, NULL}}}, /* flash */
|
|
|
|
{"AT90S8515", "8515", 20000,
|
|
{{0, 512, 0, 0, 9000, 20000, {0x80, 0x7f }, NULL}, /* eeprom */
|
|
{0, 8192, 0, 0, 9000, 20000, {0x7f, 0x00 }, NULL}}}, /* flash */
|
|
|
|
{"AT90S8535", "8535", 20000,
|
|
{{0, 512, 0, 0, 9000, 20000, {0x00, 0xff }, NULL}, /* eeprom */
|
|
{0, 8192, 0, 0, 9000, 20000, {0xff, 0x00 }, NULL}}}, /* flash */
|
|
|
|
{"ATMEGA103", "103", 20000,
|
|
{{0, 4096, 0, 0, 9000, 20000, {0x00, 0xff }, NULL}, /* eeprom */
|
|
{1, 131072, 256, 512, 22000, 56000, {0xff, 0x00 }, NULL}}}, /* flash */
|
|
|
|
};
|
|
|
|
#define N_AVRPARTS (sizeof(parts)/sizeof(struct avrpart))
|
|
|
|
|
|
|
|
|
|
int avr_list_parts(FILE * f, char * prefix)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i<N_AVRPARTS; i++) {
|
|
fprintf(f, "%s%s = %s\n",
|
|
prefix, parts[i].optiontag, parts[i].partdesc);
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
|
|
struct avrpart * avr_find_part(char * p)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i<N_AVRPARTS; i++) {
|
|
if (strcmp(parts[i].optiontag, p)==0) {
|
|
return &parts[i];
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
* transmit and receive a bit of data to/from the AVR device
|
|
*/
|
|
int avr_txrx_bit(int fd, int bit)
|
|
{
|
|
int r;
|
|
|
|
/*
|
|
* read the result bit (it is either valid from a previous clock
|
|
* pulse or it is ignored in the current context)
|
|
*/
|
|
r = ppi_getpin(fd, pinno[PIN_AVR_MISO]);
|
|
|
|
/* set the data input line as desired */
|
|
ppi_setpin(fd, pinno[PIN_AVR_MOSI], bit);
|
|
|
|
/*
|
|
* pulse the clock line, clocking in the MOSI data, and clocking out
|
|
* the next result bit
|
|
*/
|
|
ppi_pulsepin(fd, pinno[PIN_AVR_SCK]);
|
|
|
|
return r;
|
|
}
|
|
|
|
|
|
/*
|
|
* transmit and receive a byte of data to/from the AVR device
|
|
*/
|
|
unsigned char avr_txrx(int fd, unsigned char byte)
|
|
{
|
|
int i;
|
|
unsigned char r, b, rbyte;
|
|
|
|
rbyte = 0;
|
|
for (i=0; i<8; i++) {
|
|
b = (byte >> (7-i)) & 0x01;
|
|
r = avr_txrx_bit(fd, b);
|
|
rbyte = rbyte | (r << (7-i));
|
|
}
|
|
|
|
return rbyte;
|
|
}
|
|
|
|
|
|
/*
|
|
* transmit an AVR device command and return the results; 'cmd' and
|
|
* 'res' must point to at least a 4 byte data buffer
|
|
*/
|
|
int avr_cmd(int fd, unsigned char cmd[4], unsigned char res[4])
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i<4; i++) {
|
|
res[i] = avr_txrx(fd, cmd[i]);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* read a byte of data from the indicated memory region
|
|
*/
|
|
unsigned char avr_read_byte(int fd, struct avrpart * p,
|
|
int memtype, unsigned short addr)
|
|
{
|
|
unsigned short offset;
|
|
unsigned char cmd[4];
|
|
unsigned char res[4];
|
|
/* order here is very important, AVR_EEPROM, AVR_FLASH, AVR_FLASH+1 */
|
|
static unsigned char cmdbyte[3] = { 0xa0, 0x20, 0x28 };
|
|
|
|
LED_ON(fd, pinno[PIN_LED_PGM]);
|
|
LED_OFF(fd, pinno[PIN_LED_ERR]);
|
|
|
|
offset = 0;
|
|
|
|
if (memtype == AVR_M_FLASH) {
|
|
offset = addr & 0x01;
|
|
addr = addr / 2;
|
|
}
|
|
|
|
cmd[0] = cmdbyte[memtype + offset];
|
|
cmd[1] = addr >> 8; /* high order bits of address */
|
|
cmd[2] = addr & 0x0ff; /* low order bits of address */
|
|
cmd[3] = 0; /* don't care */
|
|
|
|
avr_cmd(fd, cmd, res);
|
|
|
|
LED_OFF(fd, pinno[PIN_LED_PGM]);
|
|
|
|
return res[3];
|
|
}
|
|
|
|
|
|
/*
|
|
* Read the entirety of the specified memory type into the
|
|
* corresponding buffer of the avrpart pointed to by 'p'.
|
|
*
|
|
* Return the number of bytes read, or -1 if an error occurs.
|
|
*/
|
|
int avr_read(int fd, struct avrpart * p, int memtype)
|
|
{
|
|
unsigned char rbyte;
|
|
unsigned short i;
|
|
unsigned char * buf;
|
|
int size;
|
|
|
|
buf = p->mem[memtype].buf;
|
|
size = p->mem[memtype].size;
|
|
|
|
for (i=0; i<size; i++) {
|
|
rbyte = avr_read_byte(fd, p, memtype, i);
|
|
fprintf(stderr, " \r%4u 0x%02x", i, rbyte);
|
|
buf[i] = rbyte;
|
|
}
|
|
|
|
fprintf(stderr, "\n");
|
|
|
|
return i;
|
|
}
|
|
|
|
|
|
/*
|
|
* write a byte of data to the indicated memory region
|
|
*/
|
|
int avr_write_byte(int fd, struct avrpart * p, int memtype,
|
|
unsigned short addr, unsigned char data)
|
|
{
|
|
unsigned char cmd[4];
|
|
unsigned char res[4];
|
|
unsigned char r;
|
|
int ready;
|
|
int tries;
|
|
unsigned char b;
|
|
unsigned short offset;
|
|
unsigned short caddr;
|
|
/* order here is very important, AVR_M_EEPROM, AVR_M_FLASH, AVR_M_FLASH+1 */
|
|
static unsigned char cmdbyte[3] = { 0xc0, 0x40, 0x48 };
|
|
|
|
/*
|
|
* check to see if the write is necessary by reading the existing
|
|
* value and only write if we are changing the value
|
|
*/
|
|
b = avr_read_byte(fd, p, memtype, addr);
|
|
if (b == data) {
|
|
return 0;
|
|
}
|
|
|
|
LED_ON(fd, pinno[PIN_LED_PGM]);
|
|
LED_OFF(fd, pinno[PIN_LED_ERR]);
|
|
|
|
offset = 0;
|
|
|
|
caddr = addr;
|
|
if (memtype == AVR_M_FLASH) {
|
|
offset = addr & 0x01;
|
|
caddr = addr / 2;
|
|
}
|
|
|
|
cmd[0] = cmdbyte[memtype + offset];
|
|
cmd[1] = caddr >> 8; /* high order bits of address */
|
|
cmd[2] = caddr & 0x0ff; /* low order bits of address */
|
|
cmd[3] = data; /* data */
|
|
|
|
avr_cmd(fd, cmd, res);
|
|
|
|
tries = 0;
|
|
ready = 0;
|
|
while (!ready) {
|
|
usleep(p->mem[memtype].min_write_delay); /* typical write delay */
|
|
r = avr_read_byte(fd, p, memtype, addr);
|
|
if ((data == p->mem[memtype].readback[0]) ||
|
|
(data == p->mem[memtype].readback[1])) {
|
|
/*
|
|
* use an extra long delay when we happen to be writing values
|
|
* used for polled data read-back. In this case, polling
|
|
* doesn't work, and we need to delay the worst case write time
|
|
* specified for the chip.
|
|
*/
|
|
usleep(p->mem[memtype].max_write_delay);
|
|
ready = 1;
|
|
}
|
|
else if (r == data) {
|
|
ready = 1;
|
|
}
|
|
|
|
tries++;
|
|
if (!ready && tries > 10) {
|
|
/*
|
|
* we couldn't write the data, indicate our displeasure by
|
|
* returning an error code
|
|
*/
|
|
LED_OFF(fd, pinno[PIN_LED_PGM]);
|
|
LED_ON(fd, pinno[PIN_LED_ERR]);
|
|
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
LED_OFF(fd, pinno[PIN_LED_PGM]);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Write the whole memory region (flash or eeprom, specified by
|
|
* 'memtype') from the corresponding buffer of the avrpart pointed to
|
|
* by 'p'. Write up to 'size' bytes from the buffer. Data is only
|
|
* written if the new data value is different from the existing data
|
|
* value. Data beyond 'size' bytes is not affected.
|
|
*
|
|
* Return the number of bytes written, or -1 if an error occurs.
|
|
*/
|
|
int avr_write(int fd, struct avrpart * p, int memtype, int size)
|
|
{
|
|
int rc;
|
|
int wsize;
|
|
unsigned char * buf;
|
|
unsigned short i;
|
|
unsigned char data;
|
|
int werror;
|
|
|
|
LED_OFF(fd, pinno[PIN_LED_ERR]);
|
|
|
|
werror = 0;
|
|
|
|
buf = p->mem[memtype].buf;
|
|
wsize = p->mem[memtype].size;
|
|
if (size < wsize) {
|
|
wsize = size;
|
|
}
|
|
else if (size > wsize) {
|
|
fprintf(stderr,
|
|
"%s: WARNING: %d bytes requested, but memory region is only %d bytes\n"
|
|
"%sOnly %d bytes will actually be written\n",
|
|
progname, size, wsize,
|
|
progbuf, wsize);
|
|
}
|
|
|
|
for (i=0; i<wsize; i++) {
|
|
/* eeprom or low byte of flash */
|
|
data = buf[i];
|
|
rc = avr_write_byte(fd, p, memtype, i, data);
|
|
fprintf(stderr, " \r%4u 0x%02x", i, data);
|
|
if (rc) {
|
|
fprintf(stderr, " ***failed; ");
|
|
fprintf(stderr, "\n");
|
|
LED_ON(fd, pinno[PIN_LED_ERR]);
|
|
werror = 1;
|
|
}
|
|
if (werror) {
|
|
/*
|
|
* make sure the error led stay on if there was a previous write
|
|
* error, otherwise it gets cleared in avr_write_byte()
|
|
*/
|
|
LED_ON(fd, pinno[PIN_LED_ERR]);
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "\n");
|
|
|
|
return i;
|
|
}
|
|
|
|
|
|
/*
|
|
* issue the 'program enable' command to the AVR device
|
|
*/
|
|
int avr_program_enable(int fd)
|
|
{
|
|
unsigned char cmd[4] = {0xac, 0x53, 0x00, 0x00};
|
|
unsigned char res[4];
|
|
|
|
avr_cmd(fd, cmd, res);
|
|
|
|
if (res[2] != cmd[1])
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* issue the 'chip erase' command to the AVR device
|
|
*/
|
|
int avr_chip_erase(int fd, struct avrpart * p)
|
|
{
|
|
unsigned char data[4] = {0xac, 0x80, 0x00, 0x00};
|
|
unsigned char res[4];
|
|
|
|
LED_ON(fd, pinno[PIN_LED_PGM]);
|
|
|
|
avr_cmd(fd, data, res);
|
|
usleep(p->chip_erase_delay);
|
|
avr_initialize(fd, p);
|
|
|
|
LED_OFF(fd, pinno[PIN_LED_PGM]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* read the AVR device's signature bytes
|
|
*/
|
|
int avr_signature(int fd, unsigned char sig[4])
|
|
{
|
|
unsigned char cmd[4] = {0x30, 0x00, 0x00, 0x00};
|
|
unsigned char res[4];
|
|
int i;
|
|
|
|
for (i=0; i<4; i++) {
|
|
cmd[2] = i;
|
|
avr_cmd(fd, cmd, res);
|
|
sig[i] = res[3];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* apply power to the AVR processor
|
|
*/
|
|
void avr_powerup(int fd)
|
|
{
|
|
ppi_set(fd, PPIDATA, PPI_AVR_VCC); /* power up */
|
|
usleep(100000);
|
|
}
|
|
|
|
|
|
/*
|
|
* remove power from the AVR processor
|
|
*/
|
|
void avr_powerdown(int fd)
|
|
{
|
|
ppi_clr(fd, PPIDATA, PPI_AVR_VCC); /* power down */
|
|
}
|
|
|
|
|
|
/*
|
|
* initialize the AVR device and prepare it to accept commands
|
|
*/
|
|
int avr_initialize(int fd, struct avrpart * p)
|
|
{
|
|
int rc;
|
|
int tries;
|
|
|
|
avr_powerup(fd);
|
|
|
|
|
|
ppi_setpin(fd, pinno[PIN_AVR_SCK], 0);
|
|
ppi_setpin(fd, pinno[PIN_AVR_RESET], 0);
|
|
ppi_pulsepin(fd, pinno[PIN_AVR_RESET]);
|
|
|
|
usleep(20000); /* 20 ms XXX should be a per-chip parameter */
|
|
|
|
/*
|
|
* Enable programming mode. If we are programming an AT90S1200, we
|
|
* can only issue the command and hope it worked. If we are using
|
|
* one of the other chips, the chip will echo 0x53 when issuing the
|
|
* third byte of the command. In this case, try up to 32 times in
|
|
* order to possibly get back into sync with the chip if we are out
|
|
* of sync.
|
|
*/
|
|
if (strcmp(p->partdesc, "AT90S1200")==0) {
|
|
avr_program_enable(fd);
|
|
}
|
|
else {
|
|
tries = 0;
|
|
do {
|
|
rc = avr_program_enable(fd);
|
|
if (rc == 0)
|
|
break;
|
|
ppi_pulsepin(fd, pinno[PIN_AVR_SCK]);
|
|
tries++;
|
|
} while (tries < 32);
|
|
|
|
/*
|
|
* can't sync with the device, maybe it's not attached?
|
|
*/
|
|
if (tries == 32) {
|
|
fprintf(stderr, "%s: AVR device not responding\n", progname);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
char * avr_memtstr(int memtype)
|
|
{
|
|
switch (memtype) {
|
|
case AVR_M_EEPROM : return "eeprom"; break;
|
|
case AVR_M_FLASH : return "flash"; break;
|
|
default : return "unknown-memtype"; break;
|
|
}
|
|
}
|
|
|
|
|
|
int avr_initmem(struct avrpart * p)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i<AVR_MAXMEMTYPES; i++) {
|
|
p->mem[i].buf = (unsigned char *) malloc(p->mem[i].size);
|
|
if (p->mem[i].buf == NULL) {
|
|
fprintf(stderr, "%s: can't alloc buffer for %s size of %d bytes\n",
|
|
progname, avr_memtstr(i), p->mem[i].size);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Verify the memory buffer of p with that of v. The byte range of v,
|
|
* may be a subset of p. The byte range of p should cover the whole
|
|
* chip's memory size.
|
|
*
|
|
* Return the number of bytes verified, or -1 if they don't match.
|
|
*/
|
|
int avr_verify(struct avrpart * p, struct avrpart * v, int memtype, int size)
|
|
{
|
|
int i;
|
|
unsigned char * buf1, * buf2;
|
|
int vsize;
|
|
|
|
buf1 = p->mem[memtype].buf;
|
|
buf2 = v->mem[memtype].buf;
|
|
vsize = p->mem[memtype].size;
|
|
|
|
if (vsize < size) {
|
|
fprintf(stderr,
|
|
"%s: WARNING: requested verification for %d bytes\n"
|
|
"%s%s memory region only contains %d bytes\n"
|
|
"%sOnly %d bytes will be verified.\n",
|
|
progname, size,
|
|
progbuf, avr_memtstr(memtype), vsize,
|
|
progbuf, vsize);
|
|
size = vsize;
|
|
}
|
|
|
|
for (i=0; i<size; i++) {
|
|
if (buf1[i] != buf2[i]) {
|
|
fprintf(stderr,
|
|
"%s: verification error, first mismatch at byte %d\n"
|
|
"%s0x%02x != 0x%02x\n",
|
|
progname, i,
|
|
progbuf, buf1[i], buf2[i]);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
|
|
|
|
void avr_mem_display(char * prefix, FILE * f, AVRMEM * m, int type)
|
|
{
|
|
if (m == NULL) {
|
|
fprintf(f,
|
|
"%sMem Bank\n"
|
|
"%sType Banked Size Size #Banks MinW MaxW ReadBack\n"
|
|
"%s------ ------ ------ ---- ------ ----- ----- ---------\n",
|
|
prefix, prefix, prefix);
|
|
}
|
|
else {
|
|
fprintf(f,
|
|
"%s%-6s %-6s %6d %4d %6d %5d %5d 0x%02x 0x%02x\n",
|
|
prefix, avr_memtstr(type), m->banked ? "yes" : "no",
|
|
m->size, m->bank_size, m->num_banks,
|
|
m->min_write_delay, m->max_write_delay,
|
|
m->readback[0], m->readback[1]);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void avr_display(FILE * f, struct avrpart * p, char * prefix)
|
|
{
|
|
int i;
|
|
char * buf;
|
|
char * px;
|
|
|
|
fprintf(f,
|
|
"%sAVR Part : %s\n"
|
|
"%sChip Erase delay : %d us\n"
|
|
"%sMemory Detail :\n\n",
|
|
prefix, p->partdesc,
|
|
prefix, p->chip_erase_delay,
|
|
prefix);
|
|
|
|
px = prefix;
|
|
i = strlen(prefix) + 5;
|
|
buf = (char *)malloc(i);
|
|
if (buf == NULL) {
|
|
/* ugh, this is not important enough to bail, just ignore it */
|
|
}
|
|
else {
|
|
strcpy(buf, prefix);
|
|
strcat(buf, " ");
|
|
px = buf;
|
|
}
|
|
|
|
avr_mem_display(px, f, NULL, 0);
|
|
for (i=0; i<AVR_MAXMEMTYPES; i++) {
|
|
avr_mem_display(px, f, &p->mem[i], i);
|
|
}
|
|
|
|
if (buf)
|
|
free(buf);
|
|
}
|
|
|
|
|