avrdude/src/serialupdi.c

977 lines
29 KiB
C

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2021 Dawid Buchwald
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* $Id$ */
/*
* Interface to the SerialUPDI programmer.
*
* Based on pymcuprog
* See https://github.com/microchip-pic-avr-tools/pymcuprog
*/
#include "ac_cfg.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <sys/time.h>
#include <unistd.h>
#include "avrdude.h"
#include "libavrdude.h"
#include "serialupdi.h"
#include "updi_link.h"
#include "updi_state.h"
#include "updi_readwrite.h"
#include "updi_nvm.h"
#include "updi_constants.h"
static int serialupdi_enter_progmode(const PROGRAMMER *pgm);
static int serialupdi_leave_progmode(const PROGRAMMER *pgm);
static void serialupdi_setup(PROGRAMMER * pgm)
{
if ((pgm->cookie = malloc(sizeof(updi_state))) == 0) {
pmsg_error("out of memory allocating private data\n");
exit(1);
}
memset(pgm->cookie, 0, sizeof(updi_state));
updi_set_rts_mode(pgm, RTS_MODE_DEFAULT);
updi_set_datalink_mode(pgm, UPDI_LINK_MODE_16BIT);
}
static void serialupdi_teardown(PROGRAMMER * pgm)
{
free(pgm->cookie);
}
static int serialupdi_open(PROGRAMMER *pgm, const char *port) {
strcpy(pgm->port, port);
return updi_link_open(pgm);
}
typedef enum {
APPLY_RESET,
RELEASE_RESET
} reset_mode;
static int serialupdi_reset(const PROGRAMMER *pgm, reset_mode mode) {
/*
def reset(self, apply_reset):
"""
Applies or releases an UPDI reset condition
:param apply_reset: True to apply, False to release
"""
if apply_reset:
self.logger.info("Apply reset")
self.readwrite.write_cs(constants.UPDI_ASI_RESET_REQ, constants.UPDI_RESET_REQ_VALUE)
else:
self.logger.info("Release reset")
self.readwrite.write_cs(constants.UPDI_ASI_RESET_REQ, 0x00)
*/
switch (mode) {
case APPLY_RESET:
pmsg_debug("sending reset request\n");
return updi_write_cs(pgm, UPDI_ASI_RESET_REQ, UPDI_RESET_REQ_VALUE);
case RELEASE_RESET:
pmsg_debug("sending release reset request\n");
return updi_write_cs(pgm, UPDI_ASI_RESET_REQ, 0x00);
}
return -1;
}
static int serialupdi_reset_connection(const PROGRAMMER *pgm) {
if (serialupdi_reset(pgm, APPLY_RESET) < 0) {
pmsg_error("apply reset operation failed\n");
return -1;
}
if (serialupdi_reset(pgm, RELEASE_RESET) < 0) {
pmsg_error("release reset operation failed\n");
return -1;
}
return updi_link_init(pgm);
}
static int serialupdi_decode_sib(const PROGRAMMER *pgm, updi_sib_info *sib_info) {
char * str_ptr;
sib_info->sib_string[SIB_INFO_STRING_LENGTH]=0;
pmsg_debug("received SIB: [%s]\n", sib_info->sib_string);
memset(sib_info->family_string, 0, SIB_INFO_FAMILY_LENGTH+1);
memset(sib_info->nvm_string, 0, SIB_INFO_NVM_LENGTH+1);
memset(sib_info->debug_string, 0, SIB_INFO_DEBUG_LENGTH+1);
memset(sib_info->pdi_string, 0, SIB_INFO_PDI_LENGTH+1);
memset(sib_info->pdi_string, 0, SIB_INFO_PDI_LENGTH+1);
memset(sib_info->extra_string, 0, SIB_INFO_EXTRA_LENGTH+1);
memcpy(sib_info->family_string, sib_info->sib_string, SIB_INFO_FAMILY_LENGTH);
memcpy(sib_info->nvm_string, sib_info->sib_string + 8, SIB_INFO_NVM_LENGTH);
memcpy(sib_info->debug_string, sib_info->sib_string + 11, SIB_INFO_DEBUG_LENGTH);
memcpy(sib_info->pdi_string, sib_info->sib_string + 15, SIB_INFO_PDI_LENGTH);
strcpy(sib_info->extra_string, (char *)sib_info->sib_string + 19);
str_ptr = strstr(sib_info->nvm_string, ":");
if (!str_ptr) {
pmsg_error("incorrect format of NVM string\n");
return -1;
}
sib_info->nvm_version = *(str_ptr+1);
str_ptr = strstr(sib_info->debug_string, ":");
if (!str_ptr) {
pmsg_error("incorrect format of DEBUG string\n");
return -1;
}
sib_info->debug_version = *(str_ptr+1);
pmsg_debug("Device family ID: %s\n", sib_info->family_string);
pmsg_debug("NVM interface: %s\n", sib_info->nvm_string);
pmsg_debug("Debug interface: %s\n", sib_info->debug_string);
pmsg_debug("PDI oscillator: %s\n", sib_info->pdi_string);
pmsg_debug("Extra information: %s\n", sib_info->extra_string);
switch (sib_info->nvm_version) {
case '0':
pmsg_notice("NVM type 0: 16-bit, page oriented write\n");
updi_set_nvm_mode(pgm, UPDI_NVM_MODE_V0);
updi_set_datalink_mode(pgm, UPDI_LINK_MODE_16BIT);
break;
case '2':
pmsg_notice("NVM type 2: 24-bit, word oriented write\n");
updi_set_nvm_mode(pgm, UPDI_NVM_MODE_V2);
updi_set_datalink_mode(pgm, UPDI_LINK_MODE_24BIT);
break;
case '3':
pmsg_notice("NVM type 3: 16-bit, page oriented\n");
updi_set_nvm_mode(pgm, UPDI_NVM_MODE_V3);
updi_set_datalink_mode(pgm, UPDI_LINK_MODE_16BIT);
break;
default:
pmsg_warning("unsupported NVM type: %c, please update software\n", sib_info->nvm_version);
return -1;
}
return 0;
}
static void serialupdi_close(PROGRAMMER * pgm)
{
pmsg_notice("leaving NVM programming mode\n");
if (serialupdi_leave_progmode(pgm) < 0) {
pmsg_error("unable to leave NVM programming mode\n");
}
if (updi_get_rts_mode(pgm) != RTS_MODE_DEFAULT) {
pmsg_warning("releasing DTR/RTS handshake lines\n");
}
updi_link_close(pgm);
}
static int serialupdi_wait_for_unlock(const PROGRAMMER *pgm, unsigned int ms) {
/*
def wait_unlocked(self, timeout_ms):
"""
Waits for the device to be unlocked.
All devices boot up as locked until proven otherwise
:param timeout_ms: number of milliseconds to wait
"""
timeout = Timeout(timeout_ms)
while not timeout.expired():
if not self.readwrite.read_cs(constants.UPDI_ASI_SYS_STATUS) & (
1 << constants.UPDI_ASI_SYS_STATUS_LOCKSTATUS):
return True
self.logger.error("Timeout waiting for device to unlock")
return False
*/
unsigned long start_time;
unsigned long current_time;
uint8_t status;
start_time = avr_ustimestamp();
do {
if (updi_read_cs(pgm, UPDI_ASI_SYS_STATUS, &status) >= 0) {
if (!(status & (1 << UPDI_ASI_SYS_STATUS_LOCKSTATUS))) {
return 0;
}
}
current_time = avr_ustimestamp();
} while ((current_time - start_time) < (ms * 1000));
pmsg_error("timeout waiting for device to unlock\n");
return -1;
}
typedef enum {
WAIT_FOR_UROW_LOW,
WAIT_FOR_UROW_HIGH
} urow_wait_mode;
static int serialupdi_wait_for_urow(const PROGRAMMER *pgm, unsigned int ms, urow_wait_mode mode) {
/*
def wait_urow_prog(self, timeout_ms, wait_for_high):
"""
Waits for the device to be in user row write mode
User row is writeable on a locked device using this mechanism
:param timeout_ms: number of milliseconds to wait
:param wait_for_high: set True to wait for bit to go high; False to wait for low
"""
timeout = Timeout(timeout_ms)
while not timeout.expired():
status = self.readwrite.read_cs(constants.UPDI_ASI_SYS_STATUS)
if wait_for_high:
if status & (1 << constants.UPDI_ASI_SYS_STATUS_UROWPROG):
return True
else:
if not status & (1 << constants.UPDI_ASI_SYS_STATUS_UROWPROG):
return True
self.logger.error("Timeout waiting for device to enter UROW WRITE mode")
return False
*/
unsigned long start_time;
unsigned long current_time;
uint8_t status;
start_time = avr_ustimestamp();
do {
if (updi_read_cs(pgm, UPDI_ASI_SYS_STATUS, &status) >= 0) {
if (mode == WAIT_FOR_UROW_HIGH) {
if (status & (1 << UPDI_ASI_SYS_STATUS_UROWPROG)) {
return 0;
}
} else {
if (!(status & (1 << UPDI_ASI_SYS_STATUS_UROWPROG))) {
return 0;
}
}
}
current_time = avr_ustimestamp();
} while ((current_time - start_time) < (ms * 1000));
pmsg_error("timeout waiting for device to complete UROW WRITE\n");
return -1;
}
static int serialupdi_in_prog_mode(const PROGRAMMER *pgm, uint8_t *in_prog_mode) {
/*
def in_prog_mode(self):
"""
Checks whether the NVM PROG flag is up
"""
if self.readwrite.read_cs(constants.UPDI_ASI_SYS_STATUS) & (1 << constants.UPDI_ASI_SYS_STATUS_NVMPROG):
return True
return False
*/
uint8_t value;
int rc;
rc = updi_read_cs(pgm, UPDI_ASI_SYS_STATUS, &value);
if (rc < 0) {
pmsg_error("read CS operation failed\n");
return rc;
}
if (value & (1 << UPDI_ASI_SYS_STATUS_NVMPROG)) {
*in_prog_mode = 1;
} else {
*in_prog_mode = 0;
}
return 0;
}
static int serialupdi_enter_progmode(const PROGRAMMER *pgm) {
/*
def enter_progmode(self):
"""
Enters into NVM programming mode
"""
# First check if NVM is already enabled
if self.in_prog_mode():
self.logger.info("Already in NVM programming mode")
return True
self.logger.info("Entering NVM programming mode")
# Put in the key
self.readwrite.write_key(constants.UPDI_KEY_64, constants.UPDI_KEY_NVM)
# Check key status
key_status = self.readwrite.read_cs(constants.UPDI_ASI_KEY_STATUS)
self.logger.debug("Key status = 0x%02X", key_status)
if not key_status & (1 << constants.UPDI_ASI_KEY_STATUS_NVMPROG):
self.logger.error("Key status = 0x%02X", key_status)
raise IOError("Key not accepted")
# Toggle reset
self.reset(apply_reset=True)
self.reset(apply_reset=False)
# And wait for unlock
if not self.wait_unlocked(100):
raise IOError("Failed to enter NVM programming mode: device is locked")
# Check for NVMPROG flag
if not self.in_prog_mode():
raise IOError("Failed to enter NVM programming mode")
self.logger.debug("Now in NVM programming mode")
return True
*/
uint8_t in_prog_mode;
unsigned char buffer[8];
uint8_t key_status;
if (serialupdi_in_prog_mode(pgm, &in_prog_mode) < 0) {
pmsg_error("checking UPDI NVM prog mode failed\n");
return -1;
}
if (in_prog_mode) {
pmsg_debug("already in prog mode\n");
return 0;
}
memcpy(buffer, UPDI_KEY_NVM, sizeof(buffer));
if (updi_write_key(pgm, buffer, UPDI_KEY_64, sizeof(buffer)) < 0) {
pmsg_error("writing NVM KEY failed\n");
return -1;
}
if (updi_read_cs(pgm, UPDI_ASI_KEY_STATUS, &key_status) < 0) {
pmsg_error("checking KEY status failed\n");
return -1;
}
pmsg_debug("key status: 0x%02X\n", key_status);
if (!(key_status & (1 << UPDI_ASI_KEY_STATUS_NVMPROG))) {
pmsg_error("key was not accepted\n");
return -1;
}
if (serialupdi_reset(pgm, APPLY_RESET) < 0) {
pmsg_error("apply reset operation failed\n");
return -1;
}
if (serialupdi_reset(pgm, RELEASE_RESET) < 0) {
pmsg_error("release reset operation failed\n");
return -1;
}
if (serialupdi_wait_for_unlock(pgm, 100) < 0) {
pmsg_error("unable to enter NVM programming mode: device is locked\n");
return -1;
}
if (serialupdi_in_prog_mode(pgm, &in_prog_mode) < 0) {
pmsg_error("checking UPDI NVM prog mode failed\n");
return -1;
}
if (!in_prog_mode) {
pmsg_error("unable to enter NVM programming mode\n");
return -1;
}
pmsg_debug("entered NVM programming mode\n");
return 0;
}
static int serialupdi_leave_progmode(const PROGRAMMER *pgm) {
/*
def leave_progmode(self):
"""
Disables UPDI which releases any keys enabled
"""
self.logger.info("Leaving NVM programming mode")
self.reset(apply_reset=True)
self.reset(apply_reset=False)
self.readwrite.write_cs(constants.UPDI_CS_CTRLB,
(1 << constants.UPDI_CTRLB_UPDIDIS_BIT) | (1 << constants.UPDI_CTRLB_CCDETDIS_BIT))
*/
if (serialupdi_reset(pgm, APPLY_RESET) < 0) {
pmsg_error("apply reset operation failed\n");
return -1;
}
if (serialupdi_reset(pgm, RELEASE_RESET) < 0) {
pmsg_error("release reset operation failed\n");
return -1;
}
return updi_write_cs(pgm, UPDI_CS_CTRLB, (1 << UPDI_CTRLB_UPDIDIS_BIT) | (1 << UPDI_CTRLB_CCDETDIS_BIT));
}
static int serialupdi_write_userrow(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes)
{
/*
def write_user_row_locked_device(self, address, data):
"""
Writes data to the user row when the device is locked, using a key.
"""
# Put in the key
self.readwrite.write_key(constants.UPDI_KEY_64, constants.UPDI_KEY_UROW)
# Check key status
key_status = self.readwrite.read_cs(constants.UPDI_ASI_KEY_STATUS)
self.logger.debug("Key status = 0x%02X", key_status)
if not key_status & (1 << constants.UPDI_ASI_KEY_STATUS_UROWWRITE):
raise PymcuprogError("Key not accepted")
# Toggle reset
self.reset(apply_reset=True)
self.reset(apply_reset=False)
# Wait for mode to be entered
if not self.wait_urow_prog(500, wait_for_high=True):
raise PymcuprogError("Failed to enter urow write mode using key")
# At this point we can write one 'page' to the device, and have it transfered into the user row
# Transfer data
self.readwrite.write_data(address, data)
# Finalize
self.readwrite.write_cs(constants.UPDI_ASI_SYS_CTRLA,
(1 << constants.UPDI_ASI_SYS_CTRLA_UROW_FINAL) |
(1 << constants.UPDI_CTRLB_CCDETDIS_BIT))
# Wait for mode to be exited
if not self.wait_urow_prog(500, wait_for_high=False):
# Toggle reset
self.reset(apply_reset=True)
self.reset(apply_reset=False)
raise PymcuprogError("Failed to exit urow write mode")
# Clear status
self.readwrite.write_cs(constants.UPDI_ASI_KEY_STATUS,
(1 << constants.UPDI_ASI_KEY_STATUS_UROWWRITE) |
(1 << constants.UPDI_CTRLB_CCDETDIS_BIT))
# Toggle reset
self.reset(apply_reset=True)
self.reset(apply_reset=False)
*/
unsigned char buffer[8];
uint8_t key_status;
memcpy(buffer, UPDI_KEY_UROW, sizeof(buffer));
if (updi_write_key(pgm, buffer, UPDI_KEY_64, sizeof(buffer)) < 0) {
pmsg_error("writing USERROW KEY failed\n");
return -1;
}
if (updi_read_cs(pgm, UPDI_ASI_KEY_STATUS, &key_status) < 0) {
pmsg_error("checking KEY status failed\n");
return -1;
}
pmsg_debug("key status: 0x%02X\n", key_status);
if (!(key_status & (1 << UPDI_ASI_KEY_STATUS_UROWWRITE))) {
pmsg_error("key was not accepted\n");
return -1;
}
if (serialupdi_reset(pgm, APPLY_RESET) < 0) {
pmsg_error("apply reset operation failed\n");
return -1;
}
if (serialupdi_reset(pgm, RELEASE_RESET) < 0) {
pmsg_error("release reset operation failed\n");
return -1;
}
if (serialupdi_wait_for_urow(pgm, 500, WAIT_FOR_UROW_HIGH) < 0) {
pmsg_error("unable to enter USERROW programming mode\n");
return -1;
}
if (updi_write_data(pgm, m->offset+addr, m->buf + addr, n_bytes) < 0) {
pmsg_error("writing USER ROW failed\n");
return -1;
}
if (updi_write_cs(pgm, UPDI_ASI_SYS_CTRLA, (1 << UPDI_ASI_SYS_CTRLA_UROW_FINAL) |
(1 << UPDI_CTRLB_CCDETDIS_BIT)) < 0) {
pmsg_error("unable to commit user row write\n");
return -1;
}
if (serialupdi_wait_for_urow(pgm, 500, WAIT_FOR_UROW_LOW) < 0) {
pmsg_debug("unable to exit USERROW programming mode\n");
if (serialupdi_reset(pgm, APPLY_RESET) < 0) {
pmsg_error("apply reset operation failed\n");
return -1;
}
if (serialupdi_reset(pgm, RELEASE_RESET) < 0) {
pmsg_error("release reset operation failed\n");
return -1;
}
}
if (updi_write_cs(pgm, UPDI_ASI_KEY_STATUS, (1 << UPDI_ASI_KEY_STATUS_UROWWRITE) |
(1 << UPDI_CTRLB_CCDETDIS_BIT)) < 0) {
pmsg_error("unable to complete user row write\n");
return -1;
}
if (serialupdi_reset(pgm, APPLY_RESET) < 0) {
pmsg_error("apply reset operation failed\n");
return -1;
}
if (serialupdi_reset(pgm, RELEASE_RESET) < 0) {
pmsg_error("release reset operation failed\n");
return -1;
}
serialupdi_reset_connection(pgm);
serialupdi_enter_progmode(pgm);
return 0;
}
static int serialupdi_initialize(const PROGRAMMER *pgm, const AVRPART *p) {
uint8_t value;
uint8_t reset_link_required=0;
if (updi_link_init(pgm) < 0) {
pmsg_error("UPDI link initialization failed\n");
return -1;
}
pmsg_notice2("UPDI link initialization OK\n");
if (updi_get_rts_mode(pgm) != RTS_MODE_DEFAULT) {
pmsg_warning("forcing serial DTR/RTS handshake lines %s\n", updi_get_rts_mode(pgm) == RTS_MODE_LOW ? "LOW" : "HIGH");
}
if (updi_read_cs(pgm, UPDI_ASI_SYS_STATUS, &value)<0) {
/* let's try reset the connection */
if (!serialupdi_reset_connection(pgm)) {
return -1;
}
if (updi_read_cs(pgm, UPDI_ASI_SYS_STATUS, &value)<0) {
pmsg_error("read CS operation during initialization failed\n");
return -1;
}
}
if (value & (1 << UPDI_ASI_SYS_STATUS_LOCKSTATUS)) {
pmsg_notice("device is locked\n");
}
if (value & (1 << UPDI_ASI_SYS_STATUS_UROWPROG)) {
pmsg_notice("device in USER ROW programming state, leaving programming mode\n");
reset_link_required = 1;
}
if (value & (1 << UPDI_ASI_SYS_STATUS_NVMPROG)) {
pmsg_notice("device in NVM programming state, leaving programming mode\n");
reset_link_required = 1;
}
if (value & (1 << UPDI_ASI_SYS_STATUS_INSLEEP)) {
pmsg_notice("device is in SLEEP mode\n");
}
if (value & (1 << UPDI_ASI_SYS_STATUS_RSTSYS)) {
pmsg_notice("device in reset status, trying to release it\n");
if (serialupdi_reset(pgm, RELEASE_RESET) < 0) {
return -1;
}
}
if (reset_link_required) {
if (serialupdi_reset_connection(pgm) < 0) {
pmsg_error("UPDI link reset failed\n");
return -1;
}
}
updi_sib_info * sib_info = updi_get_sib_info(pgm);
if (updi_read_sib(pgm, sib_info->sib_string, 32) < 0) {
/* this should never happen, let's try to reset connection and try again */
if (serialupdi_reset_connection(pgm) < 0) {
pmsg_error("SerialUPDI reset connection failed\n");
return -1;
}
if (updi_read_sib(pgm, sib_info->sib_string, 32) < 0) {
pmsg_error("read SIB operation failed\n");
return -1;
}
}
if (serialupdi_decode_sib(pgm, sib_info) < 0) {
pmsg_error("decode SIB_INFO failed\n");
return -1;
}
if (updi_link_init(pgm) < 0) {
pmsg_error("UPDI link initialization failed\n");
return -1;
}
pmsg_notice("entering NVM programming mode\n");
/* try, but ignore failure */
serialupdi_enter_progmode(pgm);
return 0;
}
static void serialupdi_disable(const PROGRAMMER *pgm) {
/* Do nothing. */
return;
}
static void serialupdi_enable(PROGRAMMER * pgm, const AVRPART *p) {
/* Do nothing. */
return;
}
static void serialupdi_display(const PROGRAMMER *pgm, const char *p) {
return;
}
static int serialupdi_cmd(const PROGRAMMER *pgm, const unsigned char *cmd,
unsigned char * res)
{
pmsg_error("cmd %s[%s] not implemented yet\n", cmd, res);
return -1;
}
static int serialupdi_program_enable(const PROGRAMMER *pgm, const AVRPART *p) {
pmsg_error("program enable not implemented yet\n");
return -1;
}
static int serialupdi_read_byte(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem,
unsigned long addr, unsigned char * value)
{
return updi_read_byte(pgm, mem->offset + addr, value);
}
static int serialupdi_write_byte(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *mem,
unsigned long addr, unsigned char value)
{
if (strstr(mem->desc, "fuse") != 0) {
return updi_nvm_write_fuse(pgm, p, mem->offset + addr, value);
}
if (strcmp(mem->desc, "lock") == 0) {
return updi_nvm_write_fuse(pgm, p, mem->offset + addr, value);
}
if (strcmp(mem->desc, "eeprom") == 0) {
unsigned char buffer[1];
buffer[0]=value;
return updi_nvm_write_eeprom(pgm, p, mem->offset + addr, buffer, 1);
}
if (strcmp(mem->desc, "flash") == 0) {
unsigned char buffer[1];
buffer[0]=value;
return updi_nvm_write_flash(pgm, p, mem->offset + addr, buffer, 1);
}
return updi_write_byte(pgm, mem->offset + addr, value);
}
static int serialupdi_paged_load(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes)
{
if (n_bytes > m->readsize) {
unsigned int read_offset = addr;
unsigned int remaining_bytes = n_bytes;
int read_bytes = 0;
int rc;
while (remaining_bytes > 0) {
rc = updi_read_data(pgm, m->offset + read_offset, m->buf + read_offset,
remaining_bytes > m->readsize ? m->readsize : remaining_bytes);
if (rc < 0) {
pmsg_error("paged load operation failed\n");
return rc;
} else {
read_bytes+=rc;
read_offset+=m->readsize;
remaining_bytes-=m->readsize;
}
}
return read_bytes;
} else {
return updi_read_data(pgm, m->offset + addr, m->buf + addr, n_bytes);
}
}
static int serialupdi_paged_write(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes)
{
int rc;
if (n_bytes > m->page_size) {
unsigned int write_offset = addr;
unsigned int remaining_bytes = n_bytes;
int write_bytes = 0;
while (remaining_bytes > 0) {
if (strcmp(m->desc, "eeprom")==0) {
rc = updi_nvm_write_eeprom(pgm, p, m->offset + write_offset, m->buf + write_offset,
remaining_bytes > m->page_size ? m->page_size : remaining_bytes);
} else if (strcmp(m->desc, "flash")==0) {
rc = updi_nvm_write_flash(pgm, p, m->offset + write_offset, m->buf + write_offset,
remaining_bytes > m->page_size ? m->page_size : remaining_bytes);
} else if (strcmp(m->desc, "userrow")==0) {
rc = serialupdi_write_userrow(pgm, p, m, page_size, write_offset,
remaining_bytes > m->page_size ? m->page_size : remaining_bytes);
} else if (strcmp(m->desc, "fuses")==0) {
pmsg_debug("page write operation requested for fuses, falling back to byte-level write\n");
return -1;
} else {
pmsg_error("invalid memory type: <%s:%d>, 0x%06X, %d (0x%04X)\n", m->desc, page_size, addr, n_bytes, n_bytes);
rc = -1;
}
if (rc < 0) {
pmsg_error("paged write operation failed\n");
return rc;
} else {
write_bytes+=rc;
write_offset+=m->page_size;
remaining_bytes-=m->page_size;
}
}
return write_bytes;
} else {
if (strcmp(m->desc, "eeprom")==0) {
rc = updi_nvm_write_eeprom(pgm, p, m->offset+addr, m->buf+addr, n_bytes);
} else if (strcmp(m->desc, "flash")==0) {
rc = updi_nvm_write_flash(pgm, p, m->offset+addr, m->buf+addr, n_bytes);
} else if (strcmp(m->desc, "userrow")==0) {
rc = serialupdi_write_userrow(pgm, p, m, page_size, addr, n_bytes);
} else if (strcmp(m->desc, "fuses")==0) {
pmsg_debug("page write operation requested for fuses, falling back to byte-level write\n");
rc = -1;
} else {
pmsg_error("invalid memory type: <%s:%d>, 0x%06X, %d (0x%04X)\n", m->desc, page_size, addr, n_bytes, n_bytes);
rc = -1;
}
return rc;
}
}
static int serialupdi_unlock(const PROGRAMMER *pgm, const AVRPART *p) {
/*
def unlock(self):
"""
Unlock by chip erase
"""
# Put in the key
self.readwrite.write_key(constants.UPDI_KEY_64, constants.UPDI_KEY_CHIPERASE)
# Check key status
key_status = self.readwrite.read_cs(constants.UPDI_ASI_KEY_STATUS)
self.logger.debug("Key status = 0x%02X", key_status)
if not key_status & (1 << constants.UPDI_ASI_KEY_STATUS_CHIPERASE):
raise PymcuprogError("Key not accepted")
# Toggle reset
self.reset(apply_reset=True)
self.reset(apply_reset=False)
# And wait for unlock
if not self.wait_unlocked(500):
raise PymcuprogError("Failed to chip erase using key")
*/
unsigned char buffer[8];
uint8_t key_status;
memcpy(buffer, UPDI_KEY_CHIPERASE, sizeof(buffer));
if (updi_write_key(pgm, buffer, UPDI_KEY_64, sizeof(buffer)) < 0) {
pmsg_error("writing NVM KEY failed\n");
return -1;
}
if (updi_read_cs(pgm, UPDI_ASI_KEY_STATUS, &key_status) < 0) {
pmsg_error("checking KEY status failed\n");
return -1;
}
pmsg_debug("key status: 0x%02X\n", key_status);
if (!(key_status & (1 << UPDI_ASI_KEY_STATUS_CHIPERASE))) {
pmsg_error("key not accepted\n");
return -1;
}
if (serialupdi_reset(pgm, APPLY_RESET) < 0) {
pmsg_error("apply reset operation failed\n");
return -1;
}
if (serialupdi_reset(pgm, RELEASE_RESET) < 0) {
pmsg_error("release reset operation failed\n");
return -1;
}
if (serialupdi_wait_for_unlock(pgm, 500) < 0) {
pmsg_error("waiting for unlock failed\n");
return -1;
}
if (updi_link_init(pgm) < 0) {
pmsg_error("UPDI link reinitialization failed\n");
return -1;
}
return serialupdi_enter_progmode(pgm);
}
static int serialupdi_chip_erase(const PROGRAMMER *pgm, const AVRPART *p) {
uint8_t value;
if (updi_read_cs(pgm, UPDI_ASI_SYS_STATUS, &value)<0) {
pmsg_error("read CS operation during chip erase failed\n");
return -1;
}
if (value & (1 << UPDI_ASI_SYS_STATUS_LOCKSTATUS)) {
pmsg_warning("device is locked\n");
if (ovsigck) {
pmsg_warning("attempting device erase\n");
return serialupdi_unlock(pgm, p);
}
} else {
return updi_nvm_chip_erase(pgm, p);
}
return -1;
}
static int serialupdi_page_erase(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m,
unsigned int baseaddr)
{
return updi_nvm_erase_flash_page(pgm, p, m->offset + baseaddr);
}
static int serialupdi_read_signature(const PROGRAMMER *pgm, const AVRPART *p, const AVRMEM *m) {
uint8_t value;
if (updi_read_cs(pgm, UPDI_ASI_SYS_STATUS, &value)<0) {
pmsg_error("read CS operation during signature read failed\n");
return -1;
}
if (value & (1 << UPDI_ASI_SYS_STATUS_LOCKSTATUS)) {
m->buf[0]=0x00;
m->buf[1]=0x00;
m->buf[2]=0x00;
return LIBAVRDUDE_SOFTFAIL;
} else {
updi_read_byte(pgm, m->offset + 0, m->buf);
updi_read_byte(pgm, m->offset + 1, m->buf+1);
updi_read_byte(pgm, m->offset + 2, m->buf+2);
}
return 3;
}
static int serialupdi_read_sib(const PROGRAMMER *pgm, const AVRPART *p, char *sib) {
updi_sib_info * sib_info = updi_get_sib_info(pgm);
memcpy(sib, sib_info->sib_string, 32);
return 0;
}
static int serialupdi_parseextparms(const PROGRAMMER *pgm, const LISTID extparms) {
LNODEID ln;
const char *extended_param;
char rts_mode[5];
int rv = 0;
for (ln = lfirst(extparms); ln; ln = lnext(ln)) {
extended_param = ldata(ln);
if (sscanf(extended_param, "rtsdtr=%4s", rts_mode) == 1) {
if (strcasecmp(rts_mode, "low") == 0) {
updi_set_rts_mode(pgm, RTS_MODE_LOW);
} else if (strcasecmp(rts_mode, "high") == 0) {
updi_set_rts_mode(pgm, RTS_MODE_HIGH);
} else {
pmsg_error("RTS/DTR mode must be LOW or HIGH\n");
return -1;
}
continue;
}
pmsg_error("invalid extended parameter '%s'\n", extended_param);
rv = -1;
}
return rv;
}
void serialupdi_initpgm(PROGRAMMER *pgm) {
strcpy(pgm->type, "serialupdi");
/*
* mandatory functions
*/
pgm->initialize = serialupdi_initialize;
pgm->parseextparams = serialupdi_parseextparms;
pgm->display = serialupdi_display;
pgm->enable = serialupdi_enable;
pgm->disable = serialupdi_disable;
pgm->program_enable = serialupdi_program_enable;
pgm->chip_erase = serialupdi_chip_erase;
pgm->cmd = serialupdi_cmd;
pgm->open = serialupdi_open;
pgm->close = serialupdi_close;
pgm->read_byte = serialupdi_read_byte;
pgm->write_byte = serialupdi_write_byte;
/*
* optional functions
*/
pgm->unlock = serialupdi_unlock;
pgm->paged_write = serialupdi_paged_write;
pgm->read_sig_bytes = serialupdi_read_signature;
pgm->read_sib = serialupdi_read_sib;
pgm->paged_load = serialupdi_paged_load;
pgm->page_erase = serialupdi_page_erase;
pgm->setup = serialupdi_setup;
pgm->teardown = serialupdi_teardown;
}
const char serialupdi_desc[] = "Driver for SerialUPDI programmers";