avrdude/usbtiny.c

594 lines
18 KiB
C

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2007 Dick Streefland, adapted for 5.4 by Limor Fried
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Driver for "usbtiny"-type programmers
* Please see http://www.xs4all.nl/~dicks/avr/usbtiny/
* and http://www.ladyada.net/make/usbtinyisp/
* For example schematics and detailed documentation
*/
#include "ac_cfg.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <sys/time.h>
#include <unistd.h>
#include "avrdude.h"
#include "avr.h"
#include "pgm.h"
#include "config.h"
#include "usbtiny.h"
#if defined(HAVE_LIBUSB) // we use LIBUSB to talk to the board
#if defined(HAVE_USB_H)
# include <usb.h>
#elif defined(HAVE_LUSB0_USB_H)
# include <lusb0_usb.h>
#else
# error "libusb needs either <usb.h> or <lusb0_usb.h>"
#endif
#ifndef HAVE_UINT_T
typedef unsigned int uint_t;
#endif
#ifndef HAVE_ULONG_T
typedef unsigned long ulong_t;
#endif
extern int avr_write_byte_default ( PROGRAMMER* pgm, AVRPART* p,
AVRMEM* mem, ulong_t addr,
unsigned char data );
/*
* Private data for this programmer.
*/
struct pdata
{
usb_dev_handle *usb_handle;
int sck_period;
int chunk_size;
int retries;
};
#define PDATA(pgm) ((struct pdata *)(pgm->cookie))
// ----------------------------------------------------------------------
static void usbtiny_setup(PROGRAMMER * pgm)
{
if ((pgm->cookie = malloc(sizeof(struct pdata))) == 0) {
fprintf(stderr,
"%s: usbtiny_setup(): Out of memory allocating private data\n",
progname);
exit(1);
}
memset(pgm->cookie, 0, sizeof(struct pdata));
}
static void usbtiny_teardown(PROGRAMMER * pgm)
{
free(pgm->cookie);
}
// Wrapper for simple usb_control_msg messages
static int usb_control (PROGRAMMER * pgm,
unsigned int requestid, unsigned int val, unsigned int index )
{
int nbytes;
nbytes = usb_control_msg( PDATA(pgm)->usb_handle,
USB_ENDPOINT_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
requestid,
val, index, // 2 bytes each of data
NULL, 0, // no data buffer in control messge
USB_TIMEOUT ); // default timeout
if(nbytes < 0){
fprintf(stderr, "\n%s: error: usbtiny_transmit: %s\n", progname, usb_strerror());
return -1;
}
return nbytes;
}
// Wrapper for simple usb_control_msg messages to receive data from programmer
static int usb_in (PROGRAMMER * pgm,
unsigned int requestid, unsigned int val, unsigned int index,
unsigned char* buffer, int buflen, int bitclk )
{
int nbytes;
int timeout;
int i;
// calculate the amout of time we expect the process to take by
// figuring the bit-clock time and buffer size and adding to the standard USB timeout.
timeout = USB_TIMEOUT + (buflen * bitclk) / 1000;
for (i = 0; i < 10; i++) {
nbytes = usb_control_msg( PDATA(pgm)->usb_handle,
USB_ENDPOINT_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
requestid,
val, index,
(char *)buffer, buflen,
timeout);
if (nbytes == buflen) {
return nbytes;
}
PDATA(pgm)->retries++;
}
fprintf(stderr, "\n%s: error: usbtiny_receive: %s (expected %d, got %d)\n",
progname, usb_strerror(), buflen, nbytes);
return -1;
}
// Report the number of retries, and reset the counter.
static void check_retries (PROGRAMMER * pgm, const char* operation)
{
if (PDATA(pgm)->retries > 0 && quell_progress < 2) {
fprintf(stderr, "%s: %d retries during %s\n", progname,
PDATA(pgm)->retries, operation);
}
PDATA(pgm)->retries = 0;
}
// Wrapper for simple usb_control_msg messages to send data to programmer
static int usb_out (PROGRAMMER * pgm,
unsigned int requestid, unsigned int val, unsigned int index,
unsigned char* buffer, int buflen, int bitclk )
{
int nbytes;
int timeout;
// calculate the amout of time we expect the process to take by
// figuring the bit-clock time and buffer size and adding to the standard USB timeout.
timeout = USB_TIMEOUT + (buflen * bitclk) / 1000;
nbytes = usb_control_msg( PDATA(pgm)->usb_handle,
USB_ENDPOINT_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
requestid,
val, index,
(char *)buffer, buflen,
timeout);
if (nbytes != buflen) {
fprintf(stderr, "\n%s: error: usbtiny_send: %s (expected %d, got %d)\n",
progname, usb_strerror(), buflen, nbytes);
return -1;
}
return nbytes;
}
// Sometimes we just need to know the SPI command for the part to perform
// a function. Here we wrap this request for an operation so that we
// can just specify the part and operation and it'll do the right stuff
// to get the information from AvrDude and send to the USBtiny
static int usbtiny_avr_op (PROGRAMMER * pgm, AVRPART * p,
int op,
unsigned char *res)
{
unsigned char cmd[4];
if (p->op[op] == NULL) {
fprintf( stderr, "Operation %d not defined for this chip!\n", op );
return -1;
}
memset(cmd, 0, sizeof(cmd));
avr_set_bits(p->op[op], cmd);
return pgm->cmd(pgm, cmd, res);
}
// ----------------------------------------------------------------------
/* Find a device with the correct VID/PID match for USBtiny */
static int usbtiny_open(PROGRAMMER* pgm, char* name)
{
struct usb_bus *bus;
struct usb_device *dev = 0;
char *bus_name = NULL;
char *dev_name = NULL;
int vid, pid;
// if no -P was given or '-P usb' was given
if(strcmp(name, "usb") == 0)
name = NULL;
else {
// calculate bus and device names from -P option
const size_t usb_len = strlen("usb");
if(strncmp(name, "usb", usb_len) == 0 && ':' == name[usb_len]) {
bus_name = name + usb_len + 1;
dev_name = strchr(bus_name, ':');
if(NULL != dev_name)
*dev_name++ = '\0';
}
}
usb_init(); // initialize the libusb system
usb_find_busses(); // have libusb scan all the usb busses available
usb_find_devices(); // have libusb scan all the usb devices available
PDATA(pgm)->usb_handle = NULL;
if (pgm->usbvid)
vid = pgm->usbvid;
else
vid = USBTINY_VENDOR_DEFAULT;
if (pgm->usbpid)
pid = pgm->usbpid;
else
pid = USBTINY_PRODUCT_DEFAULT;
// now we iterate through all the busses and devices
for ( bus = usb_busses; bus; bus = bus->next ) {
for ( dev = bus->devices; dev; dev = dev->next ) {
if (dev->descriptor.idVendor == vid
&& dev->descriptor.idProduct == pid ) { // found match?
if(verbose)
fprintf(stderr,
"%s: usbdev_open(): Found USBtinyISP, bus:device: %s:%s\n",
progname, bus->dirname, dev->filename);
// if -P was given, match device by device name and bus name
if(name != NULL &&
(NULL == dev_name ||
strcmp(bus->dirname, bus_name) ||
strcmp(dev->filename, dev_name)))
continue;
PDATA(pgm)->usb_handle = usb_open(dev); // attempt to connect to device
// wrong permissions or something?
if (!PDATA(pgm)->usb_handle) {
fprintf(stderr, "%s: Warning: cannot open USB device: %s\n",
progname, usb_strerror());
continue;
}
}
}
}
if(NULL != name && NULL == dev_name) {
fprintf(stderr, "%s: Error: Invalid -P value: '%s'\n", progname, name);
fprintf(stderr, "%sUse -P usb:bus:device\n", progbuf);
return -1;
}
if (!PDATA(pgm)->usb_handle) {
fprintf( stderr, "%s: Error: Could not find USBtiny device (0x%x/0x%x)\n",
progname, vid, pid );
return -1;
}
return 0; // If we got here, we must have found a good USB device
}
/* Clean up the handle for the usbtiny */
static void usbtiny_close ( PROGRAMMER* pgm )
{
if (! PDATA(pgm)->usb_handle) {
return; // not a valid handle, bail!
}
usb_close(PDATA(pgm)->usb_handle); // ask libusb to clean up
PDATA(pgm)->usb_handle = NULL;
}
/* A simple calculator function determines the maximum size of data we can
shove through a USB connection without getting errors */
static void usbtiny_set_chunk_size (PROGRAMMER * pgm, int period)
{
PDATA(pgm)->chunk_size = CHUNK_SIZE; // start with the maximum (default)
while (PDATA(pgm)->chunk_size > 8 && period > 16) {
// Reduce the chunk size for a slow SCK to reduce
// the maximum time of a single USB transfer.
PDATA(pgm)->chunk_size >>= 1;
period >>= 1;
}
}
/* Given a SCK bit-clock speed (in useconds) we verify its an OK speed and tell the
USBtiny to update itself to the new frequency */
static int usbtiny_set_sck_period (PROGRAMMER *pgm, double v)
{
PDATA(pgm)->sck_period = (int)(v * 1e6 + 0.5); // convert from us to 'int', the 0.5 is for rounding up
// Make sure its not 0, as that will confuse the usbtiny
if (PDATA(pgm)->sck_period < SCK_MIN)
PDATA(pgm)->sck_period = SCK_MIN;
// We can't go slower, due to the byte-size of the clock variable
if (PDATA(pgm)->sck_period > SCK_MAX)
PDATA(pgm)->sck_period = SCK_MAX;
if (verbose) {
fprintf(stderr, "%s: Setting SCK period to %d usec\n", progname,
PDATA(pgm)->sck_period );
}
// send the command to the usbtiny device.
// MEME: for at90's fix resetstate?
if (usb_control(pgm, USBTINY_POWERUP, PDATA(pgm)->sck_period, RESET_LOW) < 0)
return -1;
// with the new speed, we'll have to update how much data we send per usb transfer
usbtiny_set_chunk_size(pgm, PDATA(pgm)->sck_period);
return 0;
}
static int usbtiny_initialize (PROGRAMMER *pgm, AVRPART *p )
{
unsigned char res[4]; // store the response from usbtinyisp
// Check for bit-clock and tell the usbtiny to adjust itself
if (pgm->bitclock > 0.0) {
// -B option specified: convert to valid range for sck_period
usbtiny_set_sck_period(pgm, pgm->bitclock);
} else {
// -B option not specified: use default
PDATA(pgm)->sck_period = SCK_DEFAULT;
if (verbose) {
fprintf(stderr, "%s: Using SCK period of %d usec\n",
progname, PDATA(pgm)->sck_period );
}
if (usb_control(pgm, USBTINY_POWERUP,
PDATA(pgm)->sck_period, RESET_LOW ) < 0)
return -1;
usbtiny_set_chunk_size(pgm, PDATA(pgm)->sck_period);
}
// Let the device wake up.
usleep(50000);
// Attempt to use the underlying avrdude methods to connect (MEME: is this kosher?)
if (! usbtiny_avr_op(pgm, p, AVR_OP_PGM_ENABLE, res)) {
// no response, RESET and try again
if (usb_control(pgm, USBTINY_POWERUP,
PDATA(pgm)->sck_period, RESET_HIGH) < 0 ||
usb_control(pgm, USBTINY_POWERUP,
PDATA(pgm)->sck_period, RESET_LOW) < 0)
return -1;
usleep(50000);
if ( ! usbtiny_avr_op( pgm, p, AVR_OP_PGM_ENABLE, res)) {
// give up
return -1;
}
}
return 0;
}
/* Tell the USBtiny to release the output pins, etc */
static void usbtiny_powerdown(PROGRAMMER * pgm)
{
if (!PDATA(pgm)->usb_handle) {
return; // wasn't connected in the first place
}
usb_control(pgm, USBTINY_POWERDOWN, 0, 0); // Send USB control command to device
}
/* Send a 4-byte SPI command to the USBtinyISP for execution
This procedure is used by higher-level Avrdude procedures */
static int usbtiny_cmd(PROGRAMMER * pgm, const unsigned char *cmd, unsigned char *res)
{
int nbytes;
// Make sure its empty so we don't read previous calls if it fails
memset(res, '\0', 4 );
nbytes = usb_in( pgm, USBTINY_SPI,
(cmd[1] << 8) | cmd[0], // convert to 16-bit words
(cmd[3] << 8) | cmd[2], // "
res, 4, 8 * PDATA(pgm)->sck_period );
if (nbytes < 0)
return -1;
check_retries(pgm, "SPI command");
if (verbose > 1) {
// print out the data we sent and received
fprintf(stderr, "CMD: [%02x %02x %02x %02x] [%02x %02x %02x %02x]\n",
cmd[0], cmd[1], cmd[2], cmd[3],
res[0], res[1], res[2], res[3] );
}
return ((nbytes == 4) && // should have read 4 bytes
res[2] == cmd[1]); // AVR's do a delayed-echo thing
}
/* Send the chip-erase command */
static int usbtiny_chip_erase(PROGRAMMER * pgm, AVRPART * p)
{
unsigned char res[4];
if (p->op[AVR_OP_CHIP_ERASE] == NULL) {
fprintf(stderr, "Chip erase instruction not defined for part \"%s\"\n",
p->desc);
return -1;
}
// get the command for erasing this chip and transmit to avrdude
if (! usbtiny_avr_op( pgm, p, AVR_OP_CHIP_ERASE, res )) {
return -1;
}
usleep( p->chip_erase_delay );
// prepare for further instruction
pgm->initialize(pgm, p);
return 0;
}
// These are required functions but don't actually do anything
static void usbtiny_enable ( PROGRAMMER* pgm ) {}
static void usbtiny_disable ( PROGRAMMER* pgm ) {}
/* To speed up programming and reading, we do a 'chunked' read.
* We request just the data itself and the USBtiny uses the SPI function
* given to read in the data. Much faster than sending a 4-byte SPI request
* per byte
*/
static int usbtiny_paged_load (PROGRAMMER * pgm, AVRPART * p, AVRMEM* m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes)
{
unsigned int maxaddr = addr + n_bytes;
int chunk;
int function;
// First determine what we're doing
if (strcmp( m->desc, "flash" ) == 0) {
function = USBTINY_FLASH_READ;
} else {
function = USBTINY_EEPROM_READ;
}
for (; addr < maxaddr; addr += chunk) {
chunk = PDATA(pgm)->chunk_size; // start with the maximum chunk size possible
// Send the chunk of data to the USBtiny with the function we want
// to perform
if (usb_in(pgm,
function, // EEPROM or flash
0, // delay between SPI commands
addr, // address in memory
m->buf + addr, // pointer to where we store data
chunk, // number of bytes
32 * PDATA(pgm)->sck_period) // each byte gets turned into a 4-byte SPI cmd
< 0) {
// usb_in() multiplies this per byte.
return -1;
}
}
check_retries(pgm, "read");
return n_bytes;
}
/* To speed up programming and reading, we do a 'chunked' write.
* We send just the data itself and the USBtiny uses the SPI function
* given to write the data. Much faster than sending a 4-byte SPI request
* per byte.
*/
static int usbtiny_paged_write(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes)
{
unsigned int maxaddr = addr + n_bytes;
int chunk; // Size of data to write at once
int next;
int function; // which SPI command to use
int delay; // delay required between SPI commands
// First determine what we're doing
if (strcmp( m->desc, "flash" ) == 0) {
function = USBTINY_FLASH_WRITE;
} else {
function = USBTINY_EEPROM_WRITE;
}
delay = 0;
if (! m->paged) {
unsigned int poll_value;
// Does this chip not support paged writes?
poll_value = (m->readback[1] << 8) | m->readback[0];
if (usb_control(pgm, USBTINY_POLL_BYTES, poll_value, 0 ) < 0)
return -1;
delay = m->max_write_delay;
}
for (; addr < maxaddr; addr += chunk) {
// start with the max chunk size
chunk = PDATA(pgm)->chunk_size;
// we can only write a page at a time anyways
if (m->paged && chunk > page_size)
chunk = page_size;
if (usb_out(pgm,
function, // Flash or EEPROM
delay, // How much to wait between each byte
addr, // Address in memory
m->buf + addr, // Pointer to data
chunk, // Number of bytes to write
32 * PDATA(pgm)->sck_period + delay // each byte gets turned into a
// 4-byte SPI cmd usb_out() multiplies
// this per byte. Then add the cmd-delay
) < 0) {
return -1;
}
next = addr + chunk; // Calculate what address we're at now
if (m->paged
&& ((next % page_size) == 0 || next == maxaddr) ) {
// If we're at a page boundary, send the SPI command to flush it.
avr_write_page(pgm, p, m, (unsigned long) addr);
}
}
return n_bytes;
}
void usbtiny_initpgm ( PROGRAMMER* pgm )
{
strcpy(pgm->type, "USBtiny");
/* Mandatory Functions */
pgm->initialize = usbtiny_initialize;
pgm->enable = usbtiny_enable;
pgm->disable = usbtiny_disable;
pgm->program_enable = NULL;
pgm->chip_erase = usbtiny_chip_erase;
pgm->cmd = usbtiny_cmd;
pgm->open = usbtiny_open;
pgm->close = usbtiny_close;
pgm->read_byte = avr_read_byte_default;
pgm->write_byte = avr_write_byte_default;
/* Optional Functions */
pgm->powerup = NULL;
pgm->powerdown = usbtiny_powerdown;
pgm->paged_load = usbtiny_paged_load;
pgm->paged_write = usbtiny_paged_write;
pgm->set_sck_period = usbtiny_set_sck_period;
pgm->setup = usbtiny_setup;
pgm->teardown = usbtiny_teardown;
}
#else /* !HAVE_LIBUSB */
// Give a proper error if we were not compiled with libusb
static int usbtiny_nousb_open(struct programmer_t *pgm, char * name)
{
fprintf(stderr, "%s: error: no usb support. Please compile again with libusb installed.\n",
progname);
return -1;
}
void usbtiny_initpgm(PROGRAMMER * pgm)
{
strcpy(pgm->type, "usbtiny");
pgm->open = usbtiny_nousb_open;
}
#endif /* HAVE_LIBUSB */
const char usbtiny_desc[] = "Driver for \"usbtiny\"-type programmers";