avrdude/avrftdi.c

1075 lines
25 KiB
C

/*
* avrftdi - extension for avrdude, Wolfgang Moser, Ville Voipio
* Copyright (C) 2011 Hannes Weisbach, Doug Springer
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* $Id$ */
/*
* Interface to the MPSSE Engine of FTDI Chips using libftdi.
*/
#include "ac_cfg.h"
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
#include <errno.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdint.h>
#include "avrdude.h"
#include "avr.h"
#include "pgm.h"
#include "avrftdi.h"
#ifdef HAVE_LIBUSB
#ifdef HAVE_LIBFTDI
#include <ftdi.h>
#include <usb.h>
/* This is for running the code without having a FTDI-device.
* The generated code is useless! For debugging purposes only.
* This should never be defined, unless you know what you are
* doing.
* If you think you know what you are doing: YOU DONT!
*/
//#define DRYRUN
static struct ftdi_context ftdic;
static uint16_t pin_value, pin_direction, pin_inversion, led_mask;
static int type; /**type is bcdDevice. C/D is 0x500 H is 0x700 4H is 0x800*/
static int ftype; /** is from FTDI. Use TYPE_2232C, TYPE_2232H, or TYPE_4232H*/
static void buf_dump(unsigned char *buf, int len, char *desc,
int offset, int width)
{
int i;
fprintf(stderr, "%s begin:\n", desc);
for (i = 0; i < offset; i++)
fprintf(stderr, "%02x ", buf[i]);
fprintf(stderr, "\n");
for (i++; i <= len; i++) {
fprintf(stderr, "%02x ", buf[i-1]);
if((i-offset) != 0 && (i-offset)%width == 0)
fprintf(stderr, "\n");
}
fprintf(stderr, "%s end\n", desc);
}
static int set_frequency(uint32_t freq)
{
uint32_t divisor;
uint8_t buf[3];
/* divisor on 6000000 / freq - 1 */
divisor = (6000000 / freq) - 1;
if (divisor < 0) {
fprintf(stderr,
"%s failure: Frequency too high (%u > 6 MHz)\n",
progname, freq);
fprintf(stderr,
"resetting Frequency to 6MHz\n");
divisor = 0;
}
if (divisor > 65535) {
fprintf(stderr,
"%s failure: Frequency too low (%u < 91.553 Hz)\n",
progname, freq);
fprintf(stderr,
"resetting Frequency to 91.553Hz\n");
divisor = 65535;
}
if(verbose)
fprintf(stderr,
"%s info: clock divisor: 0x%04x\n",
progname, divisor);
buf[0] = 0x86;
buf[1] = (uint8_t)(divisor & 0xff);
buf[2] = (uint8_t)((divisor >> 8) & 0xff);
#ifndef DRYRUN
E(ftdi_write_data(&ftdic, buf, 3) < 0);
#endif
return 0;
}
/* Add a single pin (by pin number) to the pin masks (or to pins),
* update pinmask[pinfunc] */
static int add_pin(PROGRAMMER *pgm, int pinfunc)
{
int pin, inversion_mask, mlim;
pin = pgm->pinno[pinfunc];
if (verbose)
fprintf(stderr,
"add_pin: %d: bit 0x%04x inv=0x%04x\n",
pinfunc, pin,
(pin & PIN_INVERSE)? (1<< ((pin&PIN_MASK) - 1)): 0);
/* non-existent definitions, go away */
if (pin == 0)
return 0;
/* see if pin should be inverted */
if(pin & PIN_INVERSE) {
pin &= PIN_MASK;
inversion_mask = 1 << (pin - 1);
} else {
inversion_mask = 0;
}
if(TYPE_4232H == ftype)
mlim=7;
else if(TYPE_2232C==ftype)
mlim=11;
else if(TYPE_2232H == ftype)
mlim=15;
else{
fprintf(stderr, "Unknown type %d (0x%x)\n",
ftype, ftype);
mlim=15;
}
/* check that the pin number is in range */
if (pin > mlim) {
fprintf(stderr,
"%s failure: invalid pin definition (pin no > %d) in config file\n",
progname, mlim);
fprintf(stderr,
"pin function no %d, pin no: 0x%x\n",
pinfunc, pin);
return -1;
}
/* create the mask and check that the pin is available */
if (pin_direction & (1 << (pin -1)) ) {
fprintf(stderr,
"%s failure: pin %d has two definitions in config file\n",
progname, pin);
return -1;
} else {
pin_direction |= (1 << (pin - 1));
pin_inversion |= inversion_mask;
}
if(PIN_LED_ERR == pinfunc ||
PIN_LED_VFY == pinfunc ||
PIN_LED_RDY == pinfunc ||
PIN_LED_PGM == pinfunc) {
led_mask|=(1 << (pin - 1));
}
return 0;
}
/* Add pins by pin mask */
static int add_pins(PROGRAMMER *pgm, int pinfunc)
{
int i, pin, mlim;
uint32_t mask, inversion_mask=0;
pin = pgm->pinno[pinfunc];
if(pin & PIN_INVERSE){
pin &= PIN_MASK;
inversion_mask = pin >>1;
}
pin >>= 1;
if (verbose)
fprintf(stderr,
"add_pins: %d: 0x%04x, inv=0x%04x\n",
pinfunc, pin, inversion_mask);
mask = pin;
if (TYPE_4232H == ftype)
mlim = 8;
else if (TYPE_2232C == ftype)
mlim = 12;
else if (TYPE_2232H == ftype)
mlim = 16;
else{
fprintf(stderr, "Unknown type %d (0x%x)\n",
ftype, ftype);
mlim = 16;
}
if (mask >= 1 << mlim) {
fprintf(stderr,
"%s failure: pin list has pins out of range (%x>%x): ",
progname, mask, 1 << mlim);
mask &= ~(1 << mlim) - 1;
}
else if (mask & pin_direction) {
fprintf(stderr,
"%s failure: conflicting pins in pin list: ",
progname);
mask &= pin_direction;
}
else {
pin_direction |= (uint16_t)mask;
pin_inversion |= inversion_mask;
return 0;
}
/* print the list of pins, if needed */
i = 0;
while (mask > 1) {
if (mask & 1)
fprintf(stderr, "%d, ", i);
mask >>= 1;
i++;
}
if (mask > 0)
fprintf(stderr, "%d\n", i);
return -1;
}
static int write_flush(void)
{
unsigned char buf[6];
if(verbose > 2)
fprintf(stderr,
"%s info: direction: 0x%04x, value: 0x%04x, inversion: 0x%04x\n",
progname, pin_direction, pin_value, pin_inversion);
buf[0] = 0x80;
buf[1] = pin_value & 0xff;
buf[2] = pin_direction & 0xff;
buf[3] = 0x82;
buf[4] = (pin_value >> 8) & 0xff;
buf[5] = (pin_direction >> 8) & 0xff;
#ifndef DRYRUN
E(ftdi_write_data(&ftdic, buf, 6) != 6);
#endif
if (verbose > 3)
fprintf(stderr, "FTDI LOG: %02x %02x %02x %02x %02x %02x\n",
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
/* we need to flush here, because set_pin is used as reset.
* if we want to sleep reset periods, we must be certain the
* avr has got the reset signal when we start sleeping.
* (it may be stuck in the USB stack or some USB hub)
*/
E(ftdi_usb_purge_buffers(&ftdic));
return 0;
}
/* this function sets or clears a GPIO pin */
static int set_pin(int pin, int value)
{
int bit;
uint16_t tval;
if (0 == pin){
if(verbose > 2)
fprintf(stderr,
"%s info: Pin is zero val %d!\n",
progname, value);
return 1;
}
--pin;
bit= 1 << (pin);
if (pin_inversion & bit) {
value = !value;
}
if (value)
value = bit;
if (verbose > 1)
fprintf(stderr,
"%s info: pin %04x bit %04x value 0x%04x\n",
progname, pin + 1, bit, value);
/* set bits depending on value */
/*pin_value ^= (-value ^ pin_value) & (1 << (pin - 1)); */
tval = (pin_value & (~bit)) | value;
if (tval != pin_value) {
pin_value = tval;
return write_flush();
} else if (verbose > 1)
fprintf(stderr, "SameVal\n");
return 0;
}
/* this function sets or clears one or more GPIO pin these are bit-mapped */
static int set_pins(int pin, int value)
{
if (0 == pin) {
if(verbose > 2)
fprintf(stderr,"%s info: Pins is zero!\n",progname);
return 1;
}
pin >>=1;
if (pin_inversion & pin) {
value = !value;
}
if (value)
value = pin;
if (verbose)
fprintf(stderr,
"%s info: pin %04x value %d\n",
progname, pin, value);
/* set bits depending on value */
/*pin_value ^= (-value ^ pin_value) & (1 << (pin - 1)); */
pin_value = (pin_value & (~pin)) | value;
return write_flush();
}
/* these functions are callbacks, which go into the
* PROGRAMMER data structure ("optional functions")
*/
static int set_led_pgm(struct programmer_t * pgm, int value)
{
return set_pin(pgm->pinno[PIN_LED_PGM], value);
}
static int set_led_rdy(struct programmer_t * pgm, int value)
{
return set_pin(pgm->pinno[PIN_LED_RDY], value);
}
static int set_led_err(struct programmer_t * pgm, int value)
{
return set_pin(pgm->pinno[PIN_LED_ERR], value);
}
static int set_led_vfy(struct programmer_t * pgm, int value)
{
return set_pin(pgm->pinno[PIN_LED_VFY], value);
}
static int avrftdi_transmit(unsigned char mode, unsigned char *cmd,
unsigned char *data, int buf_size)
{
int k = 0;
int n;
unsigned char buf[4 + buf_size];
if (mode & TX) {
buf[0] = mode;
buf[1] = ((buf_size - 1) & 0xff);
buf[2] = (((buf_size - 1) >> 8) & 0xff);
memcpy(buf + 3, cmd, buf_size);
buf[buf_size + 3] = 0x87;
#ifndef DRYRUN
E(ftdi_write_data(&ftdic, buf, buf_size + 4) != buf_size + 4);
#endif
}
if (mode & RX) {
memset(buf, 0, sizeof(buf));
do {
#ifndef DRYRUN
n = ftdi_read_data(&ftdic, buf + k, buf_size - k);
E(n < 0);
#else
n = buf_size - k;
#endif
k += n;
} while (k < buf_size);
memcpy(data, buf, buf_size);
}
return k;
}
static int avrftdi_open(PROGRAMMER * pgm, char *port)
{
int vid, pid, interface, snfound;
char serial[255], *foundsn;
struct ftdi_device_list* devlist;
struct ftdi_device_list* devlist_ptr;
struct usb_device *found_dev;
/* use vid/pid in following priority: config,
* defaults. cmd-line is currently not supported */
type = 0;
snfound = 0;
foundsn = NULL;
if (pgm->usbvid)
vid = pgm->usbvid;
else
vid = 0x0403;
if (pgm->usbpid)
pid = pgm->usbpid;
else
pid = 0x6010;
if (0 == pgm->usbsn[0]) /* we don't care about SN. Use first avail. */
snfound = 1;
if (pgm->usbdev[0] == 'a' || pgm->usbdev[0] == 'A')
interface = INTERFACE_A;
else if (pgm->usbdev[0] == 'b' || pgm->usbdev[0] == 'B')
interface = INTERFACE_B;
else {
fprintf(stderr,
"%s: Invalid interface '%s'. Setting to Interface A\n",
progname, pgm->usbdev);
interface = INTERFACE_A;
}
#ifndef DRYRUN
E(ftdi_init(&ftdic) < 0);
found_dev = NULL;
if (ftdi_usb_find_all(&ftdic, &devlist, vid, pid)) {
devlist_ptr = devlist;
do {
ftdi_usb_get_strings(&ftdic, devlist_ptr->dev,
NULL, 0, NULL, 0, serial, 255);
if (verbose)
fprintf(stderr,
"%s: device: %s, serial number: %s type 0x%04x found\n",
progname, devlist_ptr->dev->filename,
serial, devlist_ptr->dev->descriptor.bcdDevice);
if (!snfound) {
if (strcmp(pgm->usbsn, serial) == 0){
foundsn = strdup(serial);
snfound = 1;
found_dev = devlist_ptr->dev;
type = devlist_ptr->dev->descriptor.bcdDevice;
}
}else {
if (0 == type) /**we assume it will attach to first found. */
type = devlist_ptr->dev->descriptor.bcdDevice;
if (NULL == found_dev)
found_dev = devlist_ptr->dev;
if (NULL == foundsn)
foundsn = strdup(serial);
}
memset(serial, 0, 255);
devlist_ptr = devlist_ptr->next;
} while (devlist_ptr);
} else {
fprintf(stderr,
"%s: No devices with Vendor-ID:Product-ID %04x:%04x found.\n",
progname, vid, pid);
ftdi_list_free(&devlist);
return -1;
}
if (!snfound) {
fprintf(stderr,
"%s: No devices with VID:PID %04x:%04x and SN '%s' found.\n",
progname, vid, pid, pgm->usbsn);
ftdi_list_free(&devlist);
return -1;
}
if (verbose) {
fprintf(stderr,
"%s: Using device VID:PID %04x:%04x type 0x%04x(",
progname, vid, pid, type);
switch (type) {
case TYPE_C_D:
fprintf(stderr,"C/D"); break;
case TYPE_H:
fprintf(stderr,"H"); break;
case TYPE_4H:
fprintf(stderr,"4H"); break;
default:
fprintf(stderr,"unknown %04x",type); break;
}
fprintf(stderr,") and SN '%s'.\n", foundsn);
}
if (type == TYPE_C_D && INTERFACE_B == interface){
fprintf(stderr,
"%s: Type C/D found. Setting interface to A\n",
progname);
interface = INTERFACE_A;
}
/*must be A for mpsse if C/D, can be A/B for H */
if (verbose)
fprintf(stderr,
"%s: Using USB Interface %c\n",
progname, INTERFACE_A == interface? 'A': 'B');
free(foundsn);
E(ftdi_set_interface(&ftdic, interface) < 0);
E(ftdi_usb_open_dev(&ftdic,found_dev) <0);
/* E(ftdi_usb_open_desc(&ftdic, vid,pid,NULL,0==pgm->usbsn[0]?NULL:pgm->usbsn) < 0); */
ftype=ftdic.type;
#endif
if (SCK != (1 << (pgm->pinno[PIN_AVR_SCK] - 1))
|| SDO != (1 << (pgm->pinno[PIN_AVR_MOSI] - 1))
|| SDI != (1 << (pgm->pinno[PIN_AVR_MISO] - 1))) {
fprintf(stderr,
"%s failure: pinning for FTDI MPSSE must be:\n"
"\tSCK: 1, SDO: 2, SDI: 3(is: %d,%d,%d)\n",
progname,
pgm->pinno[PIN_AVR_SCK],
pgm->pinno[PIN_AVR_MOSI],
pgm->pinno[PIN_AVR_MISO]);
fprintf(stderr, "Setting pins accordingly ...\n");
pgm->pinno[PIN_AVR_SCK] = 1;
pgm->pinno[PIN_AVR_MOSI] = 2;
pgm->pinno[PIN_AVR_MISO] = 3;
}
if(verbose)
fprintf(stderr,
"%s info: reset pin value: %x\n",
progname, pgm->pinno[PIN_AVR_RESET]-1);
if (pgm->pinno[PIN_AVR_RESET] < 4 || pgm->pinno[PIN_AVR_RESET] == 0) {
fprintf(stderr,
"%s failure: RESET pin clashes with data pin or is not set.\n",
progname);
fprintf(stderr, "Setting to default-value 4\n");
pgm->pinno[PIN_AVR_RESET] = 4;
}
/**sync our internal state with the chip */
pin_direction = 0;
pin_value = 0;
write_flush();
pin_direction = (0x3 | (1 << (pgm->pinno[PIN_AVR_RESET] - 1)));
/* gather the rest of the pins */
if (add_pins(pgm, PPI_AVR_VCC)) return -1;
if (add_pins(pgm, PPI_AVR_BUFF)) return -1;
if (add_pin(pgm, PIN_LED_ERR)) return -1;
if (add_pin(pgm, PIN_LED_RDY)) return -1;
if (add_pin(pgm, PIN_LED_PGM)) return -1;
if (add_pin(pgm, PIN_LED_VFY)) return -1;
#ifndef DRYRUN
E(ftdi_set_bitmode(&ftdic, pin_direction & 0xff, BITMODE_MPSSE) < 0); /*set SPI */
#endif
if (verbose > 1) {
fprintf(stderr, "pin direction mask: %04x\n", pin_direction);
fprintf(stderr, "pin value mask: %04x\n", pin_value);
}
if (pgm->baudrate) {
set_frequency(pgm->baudrate);
} else if(pgm->bitclock) {
set_frequency((uint32_t)(1.0f/pgm->bitclock));
} else {
set_frequency(pgm->baudrate ? pgm->baudrate : 150000);
}
/**set the ready LED, if we have one .. and set our direction up */
set_led_rdy(pgm,0);
set_led_rdy(pgm,1);
return 0;
}
static void avrftdi_close(PROGRAMMER * pgm)
{
if(ftdic.usb_dev) {
set_pins(pgm->pinno[PPI_AVR_BUFF], ON);
set_pin(pgm->pinno[PIN_AVR_RESET], ON);
/**Stop driving the pins - except for the LEDs */
if (verbose > 1)
fprintf(stderr,
"LED Mask=0x%04x value =0x%04x &=0x%04x\n",
led_mask, pin_value, led_mask & pin_value);
pin_direction = led_mask;
pin_value &= led_mask;
write_flush();
#ifndef DRYRUN
E_VOID(ftdi_usb_close(&ftdic));
#endif
}
#ifndef DRYRUN
ftdi_deinit(&ftdic);
#endif
return;
}
static int avrftdi_initialize(PROGRAMMER * pgm, AVRPART * p)
{
set_pin(pgm->pinno[PIN_AVR_RESET], OFF);
set_pins(pgm->pinno[PPI_AVR_BUFF], OFF);
set_pin(pgm->pinno[PIN_AVR_SCK], OFF);
/*use speed optimization with CAUTION*/
usleep(20 * 1000);
/* giving rst-pulse of at least 2 avr-clock-cycles, for
* security (2us @ 1MHz) */
set_pin(pgm->pinno[PIN_AVR_RESET], ON);
usleep(20 * 1000);
/*setting rst back to 0 */
set_pin(pgm->pinno[PIN_AVR_RESET], OFF);
/*wait at least 20ms bevor issuing spi commands to avr */
usleep(20 * 1000);
return pgm->program_enable(pgm, p);
}
static void avrftdi_disable(PROGRAMMER * pgm)
{
return;
}
static void avrftdi_enable(PROGRAMMER * pgm)
{
return;
}
static void avrftdi_display(PROGRAMMER * pgm, const char *p)
{
return;
}
static int avrftdi_cmd(PROGRAMMER * pgm, unsigned char cmd[4], unsigned char res[4])
{
return avrftdi_transmit(TRX, cmd, res, sizeof(cmd));
}
static int avrftdi_program_enable(PROGRAMMER * pgm, AVRPART * p)
{
int i;
unsigned char buf[4];
memset(buf, 0, sizeof(buf));
if (p->op[AVR_OP_PGM_ENABLE] == NULL) {
fprintf(stderr,
"%s failure: Program Enable (PGM_ENABLE) command not defined for %s\n",
progname, p->desc);
return -1;
}
avr_set_bits(p->op[AVR_OP_PGM_ENABLE], buf);
for(i = 0; i < 4; i++) {
pgm->cmd(pgm, buf, buf);
if (buf[p->pollindex-1] != p->pollvalue) {
//try resetting
set_pin(pgm->pinno[PIN_AVR_RESET], ON);
usleep(20);
set_pin(pgm->pinno[PIN_AVR_RESET], OFF);
avr_set_bits(p->op[AVR_OP_PGM_ENABLE], buf);
} else
return 0;
}
#ifndef DRYRUN
return -1;
#else
return 0;
#endif
}
static int avrftdi_chip_erase(PROGRAMMER * pgm, AVRPART * p)
{
unsigned char cmd[4];
unsigned char res[4];
if (p->op[AVR_OP_CHIP_ERASE] == NULL) {
fprintf(stderr,
"%s failure Chip Erase (CHIP_ERASE) command not defined for %s\n",
progname, p->desc);
return -1;
}
memset(cmd, 0, sizeof(cmd));
avr_set_bits(p->op[AVR_OP_CHIP_ERASE], cmd);
pgm->cmd(pgm, cmd, res);
usleep(p->chip_erase_delay);
pgm->initialize(pgm, p);
return 0;
}
/* Load extended address byte command */
static int avrftdi_lext(PROGRAMMER *pgm, AVRPART *p, AVRMEM *m, int address)
{
unsigned char buf[] = {0x11, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00};
avr_set_bits(m->op[AVR_OP_LOAD_EXT_ADDR], &buf[3]);
avr_set_addr(m->op[AVR_OP_LOAD_EXT_ADDR], &buf[3], address);
if(verbose > 1)
buf_dump(buf, sizeof(buf),
"load extended address command", 0, 16 * 3);
#ifndef DRYRUN
E(ftdi_write_data(&ftdic, buf, sizeof(buf)) != sizeof(buf));
#endif
return 0;
}
static int avrftdi_eeprom_write(PROGRAMMER *pgm, AVRPART *p, AVRMEM *m,
int page_size, int len)
{
unsigned char cmd[4];
unsigned char *data = m->buf;
int add;
avr_set_bits(m->op[AVR_OP_WRITE], cmd);
for (add = 0; add < len; add++)
{
avr_set_addr(m->op[AVR_OP_WRITE], cmd, add);
avr_set_input(m->op[AVR_OP_WRITE], cmd, *data++);
E(avrftdi_transmit(TX, cmd, cmd, 4) < 0);
usleep((m->max_write_delay));
}
return len;
}
static int avrftdi_eeprom_read(PROGRAMMER *pgm, AVRPART *p, AVRMEM *m,
int page_size, int len)
{
unsigned char cmd[4];
unsigned char buffer[len], *bufptr = buffer;
int add;
memset(buffer, 0, sizeof(buffer));
for (add = 0; add < len; add++)
{
avr_set_bits(m->op[AVR_OP_READ], cmd);
avr_set_addr(m->op[AVR_OP_READ], cmd, add);
E(avrftdi_transmit(TRX, cmd, cmd, 4) < 0);
avr_get_output(m->op[AVR_OP_READ], cmd, bufptr++);
}
memcpy(m->buf, buffer, len);
return len;
}
static int avrftdi_flash_write(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
int page_size, int len)
{
int i;
int address = 0, buf_size;
int bytes = len;
int blocksize;
int use_lext_address = m->op[AVR_OP_LOAD_EXT_ADDR] != NULL;
unsigned char *buf, *bufptr;
unsigned char *buffer = m->buf;
unsigned char byte;
buf = (unsigned char*) malloc(4 * len + 4);
if (buf == NULL) {
fprintf(stderr,
"%s (avrftdi_flash_write): error allocating memory\n",
p->desc);
exit (-1);
}
bufptr = buf;
/* pre-check opcodes */
if (m->op[AVR_OP_LOADPAGE_LO] == NULL) {
fprintf(stderr,
"%s failure: %s command not defined for %s\n",
progname, "AVR_OP_LOADPAGE_LO", p->desc);
return -1;
}
if (m->op[AVR_OP_LOADPAGE_HI] == NULL) {
fprintf(stderr,
"%s failure: %s command not defined for %s\n",
progname, "AVR_OP_LOADPAGE_HI", p->desc);
return -1;
}
//page_size = (page_size > m->page_size) ? m->page_size : page_size - 8;
page_size = m->page_size;
while (bytes) {
if (bytes > page_size) {
blocksize = (page_size)/2;
bytes -= (page_size);
} else {
blocksize = bytes/2;
bytes = 0;
}
if(verbose > 2)
fprintf(stderr,
"-< bytes = %d of %d, blocksize = %d of %d\n",
len - bytes, len, blocksize, m->page_size / 2);
/* if we do cross a 64k word boundary (or write the
* first page), we need to issue a 'load extended
* address byte' command, which is defined as 0x4d
* 0x00 <address byte> 0x00. As far as i know, this
* is only available on 256k parts. 64k word is 128k
* bytes.
*/
if (use_lext_address && !(bytes & 0x1ffff)) {
avrftdi_lext(pgm, p, m, address);
}
for (i = 0; i < blocksize; i++) {
/*setting word*/
avr_set_bits(m->op[AVR_OP_LOADPAGE_LO], bufptr);
avr_set_addr(m->op[AVR_OP_LOADPAGE_LO], bufptr, address);
avr_set_input(m->op[AVR_OP_LOADPAGE_LO], bufptr, *buffer++);
bufptr += 4;
avr_set_bits(m->op[AVR_OP_LOADPAGE_HI], bufptr);
avr_set_addr(m->op[AVR_OP_LOADPAGE_HI], bufptr, address);
avr_set_input(m->op[AVR_OP_LOADPAGE_HI], bufptr, *buffer++);
bufptr += 4;
address++;
}
if (verbose > 2)
fprintf(stderr,
"address = %d, page_size = %d\n",
address, m->page_size);
if (((address * 2) % m->page_size) == 0 || bytes == 0) {
if (m->op[AVR_OP_WRITEPAGE] == NULL) {
fprintf(stderr,
"%s failure: Write Page (WRITEPAGE) command not defined for %s\n",
progname, p->desc);
exit(1);
} else {
avr_set_bits(m->op[AVR_OP_WRITEPAGE], bufptr);
}
/* setting page address highbyte */
avr_set_addr(m->op[AVR_OP_WRITEPAGE],
bufptr, address - 1);
bufptr += 4;
}
buf_size = bufptr - buf;
if(verbose > 3)
buf_dump(buf, buf_size, "command buffer", 0, 16*3);
if(verbose > 2)
fprintf(stderr,
"%s info: buffer size: %d\n",
progname, buf_size);
E(avrftdi_transmit(TX, buf, buf, buf_size) < 0);
bufptr = buf;
if (((address * 2) % m->page_size) == 0 || bytes == 0) {
do {
pgm->read_byte(pgm, p, m,
(address * 2) - 1, &byte);
} while (m->buf[(address*2) - 1] != byte);
}
if (verbose < 3)
report_progress(2 * address, len, NULL);
}
return len;
}
static int avrftdi_flash_read(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
int page_size, int len)
{
/*
*Reading from flash
*/
int use_lext_address = m->op[AVR_OP_LOAD_EXT_ADDR] != NULL;
int i, buf_index, buf_size = 0, psize = m->page_size;
unsigned char o_buf[4*len+4], *o_ptr = o_buf;
unsigned char i_buf[4*len+4];
int address = 0;
int bytes = len;
int blocksize;
unsigned char buffer[m->size], *bufptr = buffer;
memset(o_buf, 0, sizeof(o_buf));
memset(i_buf, 0, sizeof(i_buf));
memset(buffer, 0, sizeof(buffer));
/* pre-check opcodes */
if (m->op[AVR_OP_READ_LO] == NULL) {
fprintf(stderr,
"%s failure: %s command not defined for %s\n",
progname, "AVR_OP_READ_LO", p->desc);
return -1;
}
if (m->op[AVR_OP_READ_HI] == NULL) {
fprintf(stderr,
"%s failure: %s command not defined for %s\n",
progname, "AVR_OP_READ_HI", p->desc);
return -1;
}
while (bytes) {
if (bytes > psize) {
blocksize = psize/2;
bytes -= psize;
} else {
blocksize = bytes/2;
bytes = 0;
}
if(use_lext_address && !(bytes & 0x1ffff)) {
avrftdi_lext(pgm, p, m, address);
}
for(i = 0; i < blocksize; i++) {
if(verbose > 3)
fprintf(stderr,
"bufsize: %d, i: %d, add: %d\n",
buf_size, i, address);
avr_set_bits(m->op[AVR_OP_READ_LO], o_ptr);
avr_set_addr(m->op[AVR_OP_READ_LO], o_ptr, address);
o_ptr += 4;
avr_set_bits(m->op[AVR_OP_READ_HI], o_ptr);
avr_set_addr(m->op[AVR_OP_READ_HI], o_ptr, address);
o_ptr += 4;
address++;
//FIXME: why not program on per-page basis?
//maybe this covered a timing error in an earlier version?
buf_size = o_ptr - o_buf;
if((buf_size >= (page_size - 8)) || ( i == blocksize-1)) {
E(avrftdi_transmit(TRX, o_buf, i_buf, buf_size) < 0);
for(buf_index = 0; buf_index < buf_size; buf_index+=8) {
avr_get_output(m->op[AVR_OP_READ_LO], i_buf+buf_index, bufptr++);
avr_get_output(m->op[AVR_OP_READ_HI], i_buf+buf_index+4, bufptr++);
}
if(verbose > 3) {
buf_dump(i_buf, buf_size, "i_buf", 0, 16);
}
o_ptr = o_buf;
}
}
}
memcpy(m->buf, buffer, sizeof(buffer));
return len;
}
static int avrftdi_paged_write(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
int page_size, int n_bytes)
{
if (strcmp(m->desc, "flash") == 0)
return avrftdi_flash_write(pgm, p, m, page_size, n_bytes);
else if (strcmp(m->desc, "eeprom") == 0)
return avrftdi_eeprom_write(pgm, p, m, page_size, n_bytes);
else
return -2;
}
static int avrftdi_paged_load(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
int page_size, int n_bytes)
{
if (strcmp(m->desc, "flash") == 0)
return avrftdi_flash_read(pgm, p, m, page_size, n_bytes);
else if(strcmp(m->desc, "eeprom") == 0)
return avrftdi_eeprom_read(pgm, p, m, page_size, n_bytes);
else
return -2;
}
void avrftdi_initpgm(PROGRAMMER * pgm)
{
strcpy(pgm->type, "avrftdi");
pin_value=pin_direction=pin_inversion=led_mask=0;
/*
* mandatory functions
*/
pgm->initialize = avrftdi_initialize;
pgm->display = avrftdi_display;
pgm->enable = avrftdi_enable;
pgm->disable = avrftdi_disable;
pgm->program_enable = avrftdi_program_enable;
pgm->chip_erase = avrftdi_chip_erase;
pgm->cmd = avrftdi_cmd;
pgm->open = avrftdi_open;
pgm->close = avrftdi_close;
pgm->read_byte = avr_read_byte_default;
pgm->write_byte = avr_write_byte_default;
/*
* optional functions
*/
pgm->paged_write = avrftdi_paged_write;
pgm->paged_load = avrftdi_paged_load;
pgm->rdy_led = set_led_rdy;
pgm->err_led = set_led_err;
pgm->pgm_led = set_led_pgm;
pgm->vfy_led = set_led_vfy;
}
#else /*HAVE_LIBFTDI*/
static int avrftdi_noftdi_open (struct programmer_t *pgm, char * name)
{
fprintf(stderr,
"%s: error: no libftdi support. please compile again with libftdi installed.\n",
progname);
exit(1);
}
void avrftdi_initpgm(PROGRAMMER * pgm)
{
strcpy(pgm->type, "avrftdi");
pgm->open = avrftdi_noftdi_open;
}
#endif /* HAVE_LIBFTDI */
#else /*HAVE_LIBUSB*/
static int avrftdi_nousb_open (struct programmer_t *pgm, char * name)
{
fprintf(stderr,
"%s: error: no usb support. please compile again with libusb installed.\n",
progname);
exit(1);
}
void avrftdi_initpgm(PROGRAMMER * pgm)
{
strcpy(pgm->type, "avrftdi");
pgm->open = avrftdi_nousb_open;
}
#endif /*HAVE_LIBUSB*/