avrdude/src/avrpart.c

1024 lines
25 KiB
C

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2000-2004 Brian S. Dean <bsd@bsdhome.com>
* Copyright (C) 2006 Joerg Wunsch <j@uriah.heep.sax.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* $Id$ */
#include <stdlib.h>
#include <string.h>
#include "ac_cfg.h"
#include "avrdude.h"
#include "libavrdude.h"
/***
*** Elementary functions dealing with OPCODE structures
***/
OPCODE *avr_new_opcode(void) {
return (OPCODE *) cfg_malloc("avr_new_opcode()", sizeof(OPCODE));
}
static OPCODE *avr_dup_opcode(const OPCODE *op) {
if(op == NULL) // Caller wants NULL if op == NULL
return NULL;
OPCODE *m = (OPCODE *) cfg_malloc("avr_dup_opcode()", sizeof(*m));
memcpy(m, op, sizeof(*m));
return m;
}
void avr_free_opcode(OPCODE *op) {
if(op)
free(op);
}
// returns position 0..31 of highest bit set or INT_MIN if no bit is set
int intlog2(unsigned int n) {
int ret;
if(!n)
return INT_MIN;
for(ret = 0; n >>= 1; ret++)
continue;
return ret;
}
/*
* avr_set_bits()
*
* Set instruction bits in the specified command based on the opcode.
*/
int avr_set_bits(OPCODE * op, unsigned char * cmd)
{
int i, j, bit;
unsigned char mask;
for (i=0; i<32; i++) {
if (op->bit[i].type == AVR_CMDBIT_VALUE || op->bit[i].type == AVR_CMDBIT_IGNORE) {
j = 3 - i / 8;
bit = i % 8;
mask = 1 << bit;
if (op->bit[i].value && op->bit[i].type == AVR_CMDBIT_VALUE)
cmd[j] = cmd[j] | mask;
else
cmd[j] = cmd[j] & ~mask;
}
}
return 0;
}
/*
* avr_set_addr()
*
* Set address bits in the specified command based on the opcode, and
* the address.
*/
int avr_set_addr(OPCODE * op, unsigned char * cmd, unsigned long addr)
{
int i, j, bit;
unsigned long value;
unsigned char mask;
for (i=0; i<32; i++) {
if (op->bit[i].type == AVR_CMDBIT_ADDRESS) {
j = 3 - i / 8;
bit = i % 8;
mask = 1 << bit;
value = addr >> op->bit[i].bitno & 0x01;
if (value)
cmd[j] = cmd[j] | mask;
else
cmd[j] = cmd[j] & ~mask;
}
}
return 0;
}
/*
* avr_set_addr_mem()
*
* Set address bits in the specified command based on the memory, opcode and
* address; addr must be a word address for flash or, for all other memories,
* a byte address; returns 0 on success and -1 on error (no memory or no
* opcode) or, if positive, bn+1 where bn is bit number of the highest
* necessary bit that the opcode does not provide.
*/
int avr_set_addr_mem(AVRMEM *mem, int opnum, unsigned char *cmd, unsigned long addr) {
int ret, isflash, lo, hi, memsize, pagesize;
OPCODE *op;
if(!mem)
return -1;
if(!(op = mem->op[opnum]))
return -1;
isflash = !strcmp(mem->desc, "flash"); // ISP parts have only one flash-like memory
memsize = mem->size >> isflash; // word addresses for flash
pagesize = mem->page_size >> isflash;
// compute range lo..hi of needed address bits
switch(opnum) {
case AVR_OP_READ:
case AVR_OP_WRITE:
case AVR_OP_READ_LO:
case AVR_OP_READ_HI:
case AVR_OP_WRITE_LO:
case AVR_OP_WRITE_HI:
lo = 0;
hi = intlog2(memsize-1); // memsize = 1 implies no addr bit is needed
break;
case AVR_OP_LOADPAGE_LO:
case AVR_OP_LOADPAGE_HI:
lo = 0;
hi = intlog2(pagesize-1);
break;
case AVR_OP_LOAD_EXT_ADDR:
lo = 16;
hi = intlog2(memsize-1);
break;
case AVR_OP_WRITEPAGE:
lo = intlog2(pagesize);
hi = intlog2(memsize-1);
break;
case AVR_OP_CHIP_ERASE:
case AVR_OP_PGM_ENABLE:
default:
lo = 0;
hi = -1;
break;
}
// Unless it's load extended address, ISP chips only deal with 16 bit addresses
if(opnum != AVR_OP_LOAD_EXT_ADDR && hi > 15)
hi = 15;
unsigned char avail[32];
memset(avail, 0, sizeof avail);
for(int i=0; i<32; i++) {
if(op->bit[i].type == AVR_CMDBIT_ADDRESS) {
int bitno, j, bit;
unsigned char mask;
bitno = op->bit[i].bitno & 31;
j = 3 - i / 8;
bit = i % 8;
mask = 1 << bit;
avail[bitno] = 1;
// 'a' bit with number outside bit range [lo, hi] is set to 0
if (bitno >= lo && bitno <= hi? (addr >> bitno) & 1: 0)
cmd[j] = cmd[j] | mask;
else
cmd[j] = cmd[j] & ~mask;
}
}
ret = 0;
if(lo >= 0 && hi < 32 && lo <= hi)
for(int bn=lo; bn <= hi; bn++)
if(!avail[bn]) // necessary bit bn misses in opcode
ret = bn+1;
return ret;
}
/*
* avr_set_input()
*
* Set input data bits in the specified command based on the opcode,
* and the data byte.
*/
int avr_set_input(OPCODE * op, unsigned char * cmd, unsigned char data)
{
int i, j, bit;
unsigned char value;
unsigned char mask;
for (i=0; i<32; i++) {
if (op->bit[i].type == AVR_CMDBIT_INPUT) {
j = 3 - i / 8;
bit = i % 8;
mask = 1 << bit;
value = data >> op->bit[i].bitno & 0x01;
if (value)
cmd[j] = cmd[j] | mask;
else
cmd[j] = cmd[j] & ~mask;
}
}
return 0;
}
/*
* avr_get_output()
*
* Retrieve output data bits from the command results based on the
* opcode data.
*/
int avr_get_output(const OPCODE *op, const unsigned char *res, unsigned char *data) {
int i, j, bit;
unsigned char value;
unsigned char mask;
for (i=0; i<32; i++) {
if (op->bit[i].type == AVR_CMDBIT_OUTPUT) {
j = 3 - i / 8;
bit = i % 8;
mask = 1 << bit;
value = ((res[j] & mask) >> bit) & 0x01;
value = value << op->bit[i].bitno;
if (value)
*data = *data | value;
else
*data = *data & ~value;
}
}
return 0;
}
/*
* avr_get_output_index()
*
* Calculate the byte number of the output data based on the
* opcode data.
*/
int avr_get_output_index(const OPCODE *op) {
int i, j;
for (i=0; i<32; i++) {
if (op->bit[i].type == AVR_CMDBIT_OUTPUT) {
j = 3 - i / 8;
return j;
}
}
return -1;
}
static char * avr_op_str(int op)
{
switch (op) {
case AVR_OP_READ : return "READ"; break;
case AVR_OP_WRITE : return "WRITE"; break;
case AVR_OP_READ_LO : return "READ_LO"; break;
case AVR_OP_READ_HI : return "READ_HI"; break;
case AVR_OP_WRITE_LO : return "WRITE_LO"; break;
case AVR_OP_WRITE_HI : return "WRITE_HI"; break;
case AVR_OP_LOADPAGE_LO : return "LOADPAGE_LO"; break;
case AVR_OP_LOADPAGE_HI : return "LOADPAGE_HI"; break;
case AVR_OP_LOAD_EXT_ADDR : return "LOAD_EXT_ADDR"; break;
case AVR_OP_WRITEPAGE : return "WRITEPAGE"; break;
case AVR_OP_CHIP_ERASE : return "CHIP_ERASE"; break;
case AVR_OP_PGM_ENABLE : return "PGM_ENABLE"; break;
default : return "<unknown opcode>"; break;
}
}
static char * bittype(int type)
{
switch (type) {
case AVR_CMDBIT_IGNORE : return "IGNORE"; break;
case AVR_CMDBIT_VALUE : return "VALUE"; break;
case AVR_CMDBIT_ADDRESS : return "ADDRESS"; break;
case AVR_CMDBIT_INPUT : return "INPUT"; break;
case AVR_CMDBIT_OUTPUT : return "OUTPUT"; break;
default : return "<unknown bit type>"; break;
}
}
/***
*** Elementary functions dealing with AVRMEM structures
***/
AVRMEM *avr_new_memtype(void) {
AVRMEM *m = (AVRMEM *) cfg_malloc("avr_new_memtype()", sizeof(*m));
m->desc = cache_string("");
m->page_size = 1; // ensure not 0
return m;
}
AVRMEM_ALIAS *avr_new_memalias(void) {
AVRMEM_ALIAS *m = (AVRMEM_ALIAS *) cfg_malloc("avr_new_memalias()", sizeof*m);
m->desc = cache_string("");
return m;
}
/*
* Allocate and initialize memory buffers for each of the device's
* defined memory regions.
*/
int avr_initmem(const AVRPART *p) {
if(p == NULL || p->mem == NULL)
return -1;
for (LNODEID ln=lfirst(p->mem); ln; ln=lnext(ln)) {
AVRMEM *m = ldata(ln);
m->buf = (unsigned char *) cfg_malloc("avr_initmem()", m->size);
m->tags = (unsigned char *) cfg_malloc("avr_initmem()", m->size);
}
return 0;
}
AVRMEM *avr_dup_mem(const AVRMEM *m) {
AVRMEM *n = avr_new_memtype();
if(m) {
*n = *m;
if(m->buf) {
n->buf = (unsigned char *) cfg_malloc("avr_dup_mem()", n->size);
memcpy(n->buf, m->buf, n->size);
}
if(m->tags) {
n->tags = (unsigned char *) cfg_malloc("avr_dup_mem()", n->size);
memcpy(n->tags, m->tags, n->size);
}
for(int i = 0; i < AVR_OP_MAX; i++)
n->op[i] = avr_dup_opcode(n->op[i]);
}
return n;
}
AVRMEM_ALIAS *avr_dup_memalias(const AVRMEM_ALIAS *m) {
AVRMEM_ALIAS *n = avr_new_memalias();
if(m)
*n = *m;
return n;
}
void avr_free_mem(AVRMEM * m) {
if(m == NULL)
return;
if(m->buf) {
free(m->buf);
m->buf = NULL;
}
if(m->tags) {
free(m->tags);
m->tags = NULL;
}
for(size_t i=0; i<sizeof(m->op)/sizeof(m->op[0]); i++) {
if(m->op[i]) {
avr_free_opcode(m->op[i]);
m->op[i] = NULL;
}
}
free(m);
}
void avr_free_memalias(AVRMEM_ALIAS *m) {
if(m)
free(m);
}
AVRMEM_ALIAS *avr_locate_memalias(const AVRPART *p, const char *desc) {
AVRMEM_ALIAS * m, * match;
LNODEID ln;
int matches, exact;
int l;
if(!p || !desc || !p->mem_alias)
return NULL;
l = strlen(desc);
matches = exact = 0;
match = NULL;
for (ln=lfirst(p->mem_alias); ln; ln=lnext(ln)) {
m = ldata(ln);
if (strncmp(m->desc, desc, l) == 0) { // Partial initial match
match = m;
matches++;
if(m->desc[l] == 0) // Exact match between arg and memory
exact++;
}
}
return exact == 1 || matches == 1? match: NULL;
}
AVRMEM *avr_locate_mem_noalias(const AVRPART *p, const char *desc) {
AVRMEM * m, * match;
LNODEID ln;
int matches, exact;
int l;
if(!p || !desc || !p->mem)
return NULL;
l = strlen(desc);
matches = exact = 0;
match = NULL;
for (ln=lfirst(p->mem); ln; ln=lnext(ln)) {
m = ldata(ln);
if (strncmp(m->desc, desc, l) == 0) { // Partial initial match
match = m;
matches++;
if(m->desc[l] == 0) // Exact match between arg and memory
exact++;
}
}
return exact == 1 || matches == 1? match: NULL;
}
AVRMEM *avr_locate_mem(const AVRPART *p, const char *desc) {
AVRMEM *m = avr_locate_mem_noalias(p, desc);
if(m)
return m;
// Not yet found: look for matching alias name
AVRMEM_ALIAS *a = avr_locate_memalias(p, desc);
return a? a->aliased_mem: NULL;
}
AVRMEM_ALIAS *avr_find_memalias(const AVRPART *p, const AVRMEM *m_orig) {
if(p && p->mem_alias && m_orig)
for(LNODEID ln=lfirst(p->mem_alias); ln; ln=lnext(ln)) {
AVRMEM_ALIAS *m = ldata(ln);
if(m->aliased_mem == m_orig)
return m;
}
return NULL;
}
void avr_mem_display(const char *prefix, FILE *f, const AVRMEM *m,
const AVRPART *p, int verbose) {
static unsigned int prev_mem_offset;
static int prev_mem_size;
int i, j;
char * optr;
if (m == NULL) {
fprintf(f,
"%s Block Poll Page Polled\n"
"%sMemory Type Alias Mode Delay Size Indx Paged Size Size #Pages MinW MaxW ReadBack\n"
"%s----------- -------- ---- ----- ----- ---- ------ ------ ---- ------ ----- ----- ---------\n",
prefix, prefix, prefix);
}
else {
if (verbose > 2) {
fprintf(f,
"%s Block Poll Page Polled\n"
"%sMemory Type Alias Mode Delay Size Indx Paged Size Size #Pages MinW MaxW ReadBack\n"
"%s----------- -------- ---- ----- ----- ---- ------ ------ ---- ------ ----- ----- ---------\n",
prefix, prefix, prefix);
}
// Only print memory section if the previous section printed isn't identical
if(prev_mem_offset != m->offset || prev_mem_size != m->size || (strcmp(p->family_id, "") == 0)) {
prev_mem_offset = m->offset;
prev_mem_size = m->size;
AVRMEM_ALIAS *ap = avr_find_memalias(p, m);
/* Show alias if the current and the next memory section has the same offset
and size, we're not out of band and a family_id is present */
const char *mem_desc_alias = ap? ap->desc: "";
fprintf(f,
"%s%-11s %-8s %4d %5d %5d %4d %-6s %6d %4d %6d %5d %5d 0x%02x 0x%02x\n",
prefix,
m->desc,
mem_desc_alias,
m->mode, m->delay, m->blocksize, m->pollindex,
m->paged ? "yes" : "no",
m->size,
m->page_size,
m->num_pages,
m->min_write_delay,
m->max_write_delay,
m->readback[0],
m->readback[1]);
}
if (verbose > 4) {
avrdude_message(MSG_TRACE2, "%s Memory Ops:\n"
"%s Oeration Inst Bit Bit Type Bitno Value\n"
"%s ----------- -------- -------- ----- -----\n",
prefix, prefix, prefix);
for (i=0; i<AVR_OP_MAX; i++) {
if (m->op[i]) {
for (j=31; j>=0; j--) {
if (j==31)
optr = avr_op_str(i);
else
optr = " ";
fprintf(f,
"%s %-11s %8d %8s %5d %5d\n",
prefix, optr, j,
bittype(m->op[i]->bit[j].type),
m->op[i]->bit[j].bitno,
m->op[i]->bit[j].value);
}
}
}
}
}
}
/*
* Elementary functions dealing with AVRPART structures
*/
AVRPART *avr_new_part(void) {
AVRPART *p = (AVRPART *) cfg_malloc("avr_new_part()", sizeof(AVRPART));
const char *nulp = cache_string("");
memset(p, 0, sizeof(*p));
// Initialise const char * and LISTID entities
p->desc = nulp;
p->id = nulp;
p->parent_id = nulp;
p->family_id = nulp;
p->config_file = nulp;
p->mem = lcreat(NULL, 0);
p->mem_alias = lcreat(NULL, 0);
// Default values
p->hvupdi_variant = -1;
memset(p->signature, 0xFF, 3);
p->reset_disposition = RESET_DEDICATED;
p->retry_pulse = PIN_AVR_SCK;
p->flags = AVRPART_SERIALOK | AVRPART_PARALLELOK | AVRPART_ENABLEPAGEPROGRAMMING;
p->ctl_stack_type = CTL_STACK_NONE;
p->ocdrev = -1;
p->lineno = 0;
return p;
}
AVRPART *avr_dup_part(const AVRPART *d) {
AVRPART *p = avr_new_part();
if(d) {
*p = *d;
// Duplicate the memory and alias chains
p->mem = lcreat(NULL, 0);
p->mem_alias = lcreat(NULL, 0);
for(LNODEID ln=lfirst(d->mem); ln; ln=lnext(ln)) {
AVRMEM *m = ldata(ln);
AVRMEM *m2 = avr_dup_mem(m);
ladd(p->mem, m2);
// See if there is any alias for it
for(LNODEID ln2=lfirst(d->mem_alias); ln2; ln2=lnext(ln2)) {
AVRMEM_ALIAS *a = ldata(ln2);
if (a->aliased_mem == m) {
// Yes, duplicate it, adjust the pointer and add to new list
AVRMEM_ALIAS *a2 = avr_dup_memalias(a);
a2->aliased_mem = m2;
ladd(p->mem_alias, a2);
}
}
}
for(int i = 0; i < AVR_OP_MAX; i++)
p->op[i] = avr_dup_opcode(p->op[i]);
}
return p;
}
void avr_free_part(AVRPART * d)
{
ldestroy_cb(d->mem, (void(*)(void *))avr_free_mem);
d->mem = NULL;
ldestroy_cb(d->mem_alias, (void(*)(void *))avr_free_memalias);
d->mem_alias = NULL;
/* do not free d->parent_id and d->config_file */
for(size_t i=0; i<sizeof(d->op)/sizeof(d->op[0]); i++) {
if (d->op[i] != NULL) {
avr_free_opcode(d->op[i]);
d->op[i] = NULL;
}
}
free(d);
}
AVRPART *locate_part(const LISTID parts, const char *partdesc) {
AVRPART * p = NULL;
int found = 0;
if(!parts || !partdesc)
return NULL;
for (LNODEID ln1=lfirst(parts); ln1 && !found; ln1=lnext(ln1)) {
p = ldata(ln1);
if ((strcasecmp(partdesc, p->id) == 0) ||
(strcasecmp(partdesc, p->desc) == 0))
found = 1;
}
return found? p: NULL;
}
AVRPART *locate_part_by_avr910_devcode(const LISTID parts, int devcode) {
if(parts)
for (LNODEID ln1=lfirst(parts); ln1; ln1=lnext(ln1)) {
AVRPART * p = ldata(ln1);
if (p->avr910_devcode == devcode)
return p;
}
return NULL;
}
AVRPART *locate_part_by_signature(const LISTID parts, unsigned char *sig, int sigsize) {
if(parts && sigsize == 3)
for(LNODEID ln1=lfirst(parts); ln1; ln1=lnext(ln1)) {
AVRPART *p = ldata(ln1);
int i;
for(i=0; i<3; i++)
if(p->signature[i] != sig[i])
break;
if(i == 3)
return p;
}
return NULL;
}
/*
* Iterate over the list of avrparts given as "avrparts", and
* call the callback function cb for each entry found. cb is being
* passed the following arguments:
* . the name of the avrpart (for -p)
* . the descriptive text given in the config file
* . the name of the config file this avrpart has been defined in
* . the line number of the config file this avrpart has been defined at
* . the "cookie" passed into walk_avrparts() (opaque client data)
*/
void walk_avrparts(LISTID avrparts, walk_avrparts_cb cb, void *cookie)
{
LNODEID ln1;
AVRPART * p;
for (ln1 = lfirst(avrparts); ln1; ln1 = lnext(ln1)) {
p = ldata(ln1);
cb(p->id, p->desc, p->config_file, p->lineno, cookie);
}
}
/*
* Compare function to sort the list of programmers
*/
static int sort_avrparts_compare(const AVRPART *p1, const AVRPART *p2) {
if(p1 == NULL || p1->desc == NULL || p2 == NULL || p2->desc == NULL)
return 0;
return strcasecmp(p1->desc, p2->desc);
}
/*
* Sort the list of programmers given as "programmers"
*/
void sort_avrparts(LISTID avrparts)
{
lsort(avrparts,(int (*)(void*, void*)) sort_avrparts_compare);
}
static char * reset_disp_str(int r)
{
switch (r) {
case RESET_DEDICATED : return "dedicated";
case RESET_IO : return "possible i/o";
default : return "<invalid>";
}
}
void avr_display(FILE *f, const AVRPART *p, const char *prefix, int verbose) {
char * buf;
const char * px;
LNODEID ln;
AVRMEM * m;
fprintf( f, "%sAVR Part : %s\n", prefix, p->desc);
if (p->chip_erase_delay)
fprintf(f, "%sChip Erase delay : %d us\n", prefix, p->chip_erase_delay);
if (p->pagel)
fprintf(f, "%sPAGEL : P%02X\n", prefix, p->pagel);
if (p->bs2)
fprintf(f, "%sBS2 : P%02X\n", prefix, p->bs2);
fprintf( f, "%sRESET disposition : %s\n", prefix, reset_disp_str(p->reset_disposition));
fprintf( f, "%sRETRY pulse : %s\n", prefix, avr_pin_name(p->retry_pulse));
fprintf( f, "%sSerial program mode : %s\n", prefix, (p->flags & AVRPART_SERIALOK) ? "yes" : "no");
fprintf( f, "%sParallel program mode : %s\n", prefix, (p->flags & AVRPART_PARALLELOK) ?
((p->flags & AVRPART_PSEUDOPARALLEL) ? "pseudo" : "yes") : "no");
if(p->timeout)
fprintf(f, "%sTimeout : %d\n", prefix, p->timeout);
if(p->stabdelay)
fprintf(f, "%sStabDelay : %d\n", prefix, p->stabdelay);
if(p->cmdexedelay)
fprintf(f, "%sCmdexeDelay : %d\n", prefix, p->cmdexedelay);
if(p->synchloops)
fprintf(f, "%sSyncLoops : %d\n", prefix, p->synchloops);
if(p->bytedelay)
fprintf(f, "%sByteDelay : %d\n", prefix, p->bytedelay);
if(p->pollindex)
fprintf(f, "%sPollIndex : %d\n", prefix, p->pollindex);
if(p->pollvalue)
fprintf(f, "%sPollValue : 0x%02x\n", prefix, p->pollvalue);
fprintf( f, "%sMemory Detail :\n\n", prefix);
px = prefix;
buf = (char *)cfg_malloc("avr_display()", strlen(prefix) + 5);
strcpy(buf, prefix);
strcat(buf, " ");
px = buf;
if (verbose <= 2)
avr_mem_display(px, f, NULL, p, verbose);
for (ln=lfirst(p->mem); ln; ln=lnext(ln)) {
m = ldata(ln);
avr_mem_display(px, f, m, p, verbose);
}
if (buf)
free(buf);
}
char cmdbitchar(CMDBIT cb) {
switch(cb.type) {
case AVR_CMDBIT_IGNORE:
return 'x';
case AVR_CMDBIT_VALUE:
return cb.value? '1': '0';
case AVR_CMDBIT_ADDRESS:
return 'a';
case AVR_CMDBIT_INPUT:
return 'i';
case AVR_CMDBIT_OUTPUT:
return 'o';
default:
return '?';
}
}
char *cmdbitstr(CMDBIT cb) {
char space[32];
*space = cmdbitchar(cb);
if(*space == 'a')
sprintf(space+1, "%d", cb.bitno);
else
space[1] = 0;
return cfg_strdup("cmdbitstr()", space);
}
const char *opcodename(int opnum) {
switch(opnum) {
case AVR_OP_READ:
return "read";
case AVR_OP_WRITE:
return "write";
case AVR_OP_READ_LO:
return "read_lo";
case AVR_OP_READ_HI:
return "read_hi";
case AVR_OP_WRITE_LO:
return "write_lo";
case AVR_OP_WRITE_HI:
return "write_hi";
case AVR_OP_LOADPAGE_LO:
return "loadpage_lo";
case AVR_OP_LOADPAGE_HI:
return "loadpage_hi";
case AVR_OP_LOAD_EXT_ADDR:
return "load_ext_addr";
case AVR_OP_WRITEPAGE:
return "writepage";
case AVR_OP_CHIP_ERASE:
return "chip_erase";
case AVR_OP_PGM_ENABLE:
return "pgm_enable";
default:
return "???";
}
}
// Unique string representation of an opcode
char *opcode2str(OPCODE *op, int opnum, int detailed) {
char cb, space[1024], *sp = space;
int compact = 1;
if(!op)
return cfg_strdup("opcode2str()", "NULL");
// Can the opcode be printed in a compact way? Only if address bits are systematic.
for(int i=31; i >= 0; i--)
if(op->bit[i].type == AVR_CMDBIT_ADDRESS)
if(i<8 || i>23 || op->bit[i].bitno != (opnum == AVR_OP_LOAD_EXT_ADDR? i+8: i-8))
compact = 0;
if(detailed)
*sp++ = '"';
for(int i=31; i >= 0; i--) {
*sp++ = cb = cmdbitchar(op->bit[i]);
if(compact) {
if(i && i%8 == 0)
*sp++ = '-', *sp++ = '-';
else if(i && i%4 == 0)
*sp++ = '.';
} else {
if(cb == 'a') {
sprintf(sp, "%d", op->bit[i].bitno);
sp += strlen(sp);
}
if(i) {
if(detailed)
*sp++ = ' ';
if(i%8 == 0)
*sp++ = ' ';
}
}
}
if(detailed)
*sp++ = '"';
*sp = 0;
return cfg_strdup("opcode2str()", space);
}
/*
* Match STRING against the partname pattern PATTERN, returning 1 if it
* matches, 0 if not. NOTE: part_match() is a modified old copy of !fnmatch()
* from the GNU C Library (published under GLP v2). Used for portability.
*/
inline static int fold(int c) {
return (c >= 'A' && c <= 'Z')? c+('a'-'A'): c;
}
int part_match(const char *pattern, const char *string) {
unsigned char c;
const char *p = pattern, *n = string;
if(!*n) // AVRDUDE specialty: empty string never matches
return 0;
while((c = fold(*p++))) {
switch(c) {
case '?':
if(*n == 0)
return 0;
break;
case '\\':
c = fold(*p++);
if(fold(*n) != c)
return 0;
break;
case '*':
for(c = *p++; c == '?' || c == '*'; c = *p++)
if(c == '?' && *n++ == 0)
return 0;
if(c == 0)
return 1;
{
unsigned char c1 = fold(c == '\\'? *p : c); // This char
for(--p; *n; ++n) // Recursively check reminder of string for *
if((c == '[' || fold(*n) == c1) && part_match(p, n) == 1)
return 1;
return 0;
}
case '[':
{
int negate;
if(*n == 0)
return 0;
negate = (*p == '!' || *p == '^');
if(negate)
++p;
c = *p++;
for(;;) {
unsigned char cstart = c, cend = c;
if(c == '\\')
cstart = cend = *p++;
cstart = cend = fold(cstart);
if(c == 0) // [ (unterminated)
return 0;
c = *p++;
c = fold(c);
if(c == '-' && *p != ']') {
cend = *p++;
if(cend == '\\')
cend = *p++;
if(cend == 0)
return 0;
cend = fold(cend);
c = *p++;
}
if(fold(*n) >= cstart && fold(*n) <= cend)
goto matched;
if(c == ']')
break;
}
if(!negate)
return 0;
break;
matched:;
while(c != ']') { // Skip the rest of the [...] that already matched
if(c == 0) // [... (unterminated)
return 0;
c = *p++;
if(c == '\\') // XXX 1003.2d11 is unclear if this is right
++p;
}
if(negate)
return 0;
}
break;
default:
if(c != fold(*n))
return 0;
}
++n;
}
return *n == 0;
}