438 lines
11 KiB
C
438 lines
11 KiB
C
/*
|
|
* avrdude - A Downloader/Uploader for AVR device programmers
|
|
* Copyright (C) 2000, 2001, 2002, 2003 Brian S. Dean <bsd@bsdhome.com>
|
|
* Copyright (C) 2005 Michael Holzt <kju-avr@fqdn.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
/* $Id$ */
|
|
|
|
#include "ac_cfg.h"
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <errno.h>
|
|
|
|
#if !defined(WIN32NATIVE)
|
|
# include <signal.h>
|
|
# include <sys/time.h>
|
|
#endif
|
|
|
|
#include "avrdude.h"
|
|
#include "avr.h"
|
|
#include "pindefs.h"
|
|
#include "pgm.h"
|
|
#include "par.h"
|
|
#include "serbb.h"
|
|
|
|
static int delay_decrement;
|
|
|
|
#if defined(WIN32NATIVE)
|
|
static int has_perfcount;
|
|
#else
|
|
static volatile int done;
|
|
|
|
typedef void (*mysighandler_t)(int);
|
|
static mysighandler_t saved_alarmhandler;
|
|
|
|
static void alarmhandler(int signo)
|
|
{
|
|
done = 1;
|
|
signal(SIGALRM, saved_alarmhandler);
|
|
}
|
|
#endif /* WIN32NATIVE */
|
|
|
|
/*
|
|
* Calibrate the microsecond delay loop below.
|
|
*/
|
|
static void bitbang_calibrate_delay(void)
|
|
{
|
|
#if defined(WIN32NATIVE)
|
|
static LARGE_INTEGER freq;
|
|
|
|
/*
|
|
* If the hardware supports a high-resolution performance counter,
|
|
* we ultimately prefer that one, as it gives quite accurate delays
|
|
* on modern high-speed CPUs.
|
|
*/
|
|
if (QueryPerformanceFrequency(&freq))
|
|
{
|
|
has_perfcount = 1;
|
|
if (verbose >= 2)
|
|
fprintf(stderr,
|
|
"%s: Using performance counter for bitbang delays\n",
|
|
progname);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* If a high-resolution performance counter is not available, we
|
|
* don't have any Win32 implementation for setting up the
|
|
* per-microsecond delay count, so we can only run on a
|
|
* preconfigured delay stepping there. The figure below should at
|
|
* least be correct within an order of magnitude, judging from the
|
|
* auto-calibration figures seen on various Unix systems on
|
|
* comparable hardware.
|
|
*/
|
|
if (verbose >= 2)
|
|
fprintf(stderr,
|
|
"%s: Using guessed per-microsecond delay count for bitbang delays\n",
|
|
progname);
|
|
delay_decrement = 100;
|
|
}
|
|
#else /* !WIN32NATIVE */
|
|
struct itimerval itv;
|
|
volatile int i;
|
|
|
|
if (verbose >= 2)
|
|
fprintf(stderr,
|
|
"%s: Calibrating delay loop...",
|
|
progname);
|
|
i = 0;
|
|
done = 0;
|
|
saved_alarmhandler = signal(SIGALRM, alarmhandler);
|
|
/*
|
|
* Set ITIMER_REAL to 100 ms. All known systems have a timer
|
|
* granularity of 10 ms or better, so counting the delay cycles
|
|
* accumulating over 100 ms should give us a rather realistic
|
|
* picture, without annoying the user by a lengthy startup time (as
|
|
* an alarm(1) would do). Of course, if heavy system activity
|
|
* happens just during calibration but stops before the remaining
|
|
* part of AVRDUDE runs, this will yield wrong values. There's not
|
|
* much we can do about this.
|
|
*/
|
|
itv.it_value.tv_sec = 0;
|
|
itv.it_value.tv_usec = 100000;
|
|
itv.it_interval.tv_sec = itv.it_interval.tv_usec = 0;
|
|
setitimer(ITIMER_REAL, &itv, 0);
|
|
while (!done)
|
|
i--;
|
|
itv.it_value.tv_sec = itv.it_value.tv_usec = 0;
|
|
setitimer(ITIMER_REAL, &itv, 0);
|
|
/*
|
|
* Calculate back from 100 ms to 1 us.
|
|
*/
|
|
delay_decrement = -i / 100000;
|
|
if (verbose >= 2)
|
|
fprintf(stderr,
|
|
" calibrated to %d cycles per us\n",
|
|
delay_decrement);
|
|
#endif /* WIN32NATIVE */
|
|
}
|
|
|
|
/*
|
|
* Delay for approximately the number of microseconds specified.
|
|
* usleep()'s granularity is usually like 1 ms or 10 ms, so it's not
|
|
* really suitable for short delays in bit-bang algorithms.
|
|
*/
|
|
void bitbang_delay(int us)
|
|
{
|
|
#if defined(WIN32NATIVE)
|
|
LARGE_INTEGER countNow, countEnd;
|
|
|
|
if (has_perfcount)
|
|
{
|
|
QueryPerformanceCounter(&countNow);
|
|
countEnd.QuadPart = countNow.QuadPart + freq.QuadPart * us / 1000000ll;
|
|
|
|
while (countNow.QuadPart < countEnd.QuadPart)
|
|
QueryPerformanceCounter(&countNow);
|
|
}
|
|
else /* no performance counters -- run normal uncalibrated delay */
|
|
{
|
|
#endif /* WIN32NATIVE */
|
|
volatile int del = us * delay_decrement;
|
|
|
|
while (del > 0)
|
|
del--;
|
|
#if defined(WIN32NATIVE)
|
|
}
|
|
#endif /* WIN32NATIVE */
|
|
}
|
|
|
|
/*
|
|
* transmit and receive a byte of data to/from the AVR device
|
|
*/
|
|
static unsigned char bitbang_txrx(PROGRAMMER * pgm, unsigned char byte)
|
|
{
|
|
int i;
|
|
unsigned char r, b, rbyte;
|
|
|
|
rbyte = 0;
|
|
for (i=7; i>=0; i--) {
|
|
/*
|
|
* Write and read one bit on SPI.
|
|
* Some notes on timing: Let T be the time it takes to do
|
|
* one pgm->setpin()-call resp. par clrpin()-call, then
|
|
* - SCK is high for 2T
|
|
* - SCK is low for 2T
|
|
* - MOSI setuptime is 1T
|
|
* - MOSI holdtime is 3T
|
|
* - SCK low to MISO read is 2T to 3T
|
|
* So we are within programming specs (expect for AT90S1200),
|
|
* if and only if T>t_CLCL (t_CLCL=clock period of target system).
|
|
*
|
|
* Due to the delay introduced by "IN" and "OUT"-commands,
|
|
* T is greater than 1us (more like 2us) on x86-architectures.
|
|
* So programming works safely down to 1MHz target clock.
|
|
*/
|
|
|
|
b = (byte >> i) & 0x01;
|
|
|
|
/* set the data input line as desired */
|
|
pgm->setpin(pgm, pgm->pinno[PIN_AVR_MOSI], b);
|
|
|
|
pgm->setpin(pgm, pgm->pinno[PIN_AVR_SCK], 1);
|
|
|
|
/*
|
|
* read the result bit (it is either valid from a previous falling
|
|
* edge or it is ignored in the current context)
|
|
*/
|
|
r = pgm->getpin(pgm, pgm->pinno[PIN_AVR_MISO]);
|
|
|
|
pgm->setpin(pgm, pgm->pinno[PIN_AVR_SCK], 0);
|
|
|
|
rbyte |= r << i;
|
|
}
|
|
|
|
return rbyte;
|
|
}
|
|
|
|
|
|
int bitbang_rdy_led(PROGRAMMER * pgm, int value)
|
|
{
|
|
pgm->setpin(pgm, pgm->pinno[PIN_LED_RDY], !value);
|
|
return 0;
|
|
}
|
|
|
|
int bitbang_err_led(PROGRAMMER * pgm, int value)
|
|
{
|
|
pgm->setpin(pgm, pgm->pinno[PIN_LED_ERR], !value);
|
|
return 0;
|
|
}
|
|
|
|
int bitbang_pgm_led(PROGRAMMER * pgm, int value)
|
|
{
|
|
pgm->setpin(pgm, pgm->pinno[PIN_LED_PGM], !value);
|
|
return 0;
|
|
}
|
|
|
|
int bitbang_vfy_led(PROGRAMMER * pgm, int value)
|
|
{
|
|
pgm->setpin(pgm, pgm->pinno[PIN_LED_VFY], !value);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* transmit an AVR device command and return the results; 'cmd' and
|
|
* 'res' must point to at least a 4 byte data buffer
|
|
*/
|
|
int bitbang_cmd(PROGRAMMER * pgm, unsigned char cmd[4],
|
|
unsigned char res[4])
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i<4; i++) {
|
|
res[i] = bitbang_txrx(pgm, cmd[i]);
|
|
}
|
|
|
|
if(verbose >= 2)
|
|
{
|
|
fprintf(stderr, "bitbang_cmd(): [ ");
|
|
for(i = 0; i < 4; i++)
|
|
fprintf(stderr, "%02X ", cmd[i]);
|
|
fprintf(stderr, "] [ ");
|
|
for(i = 0; i < 4; i++)
|
|
{
|
|
fprintf(stderr, "%02X ", res[i]);
|
|
}
|
|
fprintf(stderr, "]\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* transmit bytes via SPI and return the results; 'cmd' and
|
|
* 'res' must point to data buffers
|
|
*/
|
|
int bitbang_spi(PROGRAMMER * pgm, unsigned char cmd[],
|
|
unsigned char res[], int count)
|
|
{
|
|
int i;
|
|
|
|
pgm->setpin(pgm, pgm->pinno[PIN_LED_PGM], 0);
|
|
|
|
for (i=0; i<count; i++) {
|
|
res[i] = bitbang_txrx(pgm, cmd[i]);
|
|
}
|
|
|
|
pgm->setpin(pgm, pgm->pinno[PIN_LED_PGM], 1);
|
|
|
|
if(verbose >= 2)
|
|
{
|
|
fprintf(stderr, "bitbang_cmd(): [ ");
|
|
for(i = 0; i < count; i++)
|
|
fprintf(stderr, "%02X ", cmd[i]);
|
|
fprintf(stderr, "] [ ");
|
|
for(i = 0; i < count; i++)
|
|
{
|
|
fprintf(stderr, "%02X ", res[i]);
|
|
}
|
|
fprintf(stderr, "]\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* issue the 'chip erase' command to the AVR device
|
|
*/
|
|
int bitbang_chip_erase(PROGRAMMER * pgm, AVRPART * p)
|
|
{
|
|
unsigned char cmd[4];
|
|
unsigned char res[4];
|
|
|
|
if (p->op[AVR_OP_CHIP_ERASE] == NULL) {
|
|
fprintf(stderr, "chip erase instruction not defined for part \"%s\"\n",
|
|
p->desc);
|
|
return -1;
|
|
}
|
|
|
|
pgm->pgm_led(pgm, ON);
|
|
|
|
memset(cmd, 0, sizeof(cmd));
|
|
|
|
avr_set_bits(p->op[AVR_OP_CHIP_ERASE], cmd);
|
|
pgm->cmd(pgm, cmd, res);
|
|
usleep(p->chip_erase_delay);
|
|
pgm->initialize(pgm, p);
|
|
|
|
pgm->pgm_led(pgm, OFF);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* issue the 'program enable' command to the AVR device
|
|
*/
|
|
int bitbang_program_enable(PROGRAMMER * pgm, AVRPART * p)
|
|
{
|
|
unsigned char cmd[4];
|
|
unsigned char res[4];
|
|
|
|
if (p->op[AVR_OP_PGM_ENABLE] == NULL) {
|
|
fprintf(stderr, "program enable instruction not defined for part \"%s\"\n",
|
|
p->desc);
|
|
return -1;
|
|
}
|
|
|
|
memset(cmd, 0, sizeof(cmd));
|
|
avr_set_bits(p->op[AVR_OP_PGM_ENABLE], cmd);
|
|
pgm->cmd(pgm, cmd, res);
|
|
|
|
if (res[2] != cmd[1])
|
|
return -2;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* initialize the AVR device and prepare it to accept commands
|
|
*/
|
|
int bitbang_initialize(PROGRAMMER * pgm, AVRPART * p)
|
|
{
|
|
int rc;
|
|
int tries;
|
|
|
|
bitbang_calibrate_delay();
|
|
|
|
pgm->powerup(pgm);
|
|
usleep(20000);
|
|
|
|
pgm->setpin(pgm, pgm->pinno[PIN_AVR_SCK], 0);
|
|
pgm->setpin(pgm, pgm->pinno[PIN_AVR_RESET], 0);
|
|
usleep(20000);
|
|
|
|
pgm->highpulsepin(pgm, pgm->pinno[PIN_AVR_RESET]);
|
|
|
|
usleep(20000); /* 20 ms XXX should be a per-chip parameter */
|
|
|
|
/*
|
|
* Enable programming mode. If we are programming an AT90S1200, we
|
|
* can only issue the command and hope it worked. If we are using
|
|
* one of the other chips, the chip will echo 0x53 when issuing the
|
|
* third byte of the command. In this case, try up to 32 times in
|
|
* order to possibly get back into sync with the chip if we are out
|
|
* of sync.
|
|
*/
|
|
if (strcmp(p->desc, "AT90S1200")==0) {
|
|
pgm->program_enable(pgm, p);
|
|
}
|
|
else {
|
|
tries = 0;
|
|
do {
|
|
rc = pgm->program_enable(pgm, p);
|
|
if ((rc == 0)||(rc == -1))
|
|
break;
|
|
pgm->highpulsepin(pgm, pgm->pinno[p->retry_pulse/*PIN_AVR_SCK*/]);
|
|
tries++;
|
|
} while (tries < 65);
|
|
|
|
/*
|
|
* can't sync with the device, maybe it's not attached?
|
|
*/
|
|
if (rc) {
|
|
fprintf(stderr, "%s: AVR device not responding\n", progname);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void verify_pin_assigned(PROGRAMMER * pgm, int pin, char * desc)
|
|
{
|
|
if (pgm->pinno[pin] == 0) {
|
|
fprintf(stderr, "%s: error: no pin has been assigned for %s\n",
|
|
progname, desc);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Verify all prerequisites for a bit-bang programmer are present.
|
|
*/
|
|
void bitbang_check_prerequisites(PROGRAMMER *pgm)
|
|
{
|
|
|
|
verify_pin_assigned(pgm, PIN_AVR_RESET, "AVR RESET");
|
|
verify_pin_assigned(pgm, PIN_AVR_SCK, "AVR SCK");
|
|
verify_pin_assigned(pgm, PIN_AVR_MISO, "AVR MISO");
|
|
verify_pin_assigned(pgm, PIN_AVR_MOSI, "AVR MOSI");
|
|
|
|
if (pgm->cmd == NULL) {
|
|
fprintf(stderr, "%s: error: no cmd() method defined for bitbang programmer\n",
|
|
progname);
|
|
exit(1);
|
|
}
|
|
}
|