1016 lines
24 KiB
C
1016 lines
24 KiB
C
/*
|
|
* avrdude - A Downloader/Uploader for AVR device programmers
|
|
* Copyright (C) 2000-2004 Brian S. Dean <bsd@bsdhome.com>
|
|
* Copyright (C) 2006 Joerg Wunsch <j@uriah.heep.sax.de>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/* $Id$ */
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "ac_cfg.h"
|
|
#include "avrdude.h"
|
|
#include "libavrdude.h"
|
|
|
|
/***
|
|
*** Elementary functions dealing with OPCODE structures
|
|
***/
|
|
|
|
OPCODE *avr_new_opcode(void) {
|
|
return (OPCODE *) cfg_malloc("avr_new_opcode()", sizeof(OPCODE));
|
|
}
|
|
|
|
static OPCODE *avr_dup_opcode(const OPCODE *op) {
|
|
if(op == NULL) // Caller wants NULL if op == NULL
|
|
return NULL;
|
|
|
|
OPCODE *m = (OPCODE *) cfg_malloc("avr_dup_opcode()", sizeof(*m));
|
|
memcpy(m, op, sizeof(*m));
|
|
|
|
return m;
|
|
}
|
|
|
|
void avr_free_opcode(OPCODE *op) {
|
|
if(op)
|
|
free(op);
|
|
}
|
|
|
|
|
|
// returns position 0..31 of highest bit set or INT_MIN if no bit is set
|
|
int intlog2(unsigned int n) {
|
|
int ret;
|
|
|
|
if(!n)
|
|
return INT_MIN;
|
|
|
|
for(ret = 0; n >>= 1; ret++)
|
|
continue;
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* avr_set_bits()
|
|
*
|
|
* Set instruction bits in the specified command based on the opcode.
|
|
*/
|
|
int avr_set_bits(const OPCODE *op, unsigned char *cmd) {
|
|
int i, j, bit;
|
|
unsigned char mask;
|
|
|
|
for (i=0; i<32; i++) {
|
|
if (op->bit[i].type == AVR_CMDBIT_VALUE || op->bit[i].type == AVR_CMDBIT_IGNORE) {
|
|
j = 3 - i / 8;
|
|
bit = i % 8;
|
|
mask = 1 << bit;
|
|
if (op->bit[i].value && op->bit[i].type == AVR_CMDBIT_VALUE)
|
|
cmd[j] = cmd[j] | mask;
|
|
else
|
|
cmd[j] = cmd[j] & ~mask;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* avr_set_addr()
|
|
*
|
|
* Set address bits in the specified command based on the opcode, and
|
|
* the address.
|
|
*/
|
|
int avr_set_addr(const OPCODE *op, unsigned char *cmd, unsigned long addr) {
|
|
int i, j, bit;
|
|
unsigned long value;
|
|
unsigned char mask;
|
|
|
|
for (i=0; i<32; i++) {
|
|
if (op->bit[i].type == AVR_CMDBIT_ADDRESS) {
|
|
j = 3 - i / 8;
|
|
bit = i % 8;
|
|
mask = 1 << bit;
|
|
value = addr >> op->bit[i].bitno & 0x01;
|
|
if (value)
|
|
cmd[j] = cmd[j] | mask;
|
|
else
|
|
cmd[j] = cmd[j] & ~mask;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* avr_set_addr_mem()
|
|
*
|
|
* Set address bits in the specified command based on the memory, opcode and
|
|
* address; addr must be a word address for flash or, for all other memories,
|
|
* a byte address; returns 0 on success and -1 on error (no memory or no
|
|
* opcode) or, if positive, bn+1 where bn is bit number of the highest
|
|
* necessary bit that the opcode does not provide.
|
|
*/
|
|
int avr_set_addr_mem(const AVRMEM *mem, int opnum, unsigned char *cmd, unsigned long addr) {
|
|
int ret, isflash, lo, hi, memsize, pagesize;
|
|
OPCODE *op;
|
|
|
|
if(!mem)
|
|
return -1;
|
|
|
|
if(!(op = mem->op[opnum]))
|
|
return -1;
|
|
|
|
isflash = !strcmp(mem->desc, "flash"); // ISP parts have only one flash-like memory
|
|
memsize = mem->size >> isflash; // word addresses for flash
|
|
pagesize = mem->page_size >> isflash;
|
|
|
|
// compute range lo..hi of needed address bits
|
|
switch(opnum) {
|
|
case AVR_OP_READ:
|
|
case AVR_OP_WRITE:
|
|
case AVR_OP_READ_LO:
|
|
case AVR_OP_READ_HI:
|
|
case AVR_OP_WRITE_LO:
|
|
case AVR_OP_WRITE_HI:
|
|
lo = 0;
|
|
hi = intlog2(memsize-1); // memsize = 1 implies no addr bit is needed
|
|
break;
|
|
|
|
case AVR_OP_LOADPAGE_LO:
|
|
case AVR_OP_LOADPAGE_HI:
|
|
lo = 0;
|
|
hi = intlog2(pagesize-1);
|
|
break;
|
|
|
|
case AVR_OP_LOAD_EXT_ADDR:
|
|
lo = 16;
|
|
hi = intlog2(memsize-1);
|
|
break;
|
|
|
|
case AVR_OP_WRITEPAGE:
|
|
lo = intlog2(pagesize);
|
|
hi = intlog2(memsize-1);
|
|
break;
|
|
|
|
case AVR_OP_CHIP_ERASE:
|
|
case AVR_OP_PGM_ENABLE:
|
|
default:
|
|
lo = 0;
|
|
hi = -1;
|
|
break;
|
|
}
|
|
|
|
// Unless it's load extended address, ISP chips only deal with 16 bit addresses
|
|
if(opnum != AVR_OP_LOAD_EXT_ADDR && hi > 15)
|
|
hi = 15;
|
|
|
|
unsigned char avail[32];
|
|
memset(avail, 0, sizeof avail);
|
|
|
|
for(int i=0; i<32; i++) {
|
|
if(op->bit[i].type == AVR_CMDBIT_ADDRESS) {
|
|
int bitno, j, bit;
|
|
unsigned char mask;
|
|
|
|
bitno = op->bit[i].bitno & 31;
|
|
j = 3 - i / 8;
|
|
bit = i % 8;
|
|
mask = 1 << bit;
|
|
avail[bitno] = 1;
|
|
|
|
// 'a' bit with number outside bit range [lo, hi] is set to 0
|
|
if (bitno >= lo && bitno <= hi? (addr >> bitno) & 1: 0)
|
|
cmd[j] = cmd[j] | mask;
|
|
else
|
|
cmd[j] = cmd[j] & ~mask;
|
|
}
|
|
}
|
|
|
|
ret = 0;
|
|
if(lo >= 0 && hi < 32 && lo <= hi)
|
|
for(int bn=lo; bn <= hi; bn++)
|
|
if(!avail[bn]) // necessary bit bn misses in opcode
|
|
ret = bn+1;
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* avr_set_input()
|
|
*
|
|
* Set input data bits in the specified command based on the opcode,
|
|
* and the data byte.
|
|
*/
|
|
int avr_set_input(const OPCODE *op, unsigned char *cmd, unsigned char data) {
|
|
int i, j, bit;
|
|
unsigned char value;
|
|
unsigned char mask;
|
|
|
|
for (i=0; i<32; i++) {
|
|
if (op->bit[i].type == AVR_CMDBIT_INPUT) {
|
|
j = 3 - i / 8;
|
|
bit = i % 8;
|
|
mask = 1 << bit;
|
|
value = data >> op->bit[i].bitno & 0x01;
|
|
if (value)
|
|
cmd[j] = cmd[j] | mask;
|
|
else
|
|
cmd[j] = cmd[j] & ~mask;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* avr_get_output()
|
|
*
|
|
* Retrieve output data bits from the command results based on the
|
|
* opcode data.
|
|
*/
|
|
int avr_get_output(const OPCODE *op, const unsigned char *res, unsigned char *data) {
|
|
int i, j, bit;
|
|
unsigned char value;
|
|
unsigned char mask;
|
|
|
|
for (i=0; i<32; i++) {
|
|
if (op->bit[i].type == AVR_CMDBIT_OUTPUT) {
|
|
j = 3 - i / 8;
|
|
bit = i % 8;
|
|
mask = 1 << bit;
|
|
value = ((res[j] & mask) >> bit) & 0x01;
|
|
value = value << op->bit[i].bitno;
|
|
if (value)
|
|
*data = *data | value;
|
|
else
|
|
*data = *data & ~value;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* avr_get_output_index()
|
|
*
|
|
* Calculate the byte number of the output data based on the
|
|
* opcode data.
|
|
*/
|
|
int avr_get_output_index(const OPCODE *op) {
|
|
int i, j;
|
|
|
|
for (i=0; i<32; i++) {
|
|
if (op->bit[i].type == AVR_CMDBIT_OUTPUT) {
|
|
j = 3 - i / 8;
|
|
return j;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
|
|
static char * avr_op_str(int op)
|
|
{
|
|
switch (op) {
|
|
case AVR_OP_READ : return "READ"; break;
|
|
case AVR_OP_WRITE : return "WRITE"; break;
|
|
case AVR_OP_READ_LO : return "READ_LO"; break;
|
|
case AVR_OP_READ_HI : return "READ_HI"; break;
|
|
case AVR_OP_WRITE_LO : return "WRITE_LO"; break;
|
|
case AVR_OP_WRITE_HI : return "WRITE_HI"; break;
|
|
case AVR_OP_LOADPAGE_LO : return "LOADPAGE_LO"; break;
|
|
case AVR_OP_LOADPAGE_HI : return "LOADPAGE_HI"; break;
|
|
case AVR_OP_LOAD_EXT_ADDR : return "LOAD_EXT_ADDR"; break;
|
|
case AVR_OP_WRITEPAGE : return "WRITEPAGE"; break;
|
|
case AVR_OP_CHIP_ERASE : return "CHIP_ERASE"; break;
|
|
case AVR_OP_PGM_ENABLE : return "PGM_ENABLE"; break;
|
|
default : return "<unknown opcode>"; break;
|
|
}
|
|
}
|
|
|
|
|
|
static char * bittype(int type)
|
|
{
|
|
switch (type) {
|
|
case AVR_CMDBIT_IGNORE : return "IGNORE"; break;
|
|
case AVR_CMDBIT_VALUE : return "VALUE"; break;
|
|
case AVR_CMDBIT_ADDRESS : return "ADDRESS"; break;
|
|
case AVR_CMDBIT_INPUT : return "INPUT"; break;
|
|
case AVR_CMDBIT_OUTPUT : return "OUTPUT"; break;
|
|
default : return "<unknown bit type>"; break;
|
|
}
|
|
}
|
|
|
|
|
|
/***
|
|
*** Elementary functions dealing with AVRMEM structures
|
|
***/
|
|
|
|
AVRMEM *avr_new_memtype(void) {
|
|
AVRMEM *m = (AVRMEM *) cfg_malloc("avr_new_memtype()", sizeof(*m));
|
|
m->desc = cache_string("");
|
|
m->page_size = 1; // ensure not 0
|
|
|
|
return m;
|
|
}
|
|
|
|
AVRMEM_ALIAS *avr_new_memalias(void) {
|
|
AVRMEM_ALIAS *m = (AVRMEM_ALIAS *) cfg_malloc("avr_new_memalias()", sizeof*m);
|
|
m->desc = cache_string("");
|
|
return m;
|
|
}
|
|
|
|
|
|
/*
|
|
* Allocate and initialize memory buffers for each of the device's
|
|
* defined memory regions.
|
|
*/
|
|
int avr_initmem(const AVRPART *p) {
|
|
if(p == NULL || p->mem == NULL)
|
|
return -1;
|
|
|
|
for (LNODEID ln=lfirst(p->mem); ln; ln=lnext(ln)) {
|
|
AVRMEM *m = ldata(ln);
|
|
m->buf = (unsigned char *) cfg_malloc("avr_initmem()", m->size);
|
|
m->tags = (unsigned char *) cfg_malloc("avr_initmem()", m->size);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
AVRMEM *avr_dup_mem(const AVRMEM *m) {
|
|
AVRMEM *n = avr_new_memtype();
|
|
|
|
if(m) {
|
|
*n = *m;
|
|
|
|
if(m->buf) {
|
|
n->buf = (unsigned char *) cfg_malloc("avr_dup_mem()", n->size);
|
|
memcpy(n->buf, m->buf, n->size);
|
|
}
|
|
|
|
if(m->tags) {
|
|
n->tags = (unsigned char *) cfg_malloc("avr_dup_mem()", n->size);
|
|
memcpy(n->tags, m->tags, n->size);
|
|
}
|
|
|
|
for(int i = 0; i < AVR_OP_MAX; i++)
|
|
n->op[i] = avr_dup_opcode(n->op[i]);
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
AVRMEM_ALIAS *avr_dup_memalias(const AVRMEM_ALIAS *m) {
|
|
AVRMEM_ALIAS *n = avr_new_memalias();
|
|
|
|
if(m)
|
|
*n = *m;
|
|
|
|
return n;
|
|
}
|
|
|
|
void avr_free_mem(AVRMEM * m) {
|
|
if(m == NULL)
|
|
return;
|
|
|
|
if(m->buf) {
|
|
free(m->buf);
|
|
m->buf = NULL;
|
|
}
|
|
if(m->tags) {
|
|
free(m->tags);
|
|
m->tags = NULL;
|
|
}
|
|
for(size_t i=0; i<sizeof(m->op)/sizeof(m->op[0]); i++) {
|
|
if(m->op[i]) {
|
|
avr_free_opcode(m->op[i]);
|
|
m->op[i] = NULL;
|
|
}
|
|
}
|
|
free(m);
|
|
}
|
|
|
|
void avr_free_memalias(AVRMEM_ALIAS *m) {
|
|
if(m)
|
|
free(m);
|
|
}
|
|
|
|
AVRMEM_ALIAS *avr_locate_memalias(const AVRPART *p, const char *desc) {
|
|
AVRMEM_ALIAS * m, * match;
|
|
LNODEID ln;
|
|
int matches, exact;
|
|
int l;
|
|
|
|
if(!p || !desc || !p->mem_alias)
|
|
return NULL;
|
|
|
|
l = strlen(desc);
|
|
matches = exact = 0;
|
|
match = NULL;
|
|
for (ln=lfirst(p->mem_alias); ln; ln=lnext(ln)) {
|
|
m = ldata(ln);
|
|
if (strncmp(m->desc, desc, l) == 0) { // Partial initial match
|
|
match = m;
|
|
matches++;
|
|
if(m->desc[l] == 0) // Exact match between arg and memory
|
|
exact++;
|
|
}
|
|
}
|
|
|
|
return exact == 1 || matches == 1? match: NULL;
|
|
}
|
|
|
|
AVRMEM *avr_locate_mem_noalias(const AVRPART *p, const char *desc) {
|
|
AVRMEM * m, * match;
|
|
LNODEID ln;
|
|
int matches, exact;
|
|
int l;
|
|
|
|
if(!p || !desc || !p->mem)
|
|
return NULL;
|
|
|
|
l = strlen(desc);
|
|
matches = exact = 0;
|
|
match = NULL;
|
|
for (ln=lfirst(p->mem); ln; ln=lnext(ln)) {
|
|
m = ldata(ln);
|
|
if (strncmp(m->desc, desc, l) == 0) { // Partial initial match
|
|
match = m;
|
|
matches++;
|
|
if(m->desc[l] == 0) // Exact match between arg and memory
|
|
exact++;
|
|
}
|
|
}
|
|
|
|
return exact == 1 || matches == 1? match: NULL;
|
|
}
|
|
|
|
|
|
AVRMEM *avr_locate_mem(const AVRPART *p, const char *desc) {
|
|
AVRMEM *m = avr_locate_mem_noalias(p, desc);
|
|
|
|
if(m)
|
|
return m;
|
|
|
|
// Not yet found: look for matching alias name
|
|
AVRMEM_ALIAS *a = avr_locate_memalias(p, desc);
|
|
return a? a->aliased_mem: NULL;
|
|
}
|
|
|
|
AVRMEM_ALIAS *avr_find_memalias(const AVRPART *p, const AVRMEM *m_orig) {
|
|
if(p && p->mem_alias && m_orig)
|
|
for(LNODEID ln=lfirst(p->mem_alias); ln; ln=lnext(ln)) {
|
|
AVRMEM_ALIAS *m = ldata(ln);
|
|
if(m->aliased_mem == m_orig)
|
|
return m;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void avr_mem_display(const char *prefix, FILE *f, const AVRMEM *m,
|
|
const AVRPART *p, int verbose) {
|
|
static unsigned int prev_mem_offset;
|
|
static int prev_mem_size;
|
|
int i, j;
|
|
char * optr;
|
|
|
|
if (m == NULL || verbose > 2) {
|
|
fprintf(f,
|
|
"%s Block Poll Page Polled\n"
|
|
"%sMemory Type Alias Mode Delay Size Indx Paged Size Size #Pages MinW MaxW ReadBack\n"
|
|
"%s----------- -------- ---- ----- ----- ---- ------ ------ ---- ------ ----- ----- ---------\n",
|
|
prefix, prefix, prefix);
|
|
}
|
|
|
|
if (m != NULL) {
|
|
// Only print memory section if the previous section printed isn't identical
|
|
if(prev_mem_offset != m->offset || prev_mem_size != m->size || (strcmp(p->family_id, "") == 0)) {
|
|
prev_mem_offset = m->offset;
|
|
prev_mem_size = m->size;
|
|
AVRMEM_ALIAS *ap = avr_find_memalias(p, m);
|
|
/* Show alias if the current and the next memory section has the same offset
|
|
and size, we're not out of band and a family_id is present */
|
|
const char *mem_desc_alias = ap? ap->desc: "";
|
|
fprintf(f,
|
|
"%s%-11s %-8s %4d %5d %5d %4d %-6s %6d %4d %6d %5d %5d 0x%02x 0x%02x\n",
|
|
prefix,
|
|
m->desc,
|
|
mem_desc_alias,
|
|
m->mode, m->delay, m->blocksize, m->pollindex,
|
|
m->paged ? "yes" : "no",
|
|
m->size,
|
|
m->page_size,
|
|
m->num_pages,
|
|
m->min_write_delay,
|
|
m->max_write_delay,
|
|
m->readback[0],
|
|
m->readback[1]);
|
|
}
|
|
if (verbose > 4) {
|
|
msg_trace2("%s Memory Ops:\n"
|
|
"%s Oeration Inst Bit Bit Type Bitno Value\n"
|
|
"%s ----------- -------- -------- ----- -----\n",
|
|
prefix, prefix, prefix);
|
|
for (i=0; i<AVR_OP_MAX; i++) {
|
|
if (m->op[i]) {
|
|
for (j=31; j>=0; j--) {
|
|
if (j==31)
|
|
optr = avr_op_str(i);
|
|
else
|
|
optr = " ";
|
|
fprintf(f,
|
|
"%s %-11s %8d %8s %5d %5d\n",
|
|
prefix, optr, j,
|
|
bittype(m->op[i]->bit[j].type),
|
|
m->op[i]->bit[j].bitno,
|
|
m->op[i]->bit[j].value);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Elementary functions dealing with AVRPART structures
|
|
*/
|
|
|
|
AVRPART *avr_new_part(void) {
|
|
AVRPART *p = (AVRPART *) cfg_malloc("avr_new_part()", sizeof(AVRPART));
|
|
const char *nulp = cache_string("");
|
|
|
|
memset(p, 0, sizeof(*p));
|
|
|
|
// Initialise const char * and LISTID entities
|
|
p->desc = nulp;
|
|
p->id = nulp;
|
|
p->parent_id = nulp;
|
|
p->family_id = nulp;
|
|
p->config_file = nulp;
|
|
p->mem = lcreat(NULL, 0);
|
|
p->mem_alias = lcreat(NULL, 0);
|
|
|
|
// Default values
|
|
p->mcuid = -1;
|
|
p->hvupdi_variant = -1;
|
|
p->autobaud_sync = 0x30; // STK_GET_SYNC
|
|
memset(p->signature, 0xFF, 3);
|
|
p->reset_disposition = RESET_DEDICATED;
|
|
p->retry_pulse = PIN_AVR_SCK;
|
|
p->flags = AVRPART_SERIALOK | AVRPART_PARALLELOK | AVRPART_ENABLEPAGEPROGRAMMING;
|
|
p->ctl_stack_type = CTL_STACK_NONE;
|
|
p->ocdrev = -1;
|
|
p->lineno = 0;
|
|
|
|
return p;
|
|
}
|
|
|
|
|
|
AVRPART *avr_dup_part(const AVRPART *d) {
|
|
AVRPART *p = avr_new_part();
|
|
|
|
if(d) {
|
|
*p = *d;
|
|
|
|
// Duplicate the memory and alias chains
|
|
p->mem = lcreat(NULL, 0);
|
|
p->mem_alias = lcreat(NULL, 0);
|
|
|
|
for(LNODEID ln=lfirst(d->mem); ln; ln=lnext(ln)) {
|
|
AVRMEM *m = ldata(ln);
|
|
AVRMEM *m2 = avr_dup_mem(m);
|
|
ladd(p->mem, m2);
|
|
// See if there is any alias for it
|
|
for(LNODEID ln2=lfirst(d->mem_alias); ln2; ln2=lnext(ln2)) {
|
|
AVRMEM_ALIAS *a = ldata(ln2);
|
|
if (a->aliased_mem == m) {
|
|
// Yes, duplicate it, adjust the pointer and add to new list
|
|
AVRMEM_ALIAS *a2 = avr_dup_memalias(a);
|
|
a2->aliased_mem = m2;
|
|
ladd(p->mem_alias, a2);
|
|
}
|
|
}
|
|
}
|
|
|
|
for(int i = 0; i < AVR_OP_MAX; i++)
|
|
p->op[i] = avr_dup_opcode(p->op[i]);
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
void avr_free_part(AVRPART * d)
|
|
{
|
|
ldestroy_cb(d->mem, (void(*)(void *))avr_free_mem);
|
|
d->mem = NULL;
|
|
ldestroy_cb(d->mem_alias, (void(*)(void *))avr_free_memalias);
|
|
d->mem_alias = NULL;
|
|
/* do not free d->parent_id and d->config_file */
|
|
for(size_t i=0; i<sizeof(d->op)/sizeof(d->op[0]); i++) {
|
|
if (d->op[i] != NULL) {
|
|
avr_free_opcode(d->op[i]);
|
|
d->op[i] = NULL;
|
|
}
|
|
}
|
|
free(d);
|
|
}
|
|
|
|
AVRPART *locate_part(const LISTID parts, const char *partdesc) {
|
|
AVRPART * p = NULL;
|
|
int found = 0;
|
|
|
|
if(!parts || !partdesc)
|
|
return NULL;
|
|
|
|
for (LNODEID ln1=lfirst(parts); ln1 && !found; ln1=lnext(ln1)) {
|
|
p = ldata(ln1);
|
|
if ((strcasecmp(partdesc, p->id) == 0) ||
|
|
(strcasecmp(partdesc, p->desc) == 0))
|
|
found = 1;
|
|
}
|
|
|
|
return found? p: NULL;
|
|
}
|
|
|
|
AVRPART *locate_part_by_avr910_devcode(const LISTID parts, int devcode) {
|
|
if(parts)
|
|
for (LNODEID ln1=lfirst(parts); ln1; ln1=lnext(ln1)) {
|
|
AVRPART * p = ldata(ln1);
|
|
if (p->avr910_devcode == devcode)
|
|
return p;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
AVRPART *locate_part_by_signature(const LISTID parts, unsigned char *sig, int sigsize) {
|
|
if(parts && sigsize == 3)
|
|
for(LNODEID ln1=lfirst(parts); ln1; ln1=lnext(ln1)) {
|
|
AVRPART *p = ldata(ln1);
|
|
int i;
|
|
for(i=0; i<3; i++)
|
|
if(p->signature[i] != sig[i])
|
|
break;
|
|
if(i == 3)
|
|
return p;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Iterate over the list of avrparts given as "avrparts", and
|
|
* call the callback function cb for each entry found. cb is being
|
|
* passed the following arguments:
|
|
* . the name of the avrpart (for -p)
|
|
* . the descriptive text given in the config file
|
|
* . the name of the config file this avrpart has been defined in
|
|
* . the line number of the config file this avrpart has been defined at
|
|
* . the "cookie" passed into walk_avrparts() (opaque client data)
|
|
*/
|
|
void walk_avrparts(LISTID avrparts, walk_avrparts_cb cb, void *cookie)
|
|
{
|
|
LNODEID ln1;
|
|
AVRPART * p;
|
|
|
|
for (ln1 = lfirst(avrparts); ln1; ln1 = lnext(ln1)) {
|
|
p = ldata(ln1);
|
|
cb(p->id, p->desc, p->config_file, p->lineno, cookie);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compare function to sort the list of programmers
|
|
*/
|
|
static int sort_avrparts_compare(const AVRPART *p1, const AVRPART *p2) {
|
|
if(p1 == NULL || p1->desc == NULL || p2 == NULL || p2->desc == NULL)
|
|
return 0;
|
|
|
|
return strcasecmp(p1->desc, p2->desc);
|
|
}
|
|
|
|
/*
|
|
* Sort the list of programmers given as "programmers"
|
|
*/
|
|
void sort_avrparts(LISTID avrparts)
|
|
{
|
|
lsort(avrparts,(int (*)(void*, void*)) sort_avrparts_compare);
|
|
}
|
|
|
|
|
|
static char * reset_disp_str(int r)
|
|
{
|
|
switch (r) {
|
|
case RESET_DEDICATED : return "dedicated";
|
|
case RESET_IO : return "possible i/o";
|
|
default : return "<invalid>";
|
|
}
|
|
}
|
|
|
|
|
|
void avr_display(FILE *f, const AVRPART *p, const char *prefix, int verbose) {
|
|
char * buf;
|
|
const char * px;
|
|
LNODEID ln;
|
|
AVRMEM * m;
|
|
|
|
fprintf( f, "%sAVR Part : %s\n", prefix, p->desc);
|
|
if (p->chip_erase_delay)
|
|
fprintf(f, "%sChip Erase delay : %d us\n", prefix, p->chip_erase_delay);
|
|
if (p->pagel)
|
|
fprintf(f, "%sPAGEL : P%02X\n", prefix, p->pagel);
|
|
if (p->bs2)
|
|
fprintf(f, "%sBS2 : P%02X\n", prefix, p->bs2);
|
|
fprintf( f, "%sRESET disposition : %s\n", prefix, reset_disp_str(p->reset_disposition));
|
|
fprintf( f, "%sRETRY pulse : %s\n", prefix, avr_pin_name(p->retry_pulse));
|
|
fprintf( f, "%sSerial program mode : %s\n", prefix, (p->flags & AVRPART_SERIALOK) ? "yes" : "no");
|
|
fprintf( f, "%sParallel program mode : %s\n", prefix, (p->flags & AVRPART_PARALLELOK) ?
|
|
((p->flags & AVRPART_PSEUDOPARALLEL) ? "pseudo" : "yes") : "no");
|
|
if(p->timeout)
|
|
fprintf(f, "%sTimeout : %d\n", prefix, p->timeout);
|
|
if(p->stabdelay)
|
|
fprintf(f, "%sStabDelay : %d\n", prefix, p->stabdelay);
|
|
if(p->cmdexedelay)
|
|
fprintf(f, "%sCmdexeDelay : %d\n", prefix, p->cmdexedelay);
|
|
if(p->synchloops)
|
|
fprintf(f, "%sSyncLoops : %d\n", prefix, p->synchloops);
|
|
if(p->bytedelay)
|
|
fprintf(f, "%sByteDelay : %d\n", prefix, p->bytedelay);
|
|
if(p->pollindex)
|
|
fprintf(f, "%sPollIndex : %d\n", prefix, p->pollindex);
|
|
if(p->pollvalue)
|
|
fprintf(f, "%sPollValue : 0x%02x\n", prefix, p->pollvalue);
|
|
fprintf( f, "%sMemory Detail :\n\n", prefix);
|
|
|
|
px = prefix;
|
|
buf = (char *) cfg_malloc("avr_display()", strlen(prefix) + 5);
|
|
strcpy(buf, prefix);
|
|
strcat(buf, " ");
|
|
px = buf;
|
|
|
|
if (verbose <= 2)
|
|
avr_mem_display(px, f, NULL, p, verbose);
|
|
|
|
for (ln=lfirst(p->mem); ln; ln=lnext(ln)) {
|
|
m = ldata(ln);
|
|
avr_mem_display(px, f, m, p, verbose);
|
|
}
|
|
|
|
if (buf)
|
|
free(buf);
|
|
}
|
|
|
|
|
|
char cmdbitchar(CMDBIT cb) {
|
|
switch(cb.type) {
|
|
case AVR_CMDBIT_IGNORE:
|
|
return 'x';
|
|
case AVR_CMDBIT_VALUE:
|
|
return cb.value? '1': '0';
|
|
case AVR_CMDBIT_ADDRESS:
|
|
return 'a';
|
|
case AVR_CMDBIT_INPUT:
|
|
return 'i';
|
|
case AVR_CMDBIT_OUTPUT:
|
|
return 'o';
|
|
default:
|
|
return '?';
|
|
}
|
|
}
|
|
|
|
|
|
char *cmdbitstr(CMDBIT cb) {
|
|
char space[32];
|
|
|
|
*space = cmdbitchar(cb);
|
|
if(*space == 'a')
|
|
sprintf(space+1, "%d", cb.bitno);
|
|
else
|
|
space[1] = 0;
|
|
|
|
return cfg_strdup("cmdbitstr()", space);
|
|
}
|
|
|
|
|
|
const char *opcodename(int opnum) {
|
|
switch(opnum) {
|
|
case AVR_OP_READ:
|
|
return "read";
|
|
case AVR_OP_WRITE:
|
|
return "write";
|
|
case AVR_OP_READ_LO:
|
|
return "read_lo";
|
|
case AVR_OP_READ_HI:
|
|
return "read_hi";
|
|
case AVR_OP_WRITE_LO:
|
|
return "write_lo";
|
|
case AVR_OP_WRITE_HI:
|
|
return "write_hi";
|
|
case AVR_OP_LOADPAGE_LO:
|
|
return "loadpage_lo";
|
|
case AVR_OP_LOADPAGE_HI:
|
|
return "loadpage_hi";
|
|
case AVR_OP_LOAD_EXT_ADDR:
|
|
return "load_ext_addr";
|
|
case AVR_OP_WRITEPAGE:
|
|
return "writepage";
|
|
case AVR_OP_CHIP_ERASE:
|
|
return "chip_erase";
|
|
case AVR_OP_PGM_ENABLE:
|
|
return "pgm_enable";
|
|
default:
|
|
return "???";
|
|
}
|
|
}
|
|
|
|
|
|
// Unique string representation of an opcode
|
|
char *opcode2str(const OPCODE *op, int opnum, int detailed) {
|
|
char cb, space[1024], *sp = space;
|
|
int compact = 1;
|
|
|
|
if(!op)
|
|
return cfg_strdup("opcode2str()", "NULL");
|
|
|
|
// Can the opcode be printed in a compact way? Only if address bits are systematic.
|
|
for(int i=31; i >= 0; i--)
|
|
if(op->bit[i].type == AVR_CMDBIT_ADDRESS)
|
|
if(i<8 || i>23 || op->bit[i].bitno != (opnum == AVR_OP_LOAD_EXT_ADDR? i+8: i-8))
|
|
compact = 0;
|
|
|
|
if(detailed)
|
|
*sp++ = '"';
|
|
|
|
for(int i=31; i >= 0; i--) {
|
|
*sp++ = cb = cmdbitchar(op->bit[i]);
|
|
if(compact) {
|
|
if(i && i%8 == 0)
|
|
*sp++ = '-', *sp++ = '-';
|
|
else if(i && i%4 == 0)
|
|
*sp++ = '.';
|
|
} else {
|
|
if(cb == 'a') {
|
|
sprintf(sp, "%d", op->bit[i].bitno);
|
|
sp += strlen(sp);
|
|
}
|
|
if(i) {
|
|
if(detailed)
|
|
*sp++ = ' ';
|
|
if(i%8 == 0)
|
|
*sp++ = ' ';
|
|
}
|
|
}
|
|
}
|
|
if(detailed)
|
|
*sp++ = '"';
|
|
*sp = 0;
|
|
|
|
return cfg_strdup("opcode2str()", space);
|
|
}
|
|
|
|
|
|
/*
|
|
* Match STRING against the partname pattern PATTERN, returning 1 if it
|
|
* matches, 0 if not. NOTE: part_match() is a modified old copy of !fnmatch()
|
|
* from the GNU C Library (published under GLP v2). Used for portability.
|
|
*/
|
|
|
|
inline static int fold(int c) {
|
|
return (c >= 'A' && c <= 'Z')? c+('a'-'A'): c;
|
|
}
|
|
|
|
int part_match(const char *pattern, const char *string) {
|
|
unsigned char c;
|
|
const char *p = pattern, *n = string;
|
|
|
|
if(!*n) // AVRDUDE specialty: empty string never matches
|
|
return 0;
|
|
|
|
while((c = fold(*p++))) {
|
|
switch(c) {
|
|
case '?':
|
|
if(*n == 0)
|
|
return 0;
|
|
break;
|
|
|
|
case '\\':
|
|
c = fold(*p++);
|
|
if(fold(*n) != c)
|
|
return 0;
|
|
break;
|
|
|
|
case '*':
|
|
for(c = *p++; c == '?' || c == '*'; c = *p++)
|
|
if(c == '?' && *n++ == 0)
|
|
return 0;
|
|
|
|
if(c == 0)
|
|
return 1;
|
|
|
|
{
|
|
unsigned char c1 = fold(c == '\\'? *p : c); // This char
|
|
|
|
for(--p; *n; ++n) // Recursively check reminder of string for *
|
|
if((c == '[' || fold(*n) == c1) && part_match(p, n) == 1)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
case '[':
|
|
{
|
|
int negate;
|
|
|
|
if(*n == 0)
|
|
return 0;
|
|
|
|
negate = (*p == '!' || *p == '^');
|
|
if(negate)
|
|
++p;
|
|
|
|
c = *p++;
|
|
for(;;) {
|
|
unsigned char cstart = c, cend = c;
|
|
|
|
if(c == '\\')
|
|
cstart = cend = *p++;
|
|
|
|
cstart = cend = fold(cstart);
|
|
|
|
if(c == 0) // [ (unterminated)
|
|
return 0;
|
|
|
|
c = *p++;
|
|
c = fold(c);
|
|
|
|
if(c == '-' && *p != ']') {
|
|
cend = *p++;
|
|
if(cend == '\\')
|
|
cend = *p++;
|
|
if(cend == 0)
|
|
return 0;
|
|
cend = fold(cend);
|
|
|
|
c = *p++;
|
|
}
|
|
|
|
if(fold(*n) >= cstart && fold(*n) <= cend)
|
|
goto matched;
|
|
|
|
if(c == ']')
|
|
break;
|
|
}
|
|
if(!negate)
|
|
return 0;
|
|
break;
|
|
|
|
matched:;
|
|
while(c != ']') { // Skip the rest of the [...] that already matched
|
|
|
|
if(c == 0) // [... (unterminated)
|
|
return 0;
|
|
|
|
c = *p++;
|
|
if(c == '\\') // XXX 1003.2d11 is unclear if this is right
|
|
++p;
|
|
}
|
|
if(negate)
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
if(c != fold(*n))
|
|
return 0;
|
|
}
|
|
|
|
++n;
|
|
}
|
|
|
|
return *n == 0;
|
|
}
|