avrdude/src/update.c

610 lines
17 KiB
C

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2000-2005 Brian S. Dean <bsd@bsdhome.com>
* Copyright (C) 2007 Joerg Wunsch
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* $Id$ */
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "ac_cfg.h"
#include "avrdude.h"
#include "libavrdude.h"
UPDATE * parse_op(char * s)
{
char buf[1024];
char * p, * cp, c;
UPDATE * upd;
int i;
size_t fnlen;
upd = (UPDATE *) cfg_malloc("parse_op()", sizeof(UPDATE));
i = 0;
p = s;
while (i < (int) sizeof(buf)-1 && *p && *p != ':')
buf[i++] = *p++;
buf[i] = 0;
if (*p != ':') {
upd->memtype = NULL; /* default memtype, "flash", or "application" */
upd->op = DEVICE_WRITE;
upd->filename = cfg_strdup("parse_op()", buf);
upd->format = FMT_AUTO;
return upd;
}
upd->memtype = cfg_strdup("parse_op()", buf);
p++;
if (*p == 'r') {
upd->op = DEVICE_READ;
}
else if (*p == 'w') {
upd->op = DEVICE_WRITE;
}
else if (*p == 'v') {
upd->op = DEVICE_VERIFY;
}
else {
pmsg_error("invalid I/O mode '%c' in update specification\n", *p);
msg_error(" allowed values are:\n"
" r = read device\n"
" w = write device\n"
" v = verify device\n");
free(upd->memtype);
free(upd);
return NULL;
}
p++;
if (*p != ':') {
pmsg_error("invalid update specification\n");
free(upd->memtype);
free(upd);
return NULL;
}
p++;
/*
* Now, parse the filename component. Instead of looking for the
* leftmost possible colon delimiter, we look for the rightmost one.
* If we found one, we do have a trailing :format specifier, and
* process it. Otherwise, the remainder of the string is our file
* name component. That way, the file name itself is allowed to
* contain a colon itself (e. g. C:/some/file.hex), except the
* optional format specifier becomes mandatory then.
*/
cp = p;
p = strrchr(cp, ':');
if (p == NULL) {
// missing format, default to "AUTO" for write and verify,
// and to binary for read operations:
upd->format = upd->op == DEVICE_READ? FMT_RBIN: FMT_AUTO;
fnlen = strlen(cp);
upd->filename = (char *) cfg_malloc("parse_op()", fnlen + 1);
} else {
fnlen = p - cp;
upd->filename = (char *) cfg_malloc("parse_op()", fnlen +1);
c = *++p;
if (c && p[1])
/* More than one char - force failure below. */
c = '?';
switch (c) {
case 'a': upd->format = FMT_AUTO; break;
case 's': upd->format = FMT_SREC; break;
case 'i': upd->format = FMT_IHEX; break;
case 'I': upd->format = FMT_IHXC; break;
case 'r': upd->format = FMT_RBIN; break;
case 'e': upd->format = FMT_ELF; break;
case 'm': upd->format = FMT_IMM; break;
case 'b': upd->format = FMT_BIN; break;
case 'd': upd->format = FMT_DEC; break;
case 'h': upd->format = FMT_HEX; break;
case 'o': upd->format = FMT_OCT; break;
default:
pmsg_error("invalid file format '%s' in update specifier\n", p);
free(upd->memtype);
free(upd);
return NULL;
}
}
memcpy(upd->filename, cp, fnlen);
upd->filename[fnlen] = 0;
return upd;
}
UPDATE * dup_update(UPDATE * upd)
{
UPDATE * u;
u = (UPDATE *) cfg_malloc("dup_update()", sizeof(UPDATE));
memcpy(u, upd, sizeof(UPDATE));
if (upd->memtype != NULL)
u->memtype = cfg_strdup("dup_update()", upd->memtype);
else
u->memtype = NULL;
u->filename = cfg_strdup("dup_update()", upd->filename);
return u;
}
UPDATE * new_update(int op, char * memtype, int filefmt, char * filename)
{
UPDATE * u;
u = (UPDATE *) cfg_malloc("new_update()", sizeof(UPDATE));
u->memtype = cfg_strdup("new_update()", memtype);
u->filename = cfg_strdup("new_update()", filename);
u->op = op;
u->format = filefmt;
return u;
}
void free_update(UPDATE * u)
{
if (u != NULL) {
if(u->memtype != NULL) {
free(u->memtype);
u->memtype = NULL;
}
if(u->filename != NULL) {
free(u->filename);
u->filename = NULL;
}
free(u);
}
}
// Memory statistics considering holes after a file read returned size bytes
int memstats(struct avrpart *p, char *memtype, int size, Filestats *fsp) {
Filestats ret = { 0 };
AVRMEM *mem = avr_locate_mem(p, memtype);
if(!mem) {
pmsg_error("%s %s undefined\n", p->desc, memtype);
return LIBAVRDUDE_GENERAL_FAILURE;
}
if(!mem->buf || !mem->tags) {
pmsg_error("%s %s is not set\n", p->desc, memtype);
return LIBAVRDUDE_GENERAL_FAILURE;
}
int pgsize = mem->page_size;
if(pgsize < 1)
pgsize = 1;
if(size < 0 || size > mem->size) {
pmsg_error("size %d at odds with %s %s size %d\n", size, p->desc, memtype, mem->size);
return LIBAVRDUDE_GENERAL_FAILURE;
}
ret.lastaddr = -1;
int firstset = 0, insection = 0;
// Scan all memory
for(int addr = 0; addr < mem->size; ) {
int pageset = 0;
// Go page by page
for(int pgi = 0; pgi < pgsize; pgi++, addr++) {
if(mem->tags[addr] & TAG_ALLOCATED) {
if(!firstset) {
firstset = 1;
ret.firstaddr = addr;
}
ret.lastaddr = addr;
// size can be smaller than tags suggest owing to flash trailing-0xff
if(addr < size) {
ret.nbytes++;
if(!pageset) {
pageset = 1;
ret.nfill += pgi;
ret.npages++;
}
if(!insection) {
insection = 1;
ret.nsections++;
}
} else { // Now beyond size returned by input file read
ret.ntrailing++;
if(pageset)
ret.nfill++;
}
} else { // In a hole or beyond input file
insection = 0;
if(pageset)
ret.nfill++;
}
}
}
if(fsp)
*fsp = ret;
return LIBAVRDUDE_SUCCESS;
}
// Convenience functions for printing
const char *update_plural(int x) {
return x==1? "": "s";
}
const char *update_inname(const char *fn) {
return !fn? "???": strcmp(fn, "-")? fn: "<stdin>";
}
const char *update_outname(const char *fn) {
return !fn? "???": strcmp(fn, "-")? fn: "<stdout>";
}
// Return sth like "[0, 0x1ff]"
const char *update_interval(int a, int b) {
// Cyclic buffer for 20+ temporary interval strings each max 41 bytes at 64-bit int
static char space[20*41 + 80], *sp;
if(!sp || sp-space > (int) sizeof space - 80)
sp = space;
char *ret = sp;
sprintf(sp, a<16? "[%d": "[0x%x", a);
sp += strlen(sp);
sprintf(sp, b<16? ", %d]": ", 0x%x]", b);
// Advance beyond return string in temporary ring buffer
sp += strlen(sp)+1;
return ret;
}
// Helper functions for dry run to determine file access
int update_is_okfile(const char *fn) {
struct stat info;
// File exists and is a regular file or a character file, eg, /dev/urandom
return fn && *fn && stat(fn, &info) == 0 && !!(info.st_mode & (S_IFREG | S_IFCHR));
}
int update_is_writeable(const char *fn) {
if(!fn || !*fn)
return 0;
// Assume writing to stdout will be OK
if(!strcmp(fn, "-"))
return 1;
// File exists? If so return whether it's readable and an OK file type
if(access(fn, F_OK) == 0)
return access(fn, W_OK) == 0 && update_is_okfile(fn);
// File does not exist: try to create it
FILE *test = fopen(fn, "w");
if(test) {
unlink(fn);
fclose(test);
}
return !!test;
}
int update_is_readable(const char *fn) {
if(!fn || !*fn)
return 0;
// Assume reading from stdin will be OK
if(!strcmp(fn, "-"))
return 1;
// File exists, is readable by the process and an OK file type?
return access(fn, R_OK) == 0 && update_is_okfile(fn);
}
static void ioerror(const char *iotype, UPDATE *upd) {
int errnocp = errno;
pmsg_ext_error("file %s is not %s: ", update_outname(upd->filename), iotype);
if(errnocp)
msg_ext_error("%s", strerror(errnocp));
else if(upd->filename && *upd->filename)
msg_ext_error("(not a regular or character file?)");
msg_ext_error("\n");
}
// Basic checks to reveal serious failure before programming
int update_dryrun(struct avrpart *p, UPDATE *upd) {
static char **wrote;
static int nfwritten;
int known, format_detect, ret = LIBAVRDUDE_SUCCESS;
/*
* Reject an update if memory name is not known amongst any part (suspect a typo)
* but accept when the specific part does not have it (allow unifying i/faces)
*/
if(!avr_mem_might_be_known(upd->memtype)) {
pmsg_error("unknown memory type %s\n", upd->memtype);
ret = LIBAVRDUDE_GENERAL_FAILURE;
} else if(p && !avr_locate_mem(p, upd->memtype))
ret = LIBAVRDUDE_SOFTFAIL;
known = 0;
// Necessary to check whether the file is readable?
if(upd->op == DEVICE_VERIFY || upd->op == DEVICE_WRITE || upd->format == FMT_AUTO) {
if(upd->format != FMT_IMM) {
// Need to read the file: was it written before, so will be known?
for(int i = 0; i < nfwritten; i++)
if(!wrote || (upd->filename && !strcmp(wrote[i], upd->filename)))
known = 1;
errno = 0;
if(!known && !update_is_readable(upd->filename)) {
ioerror("readable", upd);
ret = LIBAVRDUDE_GENERAL_FAILURE;
known = 1; // Pretend we know it, so no auto detect needed
}
}
}
if(!known && upd->format == FMT_AUTO) {
if(!strcmp(upd->filename, "-")) {
pmsg_error("cannot auto detect file format for stdin/out, "
"specify explicitly\n");
ret = LIBAVRDUDE_GENERAL_FAILURE;
} else if((format_detect = fileio_fmt_autodetect(upd->filename)) < 0) {
pmsg_error("cannot determine file format for %s, specify explicitly\n", upd->filename);
ret = LIBAVRDUDE_GENERAL_FAILURE;
} else {
// Set format now, no need to repeat auto detection later
upd->format = format_detect;
if(quell_progress < 2)
pmsg_notice("%s file %s auto detected as %s\n",
upd->op == DEVICE_READ? "output": "input", upd->filename,
fileio_fmtstr(upd->format));
}
}
switch(upd->op) {
case DEVICE_READ:
if(upd->format == FMT_IMM) {
pmsg_error("invalid file format 'immediate' for output\n");
ret = LIBAVRDUDE_GENERAL_FAILURE;
} else {
errno = 0;
if(!update_is_writeable(upd->filename)) {
ioerror("writeable", upd);
ret = LIBAVRDUDE_GENERAL_FAILURE;
} else if(upd->filename) { // Record filename (other than stdout) is available for future reads
if(strcmp(upd->filename, "-") && (wrote = realloc(wrote, sizeof(*wrote) * (nfwritten+1))))
wrote[nfwritten++] = upd->filename;
}
}
break;
case DEVICE_VERIFY: // Already checked that file is readable
case DEVICE_WRITE:
break;
default:
pmsg_error("invalid update operation (%d) requested\n", upd->op);
ret = LIBAVRDUDE_GENERAL_FAILURE;
}
return ret;
}
int do_op(PROGRAMMER * pgm, struct avrpart * p, UPDATE * upd, enum updateflags flags)
{
struct avrpart * v;
AVRMEM * mem;
int size;
int rc;
Filestats fs;
mem = avr_locate_mem(p, upd->memtype);
if (mem == NULL) {
pmsg_warning("skipping -U %s:... as memory not defined for part %s\n", upd->memtype, p->desc);
return LIBAVRDUDE_SOFTFAIL;
}
AVRMEM_ALIAS *alias_mem = avr_find_memalias(p, mem);
char *alias_mem_desc = cfg_malloc("do_op()", 2 + (alias_mem && alias_mem->desc? strlen(alias_mem->desc): 0));
if(alias_mem && alias_mem->desc && *alias_mem->desc) {
*alias_mem_desc = '/';
strcpy(alias_mem_desc+1, alias_mem->desc);
}
switch (upd->op) {
case DEVICE_READ:
// Read out the specified device memory and write it to a file
if (upd->format == FMT_IMM) {
pmsg_error("invalid file format 'immediate' for output\n");
return LIBAVRDUDE_GENERAL_FAILURE;
}
pmsg_info("reading %s%s memory ...\n", mem->desc, alias_mem_desc);
if(mem->size > 32 || verbose > 1)
report_progress(0, 1, "Reading");
rc = avr_read(pgm, p, upd->memtype, 0);
report_progress(1, 1, NULL);
if (rc < 0) {
pmsg_error("unable to read all of %s%s memory, rc=%d\n", mem->desc, alias_mem_desc, rc);
return LIBAVRDUDE_GENERAL_FAILURE;
}
size = rc;
if (rc == 0)
pmsg_notice("flash is empty, resulting file has no contents\n");
pmsg_info("writing output file %s\n", update_outname(upd->filename));
rc = fileio(FIO_WRITE, upd->filename, upd->format, p, upd->memtype, size);
if (rc < 0) {
pmsg_error("write to file %s failed\n", update_outname(upd->filename));
return LIBAVRDUDE_GENERAL_FAILURE;
}
break;
case DEVICE_WRITE:
// Write the selected device memory using data from a file
rc = fileio(FIO_READ, upd->filename, upd->format, p, upd->memtype, -1);
if (rc < 0) {
pmsg_error("read from file %s failed\n", update_inname(upd->filename));
return LIBAVRDUDE_GENERAL_FAILURE;
}
size = rc;
pmsg_info("reading input file %s for %s%s\n",
update_inname(upd->filename), mem->desc, alias_mem_desc);
if(memstats(p, upd->memtype, size, &fs) < 0)
return LIBAVRDUDE_GENERAL_FAILURE;
imsg_info("with %d byte%s in %d section%s within %s\n",
fs.nbytes, update_plural(fs.nbytes),
fs.nsections, update_plural(fs.nsections),
update_interval(fs.firstaddr, fs.lastaddr));
if(mem->page_size > 1) {
imsg_info("using %d page%s and %d pad byte%s",
fs.npages, update_plural(fs.npages),
fs.nfill, update_plural(fs.nfill));
if(fs.ntrailing)
msg_info(", cutting off %d trailing 0xff byte%s",
fs.ntrailing, update_plural(fs.ntrailing));
msg_info("\n");
}
// Write the buffer contents to the selected memory type
pmsg_info("writing %d byte%s %s%s ...\n", fs.nbytes,
update_plural(fs.nbytes), mem->desc, alias_mem_desc);
if (!(flags & UF_NOWRITE)) {
if(mem->size > 32 || verbose > 1)
report_progress(0, 1, "Writing");
rc = avr_write(pgm, p, upd->memtype, size, (flags & UF_AUTO_ERASE) != 0);
report_progress(1, 1, NULL);
} else {
// Test mode: write to stdout in intel hex rather than to the chip
rc = fileio(FIO_WRITE, "-", FMT_IHEX, p, upd->memtype, size);
}
if (rc < 0) {
pmsg_error("unable to write %s%s memory, rc=%d\n", mem->desc, alias_mem_desc, rc);
return LIBAVRDUDE_GENERAL_FAILURE;
}
pmsg_info("%d byte%s of %s%s written\n", fs.nbytes,
update_plural(fs.nbytes), mem->desc, alias_mem_desc);
// Fall through for (default) auto verify, ie, unless -V was specified
if (!(flags & UF_VERIFY))
break;
case DEVICE_VERIFY:
// Verify that the in memory file is the same as what is on the chip
pgm->vfy_led(pgm, ON);
int userverify = upd->op == DEVICE_VERIFY; // Explicit -U :v by user
pmsg_info("verifying %s%s memory against %s\n", mem->desc,
alias_mem_desc, update_inname(upd->filename));
// No need to read file when fallen through from DEVICE_WRITE
if (userverify) {
pmsg_notice("load %s%s data from input file %s\n", mem->desc,
alias_mem_desc, update_inname(upd->filename));
rc = fileio(FIO_READ_FOR_VERIFY, upd->filename, upd->format, p, upd->memtype, -1);
if (rc < 0) {
pmsg_error("read from file %s failed\n", update_inname(upd->filename));
return LIBAVRDUDE_GENERAL_FAILURE;
}
size = rc;
if(memstats(p, upd->memtype, size, &fs) < 0)
return LIBAVRDUDE_GENERAL_FAILURE;
} else {
// Correct size of last read to include potentially cut off, trailing 0xff (flash)
size = fs.lastaddr+1;
}
v = avr_dup_part(p);
if (quell_progress < 2) {
if (userverify)
pmsg_notice("input file %s contains %d byte%s\n",
update_inname(upd->filename), fs.nbytes, update_plural(fs.nbytes));
pmsg_notice2("reading on-chip %s%s data ...\n", mem->desc, alias_mem_desc);
}
if(mem->size > 32 || verbose > 1)
report_progress (0,1,"Reading");
rc = avr_read(pgm, p, upd->memtype, v);
report_progress (1,1,NULL);
if (rc < 0) {
pmsg_error("unable to read all of %s%s memory, rc=%d\n", mem->desc, alias_mem_desc, rc);
pgm->err_led(pgm, ON);
avr_free_part(v);
return LIBAVRDUDE_GENERAL_FAILURE;
}
if (quell_progress < 2)
pmsg_notice2("verifying ...\n");
rc = avr_verify(p, v, upd->memtype, size);
if (rc < 0) {
pmsg_error("verification mismatch\n");
pgm->err_led(pgm, ON);
avr_free_part(v);
return LIBAVRDUDE_GENERAL_FAILURE;
}
int verified = fs.nbytes+fs.ntrailing;
pmsg_info("%d byte%s of %s%s verified\n", verified, update_plural(verified), mem->desc, alias_mem_desc);
pgm->vfy_led(pgm, OFF);
avr_free_part(v);
break;
default:
pmsg_error("invalid update operation (%d) requested\n", upd->op);
return LIBAVRDUDE_GENERAL_FAILURE;
}
return LIBAVRDUDE_SUCCESS;
}